1
|
Cui ZH, Zhang H, Zheng FH, Xue JH, Yin QH, Xie XL, Wang YX, Wang T, Zhou L, Fang GM. Generation of antibody-drug conjugates by proximity-driven acyl transfer and sortase-mediated ligation. Org Biomol Chem 2024; 23:188-196. [PMID: 39530194 DOI: 10.1039/d4ob01624f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a sortase-based site-specific antibody-drug conjugation strategy, which involves an affinity peptide-directed acyl transfer reaction and sortase-mediated peptide ligation. Through the affinity peptide-mediated acyl transfer reaction, an LPXTG-containing peptide is conjugated to a specific Lys side chain of an antibody. Under the assistance of sortase, a protein drug bearing a GG motif reacts specifically with the LPXTG moiety to produce an antibody-drug conjugate. Our strategy for antibody conjugation can be applied not only to chemically synthesized drugs, but also to biologically expressed proteins, and will provide a new sortase-based strategy for the preparation of antibody-drug conjugates.
Collapse
Affiliation(s)
- Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Feng-Hao Zheng
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Jun-Hao Xue
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Qing-Hong Yin
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Xiao-Lei Xie
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Yu-Xuan Wang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| | - Tao Wang
- University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Li Zhou
- Anhui Provincial Peptide Drug Engineering Laboratory, Hefei KS-V Peptide Biological Technology Co., Ltd, P. R. China.
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
2
|
Matsuda Y, Shikida N, Hatada N, Yamada K, Seki T, Nakahara Y, Endo Y, Shimbo K, Takahashi K, Nakayama A, Mendelsohn BA, Fujii T, Okuzumi T, Hirasawa S. AJICAP-M: Traceless Affinity Peptide Mediated Conjugation Technology for Site-Selective Antibody-Drug Conjugate Synthesis. Org Lett 2024; 26:5597-5601. [PMID: 38639400 DOI: 10.1021/acs.orglett.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A traceless site-selective conjugation method, "AJICAP-M", was developed for native antibodies at sites using Fc-affinity peptides, focusing on Lys248 or Lys288. It produces antibody-drug conjugates (ADCs) with consistent drug-to-antibody ratios, enhanced stability, and simplified manufacturing. Comparative in vivo assessment demonstrated AJICAP-M's superior stability over traditional ADCs. This technology has been successfully applied to continuous-flow manufacturing, marking the first achievement in site-selective ADC production. This manuscript outlines AJICAP-M's methodology and its effectiveness in ADC production.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Natsuki Shikida
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Noriko Hatada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kei Yamada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Takuya Seki
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yuichi Nakahara
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yuta Endo
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Brian A Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tomohiro Fujii
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tatsuya Okuzumi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Shigeo Hirasawa
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| |
Collapse
|
3
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Li B, Yuan D, Chen H, Wang X, Liang Y, Wong CTT, Xia J. Site-selective antibody-lipid conjugates for surface functionalization of red blood cells and targeted drug delivery. J Control Release 2024; 370:302-309. [PMID: 38663752 DOI: 10.1016/j.jconrel.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Displaying antibodies on carrier surfaces facilitates precise targeting and delivery of drugs to diseased cells. Here, we report the synthesis of antibody-lipid conjugates (ALCs) through site-selective acetylation of Lys 248 in human Immunoglobulin G (IgG) and the development of antibody-functionalized red blood cells (immunoRBC) for targeted drug delivery. ImmunoRBC with the HER2-selective antibody trastuzumab displayed on the surface (called Tras-RBC) was constructed following a three-step procedure. First, a peptide-guided, proximity-induced reaction transferred an azidoacetyl group to the ε-amino group of Lys 248 in the Fc domain. Second, the azide-modified IgG was subsequently conjugated with dibenzocyclooctyne (DBCO)-functionalized lipids via strain-promoted azide-alkyne cycloaddition (SPAAC) to result in ALCs. Third, the lipid portion of ALCs was then inserted into the cell membranes, and IgGs were displayed on red blood cells (RBCs) to construct immunoRBCs. We then loaded Tras-RBC with a photosensitizer (PS), Zinc phthalocyanine (ZnPc), to selectively target HER2-overexpressing cells, release ZnPc into cancer cells following photolysis, and induce photodynamic cytotoxicity in the cancer cells. This work showcases assembling immunoRBCs following site-selective lipid conjugation on therapeutic antibodies and the targeted introduction of PS into cancer cells. This method could apply to the surface functionalization of other membrane-bound vesicles or lipid nanoparticles for antibody-directed drug delivery.
Collapse
Affiliation(s)
- Biquan Li
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dingdong Yuan
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hongfei Chen
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xun Wang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yujie Liang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
5
|
Feng X, Wen Z, Zhu X, Yan X, Duan Y, Huang Y. Anti-HER2 Immunoliposomes: Antitumor Efficacy Attributable to Targeted Delivery of Anthraquinone-Fused Enediyne. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307865. [PMID: 38355309 PMCID: PMC11077693 DOI: 10.1002/advs.202307865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Indexed: 02/16/2024]
Abstract
Although natural products are essential sources of small-molecule antitumor drugs, some can exert substantial toxicities, limiting their clinical utility. Anthraquinone-fused enediyne natural products are remarkably potent antitumor drug candidates, and uncialamycin and tiancimycin (TNM) A are under development as antibody-drug conjugates. Herein, a novel drug delivery system is introduced for TNM A using anti-human epidermal growth factor receptor 2 (HER2) immunoliposomes (ILs). Trastuzumab-coated TNM A-loaded ILs (HER2-TNM A-ILs) is engineered with an average particle size of 182.8 ± 2.1 nm and a zeta potential of 1.75 ± 0.12 mV. Compared with liposomes lacking trastuzumab, HER2-TNM A-ILs exhibited selective toxicity against HER2-positive KPL-4 and SKBR3 cells. Coumarin-6, a fluorescent TNM A surrogate, is encapsulated within anti-HER2 ILs; the resultant ILs have enhanced cellular uptake in KPL-4 and SKBR3 cells when compared with control liposomes. Furthermore, ILs loaded with more Cy5.5 accumulated in KPL-4 mouse tumors. A single HER2-TNM A-IL dose (0.02 mg kg-1) suppressed the growth of HER2-positive KPL-4 mouse tumors without apparent toxicity. This study not only provides a straightforward method for the effective delivery of TNM A against HER2-positive breast tumors but also underscores the potential of IL-based drug delivery systems when employing highly potent cytotoxins as payloads.
Collapse
Affiliation(s)
- Xueqiong Feng
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
| | - Zhongqing Wen
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug DiscoverChangshaHunan410011China
| | - Xiaohui Yan
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yanwen Duan
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug DiscoverChangshaHunan410011China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug DiscoveryChangshaHunan410011China
| | - Yong Huang
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug DiscoveryChangshaHunan410011China
- Institute of Health and MedicineHefei Comprehensive National Science CenterHefeiAnhui230093China
| |
Collapse
|
6
|
Tanriver M, Müller M, Levasseur MD, Richards D, Majima S, DeMello A, Yamauchi Y, Bode JW. Peptide-Directed Attachment of Hydroxylamines to Specific Lysines of IgG Antibodies for Bioconjugations with Acylboronates. Angew Chem Int Ed Engl 2024; 63:e202401080. [PMID: 38421342 DOI: 10.1002/anie.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The role of monoclonal antibodies as vehicles to deliver payloads has evolved as a powerful tool in cancer therapy in recent years. The clinical development of therapeutic antibody conjugates with precise payloads holds great promise for targeted therapeutic interventions. The use of affinity-peptide mediated functionalization of native off-the-shelf antibodies offers an effective approach to selectively modify IgG antibodies with a drug-antibody ratio (DAR) of 2. Here, we report the traceless, peptide-directed attachment of two hydroxylamines to native IgGs followed by chemoselective potassium acyltrifluoroborate (KAT) ligation with quinolinium acyltrifluoroborates (QATs), which provide enhanced ligation rates with hydroxylamines under physiological conditions. By applying KAT ligation to the modified antibodies, conjugation of small molecules, proteins, and oligonucleotides to off-the-shelf IgGs proceeds efficiently, in good yields, and with simultaneous cleavage of the affinity peptide-directing moiety.
Collapse
Affiliation(s)
- Matthias Tanriver
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Marco Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Mikail D Levasseur
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniel Richards
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Sohei Majima
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrew DeMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Yohei Yamauchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
7
|
Cheng L, Wang Y, Guo Y, Zhang SS, Xiao H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem Biol 2024; 31:428-445. [PMID: 37802076 PMCID: PMC10960704 DOI: 10.1016/j.chembiol.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Recent years have seen a remarkable growth in the field of protein-based medical treatments. Nevertheless, concerns have arisen regarding the cytotoxicity limitations, low affinity, potential immunogenicity, low stability, and challenges to modify these proteins. To overcome these obstacles, proximity-induced chemistry has emerged as a next-generation strategy for advancing protein therapeutics. This method allows site-specific modification of proteins with therapeutic agents, improving their effectiveness without extensive engineering. In addition, this innovative approach enables spatial control of the reaction based on proximity, facilitating the formation of irreversible covalent bonds between therapeutic proteins and their targets. This capability becomes particularly valuable in addressing challenges such as the low affinity frequently encountered between therapeutic proteins and their targets, as well as the limited availability of small molecules for specific protein targets. As a result, proximity-induced chemistry is reshaping the field of protein drug preparation and propelling the revolution in novel protein therapeutics.
Collapse
Affiliation(s)
- Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
8
|
Kim S, Kim S, Kim S, Kim N, Lee SW, Yi H, Lee S, Sim T, Kwon Y, Lee HS. Affinity-Directed Site-Specific Protein Labeling and Its Application to Antibody-Drug Conjugates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306401. [PMID: 38032124 PMCID: PMC10811483 DOI: 10.1002/advs.202306401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.
Collapse
Affiliation(s)
- Sooin Kim
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Sanggil Kim
- New Drug Development CenterOsong Medical Innovation Foundation123 Osongsaengmyeong‐ro, Heungdeok‐guCheongjuChungbuk28160Republic of Korea
| | - Sangji Kim
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Sang Won Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Hanbin Yi
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Seungeun Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taebo Sim
- Department of Biomedical SciencesGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of Medicine50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Yongseok Kwon
- School of PharmacySungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyun Soo Lee
- Department of ChemistrySogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
9
|
Muguruma K, Fukuda A, Shida H, Taguchi A, Takayama K, Taniguchi A, Ito Y, Hayashi Y. Structure Derivatization of IgG-Binding Peptides and Analysis of Their Secondary Structure by Circular Dichroism Spectroscopy. Chem Pharm Bull (Tokyo) 2024; 72:831-837. [PMID: 39313388 DOI: 10.1248/cpb.c24-00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mid-sized cyclic peptides are a promising modality for modern drug discovery. Their larger interaction area coupled with an appropriate secondary structure is more suitable than small molecules for binding to the target protein. In this study, we conducted a structure derivatization of an immunoglobulin G (IgG)-binding peptide (15-IgBP), a β-hairpin-like cyclic peptide with a twisted β-strand and assessed the effect of the secondary structure on IgG-binding activity using circular dichroism (CD) spectra analysis. As a result, derivatization at the Ala5 and Gly9 positions affected the secondary structure of 15-IgBP, in particular the appearance of a small positive peak in the 220-240 nm region characteristic of 15-IgBP in the CD spectrum. Maintaining this peak at a moderate level may be important for the expression of IgG binding activity. We found the small methyl group at Ala5 to be crucial for retaining the preferred secondary structure; we also found Gly9 could be replaced by D-amino acids. By integrating these findings with previous results of the structure-activity relationship, we obtained four potent affinity peptides for IgG binding (Kd = 4.24-5.85 nM). Furthermore, we found the Gly9 position can be substituted for D-Lys. This is a new potential site for attaching functional units for conjugation with IgG for the preparation of homogeneous antibody-drug conjugates.
Collapse
Affiliation(s)
- Kyohei Muguruma
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Akane Fukuda
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hayate Shida
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
10
|
Fujii T, Ito K, Takahashi K, Aoki T, Takasugi R, Seki T, Iwai Y, Watanabe T, Hirama R, Tsumura R, Fuchigami H, Yasunaga M, Matsuda Y. Bispecific Antibodies Produced via Chemical Site-Specific Conjugation Technology: AJICAP Second-Generation. ACS Med Chem Lett 2023; 14:1767-1773. [PMID: 38116449 PMCID: PMC10726434 DOI: 10.1021/acsmedchemlett.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Bispecific antibodies (BisAbs) are biotherapeutics that amalgamate the specificities of two distinct antibodies into one molecule, however, their engineering requires genetic modification and remains time-consuming. Therefore, we used AJICAP second-generation technology, which drives the production of site-specific conjugation without genetic modification requirements, to generate BisAbs. Using haloketone chemistry as an alternative to maleimide chemistry, we successfully produced site-specific antibody conjugates. Pharmacokinetic studies revealed that the haloketone-based antibody conjugate was stable in the rat plasma. The resultant BisAbs were rigorously evaluated, and surface plasmon resonance measurements and flow cytometry analyses confirmed that the antigen binding remained intact. Additionally, the affinity for the neonatal Fc receptor (FcRn) was retained after conjugation. Further cytotoxicity evaluation emphasized the pronounced activity of the generated BisAbs. This novel approach introduces a fully chemical, site-specific strategy capable of producing BisAbs, heralding a new era in the field of biotherapeutics.
Collapse
Affiliation(s)
- Tomohiro Fujii
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kenichiro Ito
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutoshi Takahashi
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tsubasa Aoki
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Rika Takasugi
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Takuya Seki
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yusuke Iwai
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tomohiro Watanabe
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Ryusuke Hirama
- Ajinomoto
Co., Inc, 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Ryo Tsumura
- Division
of Developmental Therapeutics, Exploratory
Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan
| | - Hirobumi Fuchigami
- Division
of Developmental Therapeutics, Exploratory
Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan
| | - Masahiro Yasunaga
- Division
of Developmental Therapeutics, Exploratory
Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City 277-8577, Japan
| | - Yutaka Matsuda
- Ajinomoto
Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| |
Collapse
|
11
|
Gabizon R, Tivon B, Reddi RN, van den Oetelaar MCM, Amartely H, Cossar PJ, Ottmann C, London N. A simple method for developing lysine targeted covalent protein reagents. Nat Commun 2023; 14:7933. [PMID: 38040731 PMCID: PMC10692228 DOI: 10.1038/s41467-023-42632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
Peptide-based covalent probes can target shallow protein surfaces not typically addressable using small molecules, yet there is a need for versatile approaches to convert native peptide sequences into covalent binders that can target a broad range of residues. Here we report protein-based thio-methacrylate esters-electrophiles that can be installed easily on unprotected peptides and proteins via cysteine side chains, and react efficiently and selectively with cysteine and lysine side chains on the target. Methacrylate phosphopeptides derived from 14-3-3-binding proteins irreversibly label 14-3-3σ via either lysine or cysteine residues, depending on the position of the electrophile. Methacrylate peptides targeting a conserved lysine residue exhibit pan-isoform binding of 14-3-3 proteins both in lysates and in extracellular media. Finally, we apply this approach to develop protein-based covalent binders. A methacrylate-modified variant of the colicin E9 immunity protein irreversibly binds to the E9 DNAse, resulting in significantly higher thermal stability relative to the non-covalent complex. Our approach offers a simple and versatile route to convert peptides and proteins into potent covalent binders.
Collapse
Affiliation(s)
- Ronen Gabizon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Barr Tivon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rambabu N Reddi
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Hadar Amartely
- Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
12
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
13
|
Somarathne RP, Misra SK, Kariyawasam CS, Kessl JJ, Sharp JS, Fitzkee NC. Exploring the Residue-Level Interactions between the R2ab Protein and Polystyrene Nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554951. [PMID: 37693402 PMCID: PMC10491123 DOI: 10.1101/2023.08.28.554951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In biological systems, proteins can bind to nanoparticles to form a "corona" of adsorbed molecules. The nanoparticle corona is of high interest because it impacts the organism's response to the nanomaterial. Understanding the corona requires knowledge of protein structure, orientation, and dynamics at the surface. Ultimately, a residue-level mapping of protein behavior on nanoparticle surfaces is needed, but this mapping is difficult to obtain with traditional approaches. Here, we have investigated the interaction between R2ab and polystyrene nanoparticles (PSNPs) at the level of individual residues. R2ab is a bacterial surface protein from Staphylococcus epidermidis and is known to interact strongly with polystyrene, leading to biofilm formation. We have used mass spectrometry after lysine methylation and hydrogen-deuterium exchange (HDX) NMR spectroscopy to understand how the R2ab protein interacts with PSNPs of different sizes. Through lysine methylation, we observe subtle but statistically significant changes in methylation patterns in the presence of PSNPs, indicating altered protein surface accessibility. HDX measurements reveal that certain regions of the R2ab protein undergo faster exchange rates in the presence of PSNPs, suggesting conformational changes upon binding. Both results support a recently proposed "adsorbotope" model, wherein adsorbed proteins consist of unfolded anchor points interspersed with regions of partial structure. Our data also highlight the challenges of characterizing complex protein-nanoparticle interactions using these techniques, such as fast exchange rates. While providing insights into how proteins respond to nanoparticle surfaces, this research emphasizes the need for advanced methods to comprehend these intricate interactions fully at the residue level.
Collapse
Affiliation(s)
- Radha P. Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Sandeep K. Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | | | - Jacques J. Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
14
|
Yang Y, Song Z, Tian T, Zhao Z, Chen J, Hu J, Jiang X, Yang G, Xue Q, Zhao X, Sha W, Yang Y, Li JP. Trimming Crystallizable Fragment (Fc) Glycans Enables the Direct Enzymatic Transfer of Biomacromolecules to Antibodies as Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202308174. [PMID: 37438983 DOI: 10.1002/anie.202308174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Glycoengineering has provided powerful tools to construct site-specific antibody conjugates. However, only small-molecule payloads can be directly transferred to native or engineered antibodies using existing glycoengineering strategies. Herein, we demonstrate that reducing the complexity of crystallizable fragment (Fc) glycans could dramatically boost the chemoenzymatic modification of immunoglobulin G (IgG) via an engineered fucosyltransferase. In this platform, antibodies with Fc glycans engineered to a simple N-acetyllactosamine (LacNAc) disaccharide are successfully conjugated to biomacromolecules, such as oligonucleotides and nanobodies, in a single step within hours. Accordingly, we synthesized an antibody-conjugate-based anti-human epidermal growth factor receptor 2 (HER2)/ cluster of differentiation 3 (CD3) bispecific antibody and used it to selectively destroy patient-derived cancer organoids by reactivating endogenous T lymphocyte cells (T cells) inside the organoid. Our results highlight that this platform is a general approach to construct antibody-biomacromolecule conjugates with translational values.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zhentao Song
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zihan Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ji Chen
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Jiangping Hu
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Xin Jiang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Guoli Yang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xinlu Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Wanxing Sha
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Yi Yang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
15
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
16
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
17
|
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res 2023; 46:361-388. [PMID: 37071273 PMCID: PMC11345756 DOI: 10.1007/s12272-023-01447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC-antibody, linker, and cytotoxic payload-along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.
Collapse
Affiliation(s)
- Ritwik Maiti
- Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Alkesh Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|