1
|
Deng R, Li K, Zha Z, Sun Q, Wang Z. Electrochemical synthesis of nitrosation compounds using CH 3NO 2 as a nitroso reagent. Chem Commun (Camb) 2024. [PMID: 39714317 DOI: 10.1039/d4cc05521g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An electrochemical synthesis of various nitroso organic compounds (NOCs) from secondary amines was developed under metal-free and oxidant-free conditions. This method used commercially available nitromethane as the nitrosation reagent to provide various NOCs in good to excellent yields. Furthermore, the valuable drug molecule form desloratadine can be prepared by this method easily.
Collapse
Affiliation(s)
- Rong Deng
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Kai Li
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Zhenggen Zha
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Qi Sun
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China.
| | - Zhiyong Wang
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China.
| |
Collapse
|
2
|
Turhan E, Minaei M, Narwal P, Meier B, Kouřil K, Kurzbach D. Short-lived calcium carbonate precursors observed in situ via Bullet-dynamic nuclear polarization. Commun Chem 2024; 7:210. [PMID: 39289493 PMCID: PMC11408677 DOI: 10.1038/s42004-024-01300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
The discovery of (meta)stable pre-nucleation species (PNS) challenges the established nucleation-and-growth paradigm. While stable PNS with long lifetimes are readily accessible experimentally, identifying and characterizing early-stage intermediates with short lifetimes remains challenging. We demonstrate that species with lifetimes ≪ 5 s can be characterized by nuclear magnetic resonance spectroscopy when boosted by 'Bullet' dynamic nuclear polarization (Bullet-DNP). We investigate the previously elusive early-stage prenucleation of calcium carbonates in the highly supersaturated concentration regime, characterizing species that form within milliseconds after the encounter of calcium and carbonate ions and show that ionic pre-nucleation species not only govern the solidification of calcium carbonates at weak oversaturation but also initiate rapid precipitation events at high concentrations. Such, we report a transient co-existence of two PNS with distinct molecular sizes and different compositions. This methodological advance may open new possibilities for studying and exploiting carbonate-based material formation in unexplored parts of the phase space.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Masoud Minaei
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Pooja Narwal
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany.
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Epasto LM, Maimbourg T, Rosso A, Kurzbach D. Unified understanding of the breakdown of thermal mixing dynamic nuclear polarization: The role of temperature and radical concentration. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107670. [PMID: 38603922 DOI: 10.1016/j.jmr.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
We reveal an interplay between temperature and radical concentration necessary to establish thermal mixing (TM) as an efficient dynamic nuclear polarization (DNP) mechanism. We conducted DNP experiments by hyperpolarizing widely used DNP samples, i.e., sodium pyruvate-1-13C in water/glycerol mixtures at varying nitroxide radical (TEMPOL) concentrations and microwave irradiation frequencies, measuring proton and carbon-13 spin temperatures. Using a cryogen consumption-free prototype-DNP apparatus, we could probe cryogenic temperatures between 1.5 and 6.5 K, i.e., below and above the boiling point of liquid helium. We identify two mechanisms for the breakdown of TM: (i) Anderson type of quantum localization for low radical concentration, or (ii) quantum Zeno localization occurring at high temperature. This observation allowed us to reconcile the recent diverging observations regarding the relevance of TM as a DNP mechanism by proposing a unifying picture and, consequently, to find a trade-off between radical concentration and electron relaxation times, which offers a pathway to improve experimental DNP performance based on TM.
Collapse
Affiliation(s)
- Ludovica M Epasto
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Thibaud Maimbourg
- Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France
| | - Alberto Rosso
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Římal V, Bunyatova EI, Štěpánková H. Efficient Scavenging of TEMPOL Radical by Ascorbic Acid in Solution and Related Prolongation of 13C and 1H Nuclear Spin Relaxation Times of the Solute. Molecules 2024; 29:738. [PMID: 38338481 PMCID: PMC10856727 DOI: 10.3390/molecules29030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Dynamic nuclear polarization for nuclear magnetic resonance (NMR) spectroscopy and imaging uses free radicals to strongly enhance the NMR signal of a compound under investigation. At the same time, the radicals shorten significantly its nuclear spin relaxation times which reduces the time window available for the experiments. Radical scavenging can overcome this drawback. Our work presents a detailed study of the reduction of the TEMPOL radical by ascorbic acid in solution by high-resolution NMR. Carbon-13 and hydrogen-1 nuclear spin relaxations are confirmed to be restored to their values without TEMPOL. Reaction mechanism, kinetics, and the influence of pD and viscosity are thoroughly discussed. The detailed investigation conducted in this work should help with choosing suitable concentrations in the samples for dynamic nuclear polarization and optimizing the measurement protocols.
Collapse
Affiliation(s)
- Václav Římal
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| | | | - Helena Štěpánková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| |
Collapse
|
5
|
Stern Q, Reynard-Feytis Q, Elliott SJ, Ceillier M, Cala O, Ivanov K, Jannin S. Rapid and Simple 13C-Hyperpolarization by 1H Dissolution Dynamic Nuclear Polarization Followed by an Inline Magnetic Field Inversion. J Am Chem Soc 2023; 145:27576-27586. [PMID: 38054954 DOI: 10.1021/jacs.3c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) is a method of choice for preparing hyperpolarized 13C metabolites such as 1-13C-pyruvate used for in vivo applications, including the real-time monitoring of cancer cell metabolism in human patients. The approach consists of transferring the high polarization of electron spins to nuclear spins via microwave irradiation at low temperatures (1.0-1.5 K) and moderate magnetic fields (3.3-7 T). The solid sample is then dissolved and transferred to an NMR spectrometer or MRI scanner for detection in the liquid state. Common dDNP protocols use direct hyperpolarization of 13C spins reaching polarizations of >50% in ∼1-2 h. Alternatively, 1H spins are polarized before transferring their polarization to 13C spins using cross-polarization, reaching polarization levels similar to those of direct DNP in only ∼20 min. However, it relies on more complex instrumentation, requiring highly skilled personnel. Here, we explore an alternative route using 1H dDNP followed by inline adiabatic magnetic field inversion in the liquid state during the transfer. 1H polarizations of >70% in the solid state are obtained in ∼5-10 min. As the hyperpolarized sample travels from the dDNP polarizer to the NMR spectrometer, it goes through a field inversion chamber, which causes the 1H → 13C polarization transfer. This transfer is made possible by the J-coupling between the heteronuclei, which mixes the Zeeman states at zero-field and causes an antilevel crossing. We report liquid-state 13C polarization up to ∼17% for 3-13C-pyruvate and 13C-formate. The instrumentation needed to perform this experiment in addition to a conventional dDNP polarizer is simple and readily assembled.
Collapse
Affiliation(s)
- Quentin Stern
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Quentin Reynard-Feytis
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Stuart J Elliott
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
- Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Morgan Ceillier
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Olivier Cala
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Konstantin Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| |
Collapse
|
6
|
Dey A, Charrier B, Ribay V, Dumez JN, Giraudeau P. Hyperpolarized 1H and 13C NMR Spectroscopy in a Single Experiment for Metabolomics. Anal Chem 2023; 95:16861-16867. [PMID: 37947414 DOI: 10.1021/acs.analchem.3c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The application of NMR spectroscopy to complex mixture analysis and, in particular, to metabolomics is limited by the low sensitivity of NMR. We recently showed that dissolution dynamic nuclear polarization (d-DNP) could enhance the sensitivity of 13C NMR for complex metabolite mixtures, leading to the detection of highly sensitive 13C NMR fingerprints of complex samples such as plant extracts or urine. While such experiments provide heteronuclear spectra, which are complementary to conventional NMR, hyperpolarized 1H NMR spectra would also be highly useful, with improved limits of detection and compatibility with the existing metabolomics workflow and databases. In this technical note, we introduce an approach capable of recording both 1H and 13C hyperpolarized spectra of metabolite mixtures in a single experiment and on the same hyperpolarized sample. We investigate the analytical performance of this method in terms of sensitivity and repeatability, and then we show that it can be efficiently applied to a plant extract. Significant sensitivity enhancements in 1H NMR are reported with a repeatability suitable for metabolomics studies without compromising on the performance of hyperpolarized 13C NMR. This approach provides a way to perform both 1H and 13C hyperpolarized NMR metabolomics with unprecedented sensitivity and throughput.
Collapse
Affiliation(s)
- Arnab Dey
- Nantes Université, CEISAM UMR 6230, 44000 Nantes, France
| | | | - Victor Ribay
- Nantes Université, CEISAM UMR 6230, 44000 Nantes, France
| | | | | |
Collapse
|
7
|
Turhan E, Pötzl C, Keil W, Negroni M, Kouřil K, Meier B, Romero JA, Kazimierczuk K, Goldberga I, Azaïs T, Kurzbach D. Biphasic NMR of Hyperpolarized Suspensions-Real-Time Monitoring of Solute-to-Solid Conversion to Watch Materials Grow. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19591-19598. [PMID: 37817917 PMCID: PMC10561236 DOI: 10.1021/acs.jpcc.3c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Indexed: 10/12/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid-solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| | - Christopher Pötzl
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| | - Waldemar Keil
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Mattia Negroni
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Egenstein-Leopoldshafen 76344, Germany
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Egenstein-Leopoldshafen 76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany
| | - Javier Agustin Romero
- Centre
of New Technologies, University of Warsaw, ul. Banacha 2c, Warsaw 02-097, Poland
| | | | - Ieva Goldberga
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4, place Jussieu, Paris F-75005, France
| | - Thierry Azaïs
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4, place Jussieu, Paris F-75005, France
| | - Dennis Kurzbach
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
- University
of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| |
Collapse
|
8
|
Ribay V, Praud C, Letertre MPM, Dumez JN, Giraudeau P. Hyperpolarized NMR metabolomics. Curr Opin Chem Biol 2023; 74:102307. [PMID: 37094508 DOI: 10.1016/j.cbpa.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
Hyperpolarized NMR is a promising approach to address the sensitivity limits of conventional NMR metabolomics approaches, which currently fails to detect minute metabolite concentrations in biological samples. This review describes how tremendous signal enhancement offered by dissolution-dynamic nuclear polarization and parahydrogen-based techniques can be fully exploited for molecular omics sciences. Recent developments, including the combination of hyperpolarization techniques with fast multi-dimensional NMR implementation and quantitative workflows are described, and a comprehensive comparison of existing hyperpolarization techniques is proposed. High-throughput, sensitivity, resolution and other relevant challenges that should be tackled for a general application of hyperpolarized NMR in metabolomics are discussed.
Collapse
Affiliation(s)
- Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Clément Praud
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | | | | |
Collapse
|
9
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
10
|
Razanahoera A, Sonnefeld A, Bodenhausen G, Sheberstov K. Paramagnetic relaxivity of delocalized long-lived states of protons in chains of CH 2 groups. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:47-56. [PMID: 37904798 PMCID: PMC10583270 DOI: 10.5194/mr-4-47-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 11/01/2023]
Abstract
Long-lived states (LLSs) have lifetimes T LLS that can be much longer than longitudinal relaxation times T 1 . In molecules containing several geminal pairs of protons in neighboring CH2 groups, it has been shown that delocalized LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP). To enhance the magnetization of nuclear spins by d-DNP, the analytes must be mixed with radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL). After dissolution, these radicals lead to an undesirable paramagnetic relaxation enhancement (PRE) which shortens not only the longitudinal relaxation times T 1 but also the lifetimes T LLS of LLSs. It is shown in this work that PRE by TEMPOL is less deleterious for LLSs than for longitudinal magnetization for four different molecules: 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), homotaurine, taurine, and acetylcholine. The relaxivities r LLS (i.e., the slopes of the relaxation rate constants R LLS as a function of the radical concentration) are 3 to 5 times smaller than the relaxivities r 1 of longitudinal magnetization. Partial delocalization of the LLSs across neighboring CH2 groups may decrease this advantage, but in practice, this effect was observed to be small, for example, when comparing taurine containing two CH2 groups and homotaurine with three CH2 groups. Regardless of whether the LLSs are delocalized or not, it is shown that PRE should not be a major problem for experiments combining d-DNP and LLSs, provided the concentration of paramagnetic species after dissolution does not exceed 1 mM, a condition that is readily fulfilled in typical d-DNP experiments. In bullet d-DNP experiments however, it may be necessary to decrease the concentration of TEMPOL or to add ascorbate for chemical reduction.
Collapse
Affiliation(s)
- Aiky Razanahoera
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Anna Sonnefeld
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Geoffrey Bodenhausen
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Kirill Sheberstov
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| |
Collapse
|
11
|
Mouloudakis K, Bodenstedt S, Azagra M, Mitchell MW, Marco-Rius I, Tayler MCD. Real-Time Polarimetry of Hyperpolarized 13C Nuclear Spins Using an Atomic Magnetometer. J Phys Chem Lett 2023; 14:1192-1197. [PMID: 36715634 DOI: 10.1021/acs.jpclett.2c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We introduce a method for nondestructive quantification of nuclear spin polarization, of relevance to hyperpolarized spin tracers widely used in magnetic resonance from spectroscopy to in vivo imaging. In a bias field of around 30 nT we use a high-sensitivity miniaturized 87Rb-vapor magnetometer to measure the field generated by the sample, as it is driven by a windowed dynamical decoupling pulse sequence that both maximizes the nuclear spin lifetime and modulates the polarization for easy detection. We demonstrate the procedure applied to a 0.08 M hyperpolarized [1-13C]-pyruvate solution produced by dissolution dynamic nuclear polarization, measuring polarization repeatedly during natural decay at Earth's field. Application to real-time and continuous quality monitoring of hyperpolarized substances is discussed.
Collapse
Affiliation(s)
- Kostas Mouloudakis
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Sven Bodenstedt
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Marc Azagra
- IBEC─Institute for Bioengineering of Catalonia, 08028Barcelona, Spain
| | - Morgan W Mitchell
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
- ICREA─Institució Catalana de Recerca i Estudis Avançats, 08010Barcelona, Spain
| | - Irene Marco-Rius
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| | - Michael C D Tayler
- ICFO─Institut de Ciéncies Fotóniques, The Barcelona Institute of Science and Technology, 08860Castelldefels, Barcelona, Spain
| |
Collapse
|