1
|
Li ZQ, Meng L, Chen Z, Zhong YW. Endowing single-crystal polymers with circularly polarized luminescence. Nat Commun 2025; 16:234. [PMID: 39747830 PMCID: PMC11696868 DOI: 10.1038/s41467-024-55181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA]2 showing yellow CPL with a high luminescent dissymmetry factor |glum| of 0.035 and emission quantum yield Φ of 49.7%. Upon photo-induced topochemical [2 + 2] polymerization, single-crystal polyionic polymers of poly-1[( + )/( - )-CSA]2 are obtained. The single-crystal-to-single-crystal (SCSC) photopolymerization is revealed by in situ powder X-ray diffraction, single-crystal X-ray, optical microscopy, infrared, circular dichroism, and CPL spectroscopic analyzes. Interestingly, the photopolymer crystals show blue and handedness-inverted CPL with |glum| of 0.011 (Φ = 14.2%), with respect to the yellow CPL of the monomer crystal. Furthermore, patterned circularly-polarized photonic heterojunctions with alternate blue and yellow CPL sub-blocks are prepared by a mask-assisted photopolymerization method. Our findings provide a vision for fabricating high-performance CPL-active crystalline polymer materials, paving the way for the further development of photo-response chiral systems.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Meng
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing, China
| | - Zili Chen
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing, China
| | - Yu-Wu Zhong
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, China.
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Huang Y, Liu Y, Yan Y, Gong Y, Zhang Y, Che Y, Zhao J. Metal-free photocatalysts with charge-transfer excited states enable visible light-driven atom transfer radical polymerization. Chem Commun (Camb) 2024. [PMID: 39552579 DOI: 10.1039/d4cc04470c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metal-free donor-acceptor photocatalysts enable efficient O-ATRP under visible light, allowing for precise control over polymer molecular weight with low dispersity. These photocatalysts achieve sufficient reductive potential to drive the reaction in their charge-transfer (CT) excited state. The reported efficient photocatalytic O-ATRP has significant potential in scalable polymer synthesis and photolithography.
Collapse
Affiliation(s)
- Yuchen Huang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingde Yan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yifan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Meng L, Li ZQ, Shao JY, Chen Z, Zhong YW. An organic polarized photonic heterostructure based on tetra(4-pyridylphenyl)ethylene. Chem Commun (Camb) 2024; 60:13199-13202. [PMID: 39441030 DOI: 10.1039/d4cc04345f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic optical heterostructures have emerged as promising candidates for applications in organic photonics. In this study, we demonstrate a facile strategy to integrate different emission and polarization properties into the sub-blocks of luminescent organic heterostructures, by a mask-assisted vapor treatment method on the microcrystals of a pyridine-functionalized tetraphenylethylene chromophore.
Collapse
Affiliation(s)
- Li Meng
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing 100872, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing 100190, China.
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing 100190, China.
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing 100190, China.
| | - Zili Chen
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing 100872, China.
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
4
|
Park S, Kang SY, Yang S, Choi TL. Independent Control of the Width and Length of Semiconducting 2D Nanorectangles via Accelerated Living Crystallization-Driven Self-Assembly. J Am Chem Soc 2024; 146:19369-19376. [PMID: 38965837 DOI: 10.1021/jacs.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Self-assembly of conjugated polymers offers a powerful method to prepare semiconducting two-dimensional (2D) nanosheets for optoelectronic applications. However, due to the typical biaxial growth behavior of the polymer self-assembly, independent control of the width and length of 2D sheets has been challenging. Herein, we present a greatly accelerated crystallization-driven self-assembly (CDSA) system of polyacetylene-based conjugated polymer to produce 2D semiconducting nanorectangles with precisely controllable dimensions. In detail, rectangular 2D seeds with tunable widths of 0.2-1.3 μm were produced by changing the cosolvent% and grown in the length direction by uniaxial living CDSA up to 11.8 μm. The growth rate was effectively enhanced by tuning the cosolvent%, seed concentration, and temperature, achieving up to 27-fold increase. Additionally, systematic kinetic investigation yielded empirical rate equations, elucidating the relationship between growth rate constant, cosolvent%, seed concentration, and seed width. Finally, the living CDSA allowed us to prepare penta-block comicelles with tunable width, length, and height.
Collapse
Affiliation(s)
- Songyee Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Sanghee Yang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
5
|
Liao C, Gong Y, Che Y, Ji H, Liu B, Zang L, Che Y, Zhao J. Concentric hollow multi-hexagonal platelets from a small molecule. Nat Commun 2024; 15:5668. [PMID: 38971832 PMCID: PMC11227555 DOI: 10.1038/s41467-024-49995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
The creation of well-defined hollow two-dimensional structures from small organic molecules, particularly those with controlled widths and numbers of segments, remains a formidable challenge. Here we report the fabrication of the well-defined concentric hollow two-dimensional platelets with programmable widths and numbers of segments through constructing a concentric multiblock two-dimensional precursor followed by post-processing. The fabrication of concentric multi-hexagons two-dimensional platelets is realized by the alternative heteroepitaxial growth of two donor-acceptor molecules. Upon ultraviolet irradiation, one of the two donor-acceptor molecules can be selectively oxidized by singlet oxygen generated during the process, and the oxidized product becomes more soluble due to increased polarity. This allows for selective removal of the oxidized segments simply by solvent dissolution, yielding hollow multiblock two-dimensional structures. The hollow two-dimensional platelets can be utilized as templates to lithograph complex electrodes with precisely controlled gap sizes, thereby offering a platform for examining the optoelectronic performance of functional materials.
Collapse
Affiliation(s)
- Chenglong Liao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxue Che
- HT-NOVA Co. Ltd., Zhuyuan Road, Shunyi District, Beijing, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Liu
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Ling Zang
- Department of Materials Science and Engineering, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Sun L, Gong Y, Che Y, Ji H, Liu B, Che Y, Zhao J. Light-Regulated Nucleation for Growing Highly Uniform Single-Crystalline Microrods. Angew Chem Int Ed Engl 2024; 63:e202402253. [PMID: 38497168 DOI: 10.1002/anie.202402253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
We report a light-irradiation method to control the synchronous nucleation of a donor-acceptor (D-A) fluorophore for growing highly uniform single-crystalline microrods, which is in sharp contrast to the prevailing methods of restricting spontaneous nucleation and additionally adding seeds. The D-A fluorophore was observed to undergo photoinduced electron transfer to CrCl3, leading to the generation of HCl and the subsequent protonation of the D-A fluorophore. By intensifying photoirradiation or prolonging its duration, the concentration of protonated D-A fluorophores can be rapidly increased to a high supersaturation level. This results in the formation of a controlled number of nuclei in a synchronous manner, which in turn kickstart the epitaxial growth of protonated D-A fluorophores towards uniform single-crystalline microrods of controlled sizes. The light-regulated synchronous nucleation and uniform growth of microrods are a unique phenomenon that can only be achieved by specific Lewis acids, making it a novel probing method for sensitively detecting strong Lewis acids such as chromium chloride.
Collapse
Affiliation(s)
- Lishan Sun
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxue Che
- HT-NOVA Co., Ltd., Zhuyuan Road, Shunyi District, Beijing, 101312, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Chen Y, Liu C. Strategies for Synthesizing Supramolecular Block Copolymers. Chempluschem 2024; 89:e202300623. [PMID: 38095487 DOI: 10.1002/cplu.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Indexed: 05/16/2024]
Abstract
Over the past decade, controlled supramolecular polymerization has been extensively studied and gradually shifted to supramolecular block copolymerization. Supramolecular block copolymers (BCPs) are considered the holy grail for developing supramolecular materials with new functionalities due to their fascinating structures and ability to introduce diverse functions. From a thermodynamic view to kinetic aspects, great progress has been made in the synthetic strategies of BCPs in the past few years. This Concept summarizes various strategies to realize supramolecular block copolymerization. The focus is on providing researchers with a methodological basis for achieving heterogeneous nucleation-elongation.
Collapse
Affiliation(s)
- Yan Chen
- School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Chun Liu
- School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
8
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
9
|
Xie Y, Tong Z, Xia T, Worch JC, Rho JY, Dove AP, O'Reilly RK. 2D Hierarchical Microbarcodes with Expanded Storage Capacity for Optical Multiplex and Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308154. [PMID: 38014933 DOI: 10.1002/adma.202308154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Indexed: 11/29/2023]
Abstract
The design of nanosegregated fluorescent tags/barcodes by geometrical patterning with precise dimensions and hierarchies could integrate multilevel optical information within one carrier and enhance microsized barcoding techniques for ultrahigh-density optical data storage and encryption. However, precise control of the spatial distribution in micro/nanosized matrices intrinsically limits the accessible barcoding applications in terms of material design and construction. Here, crystallization forces are leveraged to enable a rapid, programmable molecular packing and rapid epitaxial growth of fluorescent units in 2D via crystallization-driven self-assembly. The fluorescence encoding density, scalability, information storage capacity, and decoding techniques of the robust 2D polymeric barcoding platform are explored systematically. These results provide both a theoretical and an experimental foundation for expanding the fluorescence storage capacity, which is a longstanding challenge in state-of-the-art microbarcoding techniques and establish a generalized and adaptable coding platform for high-throughput analysis and optical multiplexing.
Collapse
Affiliation(s)
- Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zaizai Tong
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianlai Xia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Julia Y Rho
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
10
|
Liao C, Gong Y, Che Y, Cui L, Liu Y, Ji H, Zhang Y, Zang L, Zhao J, Che Y. Living Self-Assembly of Metastable and Stable Two-Dimensional Platelets from a Single Small Molecule. Chemistry 2023; 29:e202301747. [PMID: 37815852 DOI: 10.1002/chem.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
This study reports the design of a donor-acceptor (D-A) molecule with two fluorene units on each side of a benzothiadiazole moiety, which allows multiple intermolecular interactions to compete with one another so as to induce the evolution of the metastable 2D platelets to the stable 2D platelets during the self-assembly of the D-A molecule. Importantly, the living seeded self-assembly of metastable and stable 2D structures with precisely controlled sizes can be conveniently achieved using an appropriate supersaturated level of a solution of the D-A molecule as the seeded growth medium that can temporarily hold the almost-proceeding spontaneous nucleation from competing with the seeded growth. The stable 2D platelets with smaller area sizes exhibit higher sensitivity to gaseous dimethyl sulfide, illustrating that the novel living self-assembly method provides more available functional structures with controlled sizes for practical applications. The key finding of this study is that the new living methodology is separated into two independent processes: the elaborate molecular design for various crystalline structures as seeds and the application of a supersaturated solution with appropriate levels as the growth medium to grow the uniform structures with controlled sizes; this would make convenient and possible the living seeded self-assembly of rich 1D, 2D, and 3D architectures.
Collapse
Affiliation(s)
- Chenglong Liao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxue Che
- HT-NOVA Co., Ltd., Zhuyuan Road, Shunyi District, Beijing, 101312, China
| | - Linfeng Cui
- Hebei Key Laboratory of Organic Functional Molecules College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050023, P. R. China
| | - Yangxin Liu
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan Zhang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Zang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Chen Y, Wan Q, Shi Y, Tang B, Che CM, Liu C. Three-Component Multiblock 1D Supramolecular Copolymers of Ir(III) Complexes with Controllable Sequences. Angew Chem Int Ed Engl 2023; 62:e202312844. [PMID: 37905561 DOI: 10.1002/anie.202312844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
Multicomponent supramolecular block copolymers (BCPs) have attracted much attention due to their potential functionalities, but examples of three-component supramolecular BCPs are rare. Herein, we report the synthesis of three-component multiblock 1D supramolecular copolymers of Ir(III) complexes 1-3 by a sequential seeded supramolecular polymerization approach. Precise control over the kinetically trapped species via the pathway complexity of the monomers is the key to the successful synthesis of BCPs with up to 9 blocks. Furthermore, 5-block BCPs with different sequences could be synthesized by changing the addition order of the kinetic species during a sequentially seeded process. The corresponding heterogeneous nucleation-elongation process has been confirmed by the UV/Vis absorption spectra, and each segment of the multiblock copolymers could be characterized by both TEM and SEM. Interestingly, the energy transfer leads to weakened emission of 1-terminated and enhanced emission of 3-terminated BCPs. This study will be an important step in advancing the synthesis and properties of three-component BCPs.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Qingyun Wan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Chi-Ming Che
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
12
|
Wang M, Chen G, Hou X, Luo Y, Jin B, Li X. Assembly of Supramolecular Nanoplatelets with Tailorable Geometrical Shapes and Dimensions. Polymers (Basel) 2023; 15:polym15112547. [PMID: 37299347 DOI: 10.3390/polym15112547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The craving for controllable assembly of geometrical nanostructures from artificial building motifs, which is routinely achieved in naturally occurring systems, has been a perpetual and outstanding challenge in the field of chemistry and materials science. In particular, the assembly of nanostructures with different geometries and controllable dimensions is crucial for their functionalities and is usually achieved with distinct assembling subunits via convoluted assembly strategies. Herein, we report that with the same building subunits of α-cyclodextrin (α-CD)/block copolymer inclusion complex (IC), geometrical nanoplatelets with hexagonal, square, and circular shapes could be produced by simply controlling the solvent conditions via one-step assembly procedure, driven by the crystallization of IC. Interestingly, these nanoplatelets with different shapes shared the same crystalline lattice and could therefore be interconverted to each other by merely tuning the solvent compositions. Moreover, the dimensions of these platelets could be decently controlled by tuning the overall concentrations.
Collapse
Affiliation(s)
- Moyan Wang
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Gangfeng Chen
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaojian Hou
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Yunjun Luo
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Bixin Jin
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| | - Xiaoyu Li
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
- Key Laboratory of High Energy Density Materials, MOE, Beijing Institute of Technology, No.5 Zhongguancun South St., Beijing 100081, China
| |
Collapse
|
13
|
Gong Y, Fu L, Che Y, Ji H, Zhang Y, Zang L, Zhao J, Che Y. Fabrication of Two-Dimensional Platelets with Heat-Resistant Luminescence and Large Two-Photon Absorption Cross Sections via Cooperative Solution/Solid Self-Assembly. J Am Chem Soc 2023; 145:9771-9776. [PMID: 37079712 DOI: 10.1021/jacs.3c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The combination of solution self-assembly, which enables primary morphological control, and solid self-assembly, which enables the creation of novel properties, can lead to the formation of new functional materials that cannot be obtained using either technique alone. Herein, we report a cooperative solution/solid self-assembly strategy to fabricate novel two-dimensional (2D) platelets. Precursor 2D platelets with preorganized packing structure, shape, and size are formed via the living self-assembly of a donor-acceptor fluorophore and volatile coformer (i.e., propanol) in solution phase. After high-temperature annealing, propanol is released from the precursor platelets, and new continuous intermolecular hydrogen bonds are formed. The new 2D platelets formed retain the controllable morphologies originally defined by the solution phase living self-assembly but exhibit remarkable heat-resistant luminescence up to 200 °C and high two-photon absorption cross sections (i.e., >19,000 GM at 760 nm laser excitation).
Collapse
Affiliation(s)
- Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyang Fu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxue Che
- HT-NOVA Co., Ltd., Zhuyuan Road, Shunyi District, Beijing 101312, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ling Zang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|