1
|
Yu J, Wang Z, Wang S, Zhang C, Luan C, Sapelkin A, Chen X, Yu K. Formation of CdTeS Prenucleation Clusters at Elevated Temperatures and Transformation to Magic-Size Clusters at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410293. [PMID: 39916518 DOI: 10.1002/smll.202410293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/15/2024] [Indexed: 03/05/2025]
Abstract
The synthesis of colloidal semiconductor magic-size clusters (MSCs) of ternary II-VI metal chalcogenide (ME1E2) remains challenging. Using CdTeS as a model system, it is shown that CdTeS MSC-381 (displaying sharp optical absorption peaking at 381 nm) develops at room temperature from prenucleation-stage samples of reactions of Cd(OAc)2/OLA (cadmium acetate in oleylamine), TeTOP (tri-n-octylphosphine telluride), and S (sulfur). It is proposed that the three precursors experience physical co-self-assembly followed by the formation of Te-Cd-S covalent bonds inside each assembly. Chemical self-assembly results in the occurrence of prenucleation clusters (PNCs), which are the precursor compound (PC-381) of MSC-381. High feed concentrations and Cd-to-E molar ratios promote the co-self-assembly, which is participated more by the precursor molecule of Te than by that of S. With compelling evidence for the formation of ternary PNCs at elevated temperatures and for the PC-to-MSC transformation at room temperature, these findings suggest that chemical self-assembly occurs generally in reactions.
Collapse
Affiliation(s)
- Jiali Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Andrei Sapelkin
- Department of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Road, London, E1 4NS, UK
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
2
|
Li L, Ding YS, Zheng Z. Lanthanide-Based Molecular Magnetic Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202410019. [PMID: 39058519 DOI: 10.1002/anie.202410019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Magnetic semiconductors, with integrated properties of ferromagnets and semiconductors, are significant for developing next-generation spintronic devices. Herein two atomically precise clusters of dysprosium(III) tellurides, formulated respectively as [Na2(15-crown-5)3(py)2][(η5-Cp*Dy)5(Te)6](py)4 (Dy5Te6, Cp*=pentamethylcyclopentadienyl; py=pyridine) and [K(2,2,2-cryptand)]2[(η5-Cp*Dy)6(Te3)(Te2)2(Te)3] (Dy6Te10), are reported. Crystallographic studies revealed the presence of multifarious tellurido ligands within the polyhedral cluster cores. Spectroscopic and magnetic studies showed that both clusters are single-molecule magnets exhibiting slow magnetic relaxation behaviors at low temperatures and semiconductors with low optical band gaps comparable to benchmark semiconductors. These clusters represent probably the first lanthanide-based molecular magnetic semiconductors.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - You-Song Ding
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Yang Y, Zhang H, Deng Y, Kong X, Wang Y. Ion exchange in semiconductor magic-size clusters. NANOSCALE 2024; 16:17230-17247. [PMID: 39219401 DOI: 10.1039/d4nr02769h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a crucial post-synthesis method, ion exchange allows for precise control over the composition, interface, and morphology of nanocrystals at the atomic scale, achieving material properties that are difficult to obtain with traditional synthesis techniques. In nanomaterial science, semiconductor magic-size clusters (MSCs), with their atomic-level precision and unique quantum confinement effects, serve as a bridge between molecules and nanocrystals. Despite this, research on ion exchange in MSCs is still in its infancy. This review introduces the principles of ion exchange and reactions in colloidal nanocrystals and MSCs, analyzing the importance and challenges of ion exchange in studying MSCs. This paper begins with a focus on the current research progress of cation and anion exchange in II-VI and III-V semiconductor MSCs. Then, the common methods for characterizing MSCs during the ion exchange process are discussed. Finally, the article envisions future research directions based on MSCs' ion exchange. Research on MSCs' ion exchange not only aids in designing MSCs with complex functionalities, but also plays an essential role in elucidating the ion exchange mechanisms in nanocrystals, providing new insights for the innovative design and synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yuelin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Haoyang Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yalei Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xinke Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
4
|
Xue J, Wang S, Wang Z, Luan C, Li Y, Chen X, Yu K. Pathway of Room-Temperature Formation of CdSeS Magic-Size Clusters from Mixtures of CdSe and CdS Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402121. [PMID: 38634202 DOI: 10.1002/smll.202402121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The synthetic application of prenucleation-stage samples of colloidal semiconductor quantum dots (QDs) is in its infancy. It is shown that when two prenucleation-stage samples of binary CdSe and CdS are mixed, ternary CdSeS magic-size clusters (MSCs) grow at room temperature in dispersion. As the amount of the CdS sample increases, the optical absorption of the CdSeS MSCs blueshifts from ≈380 to ≈360 nm. It is proposed that the cluster in the CdSe sample reacts with the CdS monomer from the CdS sample. The monomer substitution reaction of CdSe by CdS can proceed continuously; thus, CdSeS MSCs with tunable compositions are obtained. The present study provides compelling evidence that clusters formed in the prenucleation stage of QDs. The clusters are precursor compounds (PCs) of MSCs, transforming at room temperature with the thermoneutrality principle of isodesmic reactions. The nucleation and growth of QDs follows a multi-step non-classical instead of one-step classical nucleation model.
Collapse
Affiliation(s)
- Jiawei Xue
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
5
|
Zhang J, Liu Y, Liu M, Wang Z, Qi T, Zhang M, Shi H, Song J. Carboxylic acid isomer-directed synthesis of CdS nanocluster isomers. Chem Sci 2024; 15:10585-10591. [PMID: 38994410 PMCID: PMC11234825 DOI: 10.1039/d4sc01569j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Selective synthesis of nanocluster (NC) isomers with tailored structures holds significant importance for enhancing their applications. Here, we develop an effective strategy for the selective synthesis of CdS NC isomers through the judicious choice of a pair of carboxylic acid isomer additives. Specifically, CdS NC-312 and NC-323 (denoted by their UV-vis absorption peak position) could be selectively produced by introducing a conventional mixture of Cd and S precursors, with the addition of 2-methylbutyric acid (2-MA) and 3-methylbutyric acid (3-MA), respectively. The synthesized NC isomers demonstrated a precise isomeric relationship, sharing both the isomeric inorganic core and organic surface. Alternatively, the as-synthesized NCs were interconvertible by re-adding the acid isomers. The density functional theory calculations further support that 2-MA and 3-MA have specific selectivity for producing CdS NC isomers by interfacial tuning. Finally, the generality of this methodology was also evidenced with applications in other CdS NC synthetic systems. This study unveils the intriguing correlation between additive structures and the configuration of NCs, providing a foundation for the selective synthesis of NC isomers.
Collapse
Affiliation(s)
- Jing Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Yu Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Zhenzhu Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu 610106 P. R. China
| | - Mingming Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Hao Shi
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu 610059 P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
6
|
Sun X, Wang S, Wang Z, Shen Q, Chen X, Chen Z, Luan C, Yu K. Lower-Temperature Nucleation and Growth of Colloidal CdTe Quantum Dots Enabled by Prenucleation Clusters with Cd-Te Bond Conservation. J Am Chem Soc 2024; 146:15587-15595. [PMID: 38783573 DOI: 10.1021/jacs.4c04593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The reason why heating is required remains elusive for the traditional synthesis of colloidal semiconductor quantum dots (QDs) of II-VI metal chalcogenide (ME). Using CdTe as a model system, we show that the formation of Cd-Te covalent bonds with individual Cd- and Te-containing compounds can be decoupled from the nucleation and growth of CdTe QDs. Prepared at an elevated temperature, a prenucleation-stage sample contains clusters that are the precursor compound (PC) of magic-size clusters (MSCs); the Cd-Te bond formation occurs at temperatures higher than 120 °C in the reaction. Afterward, the PC-to-QD transformation appears via monomers at lower temperatures in dispersion. Our findings suggest that the number of Cd-Te bonds broken in the PC reactant is similar to that of Cd-Te bonds formed in the QD product. For the traditional synthesis of ME QDs, heating is responsible for the M-E bond formation rather than for nucleation.
Collapse
Affiliation(s)
- Xilian Sun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shasha Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Qiu Shen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
7
|
Wang X, Chen A, Wu X, Zhang J, Dong J, Zhang L. Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution. NANO-MICRO LETTERS 2024; 16:163. [PMID: 38546814 PMCID: PMC10978568 DOI: 10.1007/s40820-024-01378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 04/01/2024]
Abstract
In recent years, low-dimensional transition metal chalcogenide (TMC) materials have garnered growing research attention due to their superior electronic, optical, and catalytic properties compared to their bulk counterparts. The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications. In this context, the atomic substitution method has emerged as a favorable approach. It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely, crystal structures, and inherent properties of the resulting materials. In this review, we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional, one-dimensional and two-dimensional TMC materials. The effects of substituting elements, substitution ratios, and substitution positions on the structures and morphologies of resulting material are discussed. The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided, emphasizing the role of atomic substitution in achieving these advancements. Finally, challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Akang Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - XinLei Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jiatao Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Leining Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic and Electrophonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
8
|
Kong X, Deng Y, Zou Y, Ge J, Wang Y. Anion Exchange in Semiconductor Magic-Size Clusters. J Am Chem Soc 2024; 146:5445-5454. [PMID: 38304982 DOI: 10.1021/jacs.3c12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ion exchange is an effective postsynthesis strategy for the design of colloidal nanomaterials with unique structures and properties. In contrast to the rapid development of cation exchange (CE), the study of anion exchange is still in its infancy and requires an in-depth understanding. Magic-size clusters (MSCs) are important reaction intermediates in quantum dot (QD) synthesis, and studying the ion exchange processes can provide valuable insights into the transformations of QDs. Here, we achieved anion exchange in Cd-based MSCs and elucidated the reaction pathways. We demonstrated that the anion exchange was a stepwise intermolecular transition mediated by covalent inorganic complexes (CICs). We proposed that this transition involved three essential steps: the disassembly of CdE1-MSCs into CdE1-CICs (step 1), an anion exchange reaction from CdE1-CICs to CdE2-CICs (step 2), and assembly of CdE2-CICs to CdE2-MSCs (step 3). Step 3 was the rate-determining step and followed first-order reaction kinetics (kobs = 0.01 min-1; from CdSe-MSCs to CdS-MSCs). Further studies revealed that the activity of foreign anions only affected the reaction kinetics without altering the reaction pathway. The present study provides a deeper insight into the anion exchange mechanisms of MSCs and will further shed light on the synthesis of QDs.
Collapse
Affiliation(s)
- Xinke Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yalei Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yihao Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Junjun Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Chen Q, Zhang Y, Chen S, Liu Y, Zhang C, Zhang M, Yu K. Surface-Ligand Tuned Reversible Transformations in Aqueous Environments Between CdSe Magic-Size Clusters and Their Precursor Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304277. [PMID: 37806760 DOI: 10.1002/smll.202304277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/17/2023] [Indexed: 10/10/2023]
Abstract
That magic-size clusters (MSCs) have their counterpart precursor compounds (PCs) has not been generally accepted by expertise circles. Here, experimental evidence to support this new concept is presented. With aqueous-phase CdSe MSCs as a model system, it is shown that when the MSCs are dispersed in water containing a certain amount of L-cysteine (Cys), the MSCs disappear slowly. Upon the addition of CdCl2 , the MSCs recover. It is proposed that after dispersing, the MSCs transform to their quasi-isomeric, non-absorbing PCs upon Cys addition. In the presence of CdCl2 , the PCs transform back to the MSCs due to Cys elimination. The surface ligand Cys of the MSCs plays a significant role in the reversible transformations. The present study provides compelling evidence that absorbing MSCs have their non-absorbing PCs. The study findings suggest that the transformation between two MSCs that display absorption spectral shifts in a stepwise pattern is assisted by their PCs.
Collapse
Affiliation(s)
- Qingyuan Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuo Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuehui Liu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunchun Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
| | - Kui Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
10
|
Xu R, Wang Z, Yang Y, Gu C, Luan C, Wang S, Chen X, Yu K. Formation and Transformation of CdS Clusters during the Prenucleation Stage and in a Dilute Dispersion at Room Temperature. NANO LETTERS 2024; 24:1294-1302. [PMID: 38230964 DOI: 10.1021/acs.nanolett.3c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The formation and transformation of colloidal semiconductor clusters remain poorly understood. With CdS as a model system, we show that, in the reaction of cadmium myristate (Cd(MA)2) and S powder in 1-octadecene (ODE), clusters form in the prenucleation stage of quantum dots (QDs). Called precursor compounds (PCs), the clusters can transform to magic-size clusters (MSCs) in reaction at a relatively high temperature (MSC-322 displaying optical absorption peaking at 322 nm) or in a dispersion at room temperature (MSC-360). When the reaction temperature is increased, PC-360 forms at 140 °C, while PC-322 and MSC-322 form at 180 °C. In a dispersion of cyclohexane and octylamine, MSC-322 transforms to MSC-360 via MSC-345. The MSC-345 to MSC-360 transformation displays continuous and discontinuous shifts in the optical absorption. The PCs and MSCs are a group of isomers. The present findings bring insight into the cluster formation and isomerization in the prenucleation stage of QDs and in a dispersion.
Collapse
Affiliation(s)
- Rongkuan Xu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Cheng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Shanling Wang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
11
|
Ripberger HH, Schnitzenbaumer KJ, Nguyen LK, Ladd DM, Levine KR, Dayton DG, Toney MF, Cossairt BM. Navigating the Potential Energy Surface of CdSe Magic-Sized Clusters: Synthesis and Interconversion of Atomically Precise Nanocrystal Polymorphs. J Am Chem Soc 2023; 145:27480-27492. [PMID: 38061033 DOI: 10.1021/jacs.3c08897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Magic-sized clusters (MSCs) are kinetically stable, atomically precise intermediates along the quantum dot (QD) reaction potential energy surface. Literature precedent establishes two classes of cadmium selenide MSCs with QD-like inorganic cores: one class is proposed to be cation-rich with a zincblende crystal structure, while the other is proposed to be stoichiometric with a "wurtzite-like" core. However, the wide range of synthetic protocols used to access MSCs has made direct comparisons of their structure and surface chemistry difficult. Furthermore, the physical and chemical relationships between MSC polymorphs are yet to be established. Here, we demonstrate that both cation-rich and stoichiometric CdSe MSCs can be synthesized from identical reagents and can be interconverted through the addition of either excess cadmium or selenium precursor. The structural and compositional differences between these two polymorphs are contrasted using a combination of 1H NMR spectroscopy, X-ray diffraction (XRD), pair distribution function (PDF) analysis, inductively coupled plasma optical emission spectroscopy, and UV-vis transient absorption spectroscopy. The subsequent polymorph interconversion reactions are monitored by UV-vis absorption spectroscopy, with evidence for an altered cluster atomic structure observed by powder XRD and PDF analysis. This work helps to simplify the complex picture of the CdSe nanocrystal landscape and provides a method to explore structure-property relationships in colloidal semiconductors through atomically precise synthesis.
Collapse
Affiliation(s)
- Hunter H Ripberger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kyle J Schnitzenbaumer
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, Kentucky 40508-1797, United States
| | - Lily K Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Kelsey R Levine
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Damara G Dayton
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael F Toney
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
12
|
Kong X, Ru L, Ge J, Deng Y, Zhang PK, Wang Y. Covalent inorganic complexes enabled zinc blende to wurtzite phase changes in CdSe nanoplatelets. Chem Sci 2023; 14:13244-13253. [PMID: 38023525 PMCID: PMC10664457 DOI: 10.1039/d3sc04296k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Phase changes in colloidal semiconductor nanocrystals (NCs) are essential in material design and device applications. However, the transition pathways have yet to be sufficiently studied, and a better understanding of the underlying mechanisms is needed. In this work, a complete ligand-assisted phase transition from zinc blende (ZB) to wurtzite (WZ) is observed in CdSe nanoplatelets (NPLs). By monitoring with in situ absorption spectra along with electrospray ionization mass spectrometry (ESI-MS), we demonstrated that the transition process is a ligand-assisted covalent inorganic complex (CIC)-mediated phase transition pathway, which involves three steps, ligand exchange on ZB CdSe NPLs (Step 1), dissolution of NPLs to form CICs (Step 2), and conversion of CdSe-CIC assemblies to WZ CdSe NPLs (Step 3). In particular, CICs can be directly anisotropically grown to WZ CdSe NPL without other intermediates, following pseudo-first-order kinetics (kobs = 9.17 × 10-5 s-1). Furthermore, we demonstrated that CICs are also present and play an essential role in the phase transition of ZnS NPLs from WZ to ZB structure. This study proposes a new crystal transformation pathway and elucidates a general phase-transition mechanism, facilitating precise functional nanomaterial design.
Collapse
Affiliation(s)
- Xinke Kong
- State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Lin Ru
- State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Junjun Ge
- State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yalei Deng
- State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Pan-Ke Zhang
- State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Chen S, Zhang Y, Chen Q, Zhang C, Zhang M, Yu K. Precursor Compound-Assisted Formation of CdS Magic-Size Clusters in Aqueous Solutions. Inorg Chem 2023; 62:18290-18298. [PMID: 37883791 DOI: 10.1021/acs.inorgchem.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Investigations of the formation pathway of semiconductor magic-size clusters (MSCs) in aqueous solutions are quite limited. Here, we present our understanding about a precursor compound (PC)-assisted formation pathway of aqueous-phase CdS MSCs exhibiting a characteristic absorption peak at about 360 nm (MSC-360). The reaction uses CdCl2 as the Cd source and thioglycolic acid (TGA) as both the S source and ligand in alkaline aqueous solutions. The mixture remains absorption featureless upon incubation at room temperature but with MSC-360 absorption observed upon adding butylamine. The longer the incubation period of the aqueous solution, the more MSC-360 forms after adding butylamine. We propose that Cd-TGA complexes form first, in which the TGA moieties then decompose partially to form PC of MSC-360 (PC-360) that cannot be observed in the optical absorption spectrum. The resulting PC-360 transforms to MSC-360 via quasi-isomerization in the presence of butylamine. The present study provides an in-depth understanding about the formation of aqueous-phase MSCs.
Collapse
Affiliation(s)
- Shuo Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yu Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qingyuan Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, China
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Wang T, Wang Z, Wang S, Chen X, Luan C, Yu K. Thermally-Induced Isomerization of Prenucleation Clusters During the Prenucleation Stage of CdTe Quantum Dots. Angew Chem Int Ed Engl 2023; 62:e202310234. [PMID: 37581340 DOI: 10.1002/anie.202310234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
The evolution of prenucleation clusters in the prenucleation stage of colloidal semiconductor quantum dots (QDs) has remained unexplored. With CdTe as a model system, we show that substances form and isomerize prior to the nucleation and growth of QDs. Called precursor compounds (PCs), the prenucleation clusters are relatively optically transparent and can transform to absorbing magic-size clusters (MSCs). When a prenucleation-stage sample at 25, 45, or 80 °C is dispersed in a mixture of cyclohexane (CH) and octylamine (OTA) at room temperature, either MSC-371, MSC-417, or MSC-448 evolves with absorption peaking at 371, 417, or 448 nm, respectively. We propose that PC-371 forms at 25 °C, and isomerizes to PC-417 at 45 °C and to PC-448 at 80 °C. The PCs and MSCs are quasi isomers. Relatively large and small amounts of OTA favor PC-371 and PC-448 in dispersion, respectively. The present findings suggest the existence of PC-to-PC isomerization in the QD prenucleation stage.
Collapse
Affiliation(s)
- Tinghui Wang
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Zhe Wang
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Shanling Wang
- Analytical and Testing Center, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
- Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu, Sichuan, P. R. China
| |
Collapse
|
15
|
Lin Z, Zhang X, Zhang X, Song Q, Li Y. CdTe magic-size cluster synthesis via a cation exchange method and conversion mechanism. NANOSCALE 2023; 15:16049-16055. [PMID: 37728027 DOI: 10.1039/d3nr02938g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The quasi-metallic nature of Te is not conducive to telluride formation and crystallization, which makes the synthesis of CdTe magic-size clusters (MSCs) in a single-ensemble form still challenging. CdTe MSCs are usually synthesized by direct synthesis, a method that must avoid the formation of quantum dots by selecting suitable active precursors and precisely controlling the reaction temperature. In addition, the organic Cd compounds and superhydrogenated precursors used are air-sensitive. Herein, CdTe MSC-448 in a single-ensemble form was synthesized for the first time via a cation exchange method using ZnTe MSC-389 as a template and Cd2+ as an exchange ion. In situ absorption spectroscopy characterization combined with the two-pathway model proposed by Yu's group reveals that the conversion of ZnTe MSC-389 into CdTe MSC-448 is assisted by their corresponding precursor compounds (PCs). After the addition of Cd precursors to ZnTe MSC-389 solution, ZnTe MSC-389 is transformed into ZnTe PC-389, which then undergoes a rapid cation exchange reaction with Cd2+ to yield CdTe PC-448, and CdTe PC-448 is finally converted into CdTe MSC-448. CdTe MSCs in single-ensemble form were obtained by cation exchange in air at room temperature, avoiding the formation of quantum dots (QDs) at high temperatures in the direct synthesis method conducted without the use of toxic and expensive active precursors, which provides a new route to the synthesis of CdTe MSCs.
Collapse
Affiliation(s)
- Zhuohan Lin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xin Zhang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xue Zhang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qianqian Song
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
16
|
Yang Y, Shen Q, Zhang C, Rowell N, Zhang M, Chen X, Luan C, Yu K. Direct and Indirect Pathways of CdTeSe Magic-Size Cluster Isomerization Induced by Surface Ligands at Room Temperature. ACS CENTRAL SCIENCE 2023; 9:519-530. [PMID: 36968545 PMCID: PMC10037450 DOI: 10.1021/acscentsci.2c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 06/18/2023]
Abstract
The field of isomerization reactions for colloidal semiconductor magic-size clusters (MSCs) remains largely unexplored. Here, we show that MSCs isomerize via two fundamental pathways that are regulated by the acidity and amount of an incoming ligand, with CdTeSe as the model system. When MSC-399 isomerizes to MSC-422 at room temperature, the peak red-shift from 399 to 422 nm is continuous (pathway 1) and/or stepwise (pathway 2) as monitored in situ and in real time by optical absorption spectroscopy. We propose that pathway 1 is direct, with intracluster configuration changes and a relatively large energy barrier. Pathway 2 is indirect, assisted by the MSC precursor compounds (PCs), from MSC-399 to PC-399 to PC-422 to MSC-422. Pathway 1 is activated when PC-422 to MSC-422 is suppressed. Our findings unambiguously suggest that when a change occurs directly on a nanospecies, its absorption peak continuously shifts. The present study provides an in-depth understanding of the transformative behavior of MSCs via ligand-induced isomerization upon external chemical stimuli.
Collapse
Affiliation(s)
- Yusha Yang
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Qiu Shen
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Chunchun Zhang
- Analytical
& Testing Center, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Nelson Rowell
- Metrology
Research Centre, National Research Council
Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Meng Zhang
- Institute
of Atomic and Molecular Physics, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoqin Chen
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| | - Chaoran Luan
- Laboratory
of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering
Research Center in Biomaterials, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
- Institute
of Atomic and Molecular Physics, Sichuan
University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|