1
|
Guan J, Luo Y, Wang Q, Chen J, Zhang W. Copper-Catalyzed Asymmetric Hydrogenation of Unsymmetrical ortho-Br Substituted Benzophenones. Angew Chem Int Ed Engl 2025; 64:e202416313. [PMID: 39248055 DOI: 10.1002/anie.202416313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
The asymmetric hydrogenation of benzophenones, catalyzed by low-activity earth-abundant metal copper, has hitherto remained a challenge due to the substrates equipped with two indistinguishably similar aryl groups. In this study, we demonstrated that the prochiral carbon of the ortho-bromine substrate exhibits the highest electrophilicity and high reactivity among the ortho-halogen substituted benzophenones, as determined by the Fukui function (f+) analysis and hydrogenation reaction. Considering that the enantiodirecting functional bromine group can be easily derivatized and removed in the products, we successfully achieved a green copper-catalyzed asymmetric hydrogenation of ortho-bromine substituted benzophenones. This method yielded a series of chiral benzhydrols with excellent results. The utility of this protocol has been validated through a gram-scale reaction and subsequent product transformations. Independent gradient model based on Hirshfeld partition (IGMH) and energy decomposition analysis (EDA) indicate that the CH⋅⋅⋅HC multiple attractive dispersion interactions (MADI) effect between the catalyst and substrate enhances the catalyst's activity.
Collapse
Affiliation(s)
- Jing Guan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Qiyuan Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
2
|
Wei H, Luo Y, Li J, Chen J, Gridnev ID, Zhang W. Enantioselective Synthesis of Chiral β 2-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation. J Am Chem Soc 2025; 147:342-352. [PMID: 39730303 DOI: 10.1021/jacs.4c10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Compared with chiral β3-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β2-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β2-amino phosphorus derivatives from E-β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee). In particular, this catalytic system provides the same enantiomer product from the E- and Z-alkene substrates, and the E/Z-substrate mixtures provide good results (up to 96% ee). The products can be diversely derivatized, and the derivatives exhibit good catalytic activities as novel chiral β2-aminophosphine ligands. Density functional theory calculations reveal that the weak attractive interactions between the nickel catalyst and the substrate are crucial for achieving perfect enantioselectivities. In addition, the different coordination modes between the E- or Z-substrates and the catalyst may result in the formation of the same enantiomer product.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Tian X, Qiu M, An W, Ren Y. Photocatalytic Hydrogenation of Alkenes Using Water as Both the Reductant and the Proton Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406046. [PMID: 39383057 PMCID: PMC11600260 DOI: 10.1002/advs.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Indexed: 10/11/2024]
Abstract
Utilization of clean and low-cost water as the reductant to enable hydrogenation of alkenes is highly attractive in green chemistry. However, this research subject is considerably challenging due to the sluggish kinetics of the water oxidation half-reaction. It is also very difficult to avoid the undesired oxidation of alkenes because that this oxidation is far easier to occur than the desired oxidation of water from thermodynamic standpoint. Herein, this challenge is overcome by applying a cooperative catalysis where HCl is used as the cocatalyst to accelerate Pt/g-C3N4-catalyzed water oxidation and suppress the undesired oxidation of the alkene. This provides an example for using water as the reductant and the proton source to enable the photocatalytic hydrogenation of alkenes. The present method exhibits broad substrate applicability, and allows various arylethenes and aliphatic alkenes to undergo the hydrogenation smoothly.
Collapse
Affiliation(s)
- Xinzhe Tian
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Ming Qiu
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Wankai An
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Yun‐Lai Ren
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| |
Collapse
|
4
|
Zhang KX, Liu MY, Yao BY, Zhou QL, Xiao LJ. Stereoconvergent and Enantioselective Synthesis of Z-Homoallylic Alcohols via Nickel-Catalyzed Reductive Coupling of Z/ E-1,3-Dienes with Aldehydes. J Am Chem Soc 2024; 146:22157-22165. [PMID: 39102638 DOI: 10.1021/jacs.4c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Kai-Xiang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Mei-Yu Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Pan T, Yuan Q, Xu D, Zhang W. Iridium-Catalyzed Asymmetric Hydrogenation of Unfunctionalized Cycloalkenes to Access Chiral 2-Aryl Tetralins. Org Lett 2024; 26:5850-5855. [PMID: 38950380 DOI: 10.1021/acs.orglett.4c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The transition-metal catalyzed asymmetric hydrogenation of unfunctionalized alkenes is challenging. Herein, we report an efficient iridium-catalyzed asymmetric hydrogenation of unfunctionalized cycloalkenes, delivering chiral 2-aryl tetralins in excellent yields and with moderate to excellent enantioselectivities. The reaction can be performed on a gram-scale with a low catalyst loading (S/C = 1000), and the reduced product was obtained without erosion of the enantioselectivity. Deuterium experiments indicated that the C═C bond in the substrate is hydrogenated directly without isomerization.
Collapse
Affiliation(s)
- Tierui Pan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Defeng Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Bao Y, Zheng C, Xiong K, Hu C, Lu P, Wang Y, Lu Z. Enantioconvergent Hydroboration of E/ Z-Mixed Trisubstituted Alkenes. J Am Chem Soc 2024. [PMID: 38994866 DOI: 10.1021/jacs.4c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The lack of mode for chirality recognition makes it particularly challenging to carry out asymmetric transformations on E/Z-mixed minimally functionalized trisubstituted alkenes. Here, we report a catalytic enantioconvergent hydroboration of minimally functionalized trisubstituted E/Z-mixed alkenes to construct chiral organoboronic esters with excellent enantioselectivity using chiral radical cobalt catalyst. This C(sp3)-H borylation protocol showed good functional group tolerance and products could be converted to valuable compounds via C-B derivatizations. The mechanistic studies, which included control experiments, nonlinear effect experiments, deuterated labeling experiments, and X-ray diffraction, demonstrated that the favorable compatibility between the thermodynamically unfavorable isomerization and hydroboration was the key factor in achieving convergent transformation.
Collapse
Affiliation(s)
- Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenggong Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kangyu Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenke Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peng Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwen Wang
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
7
|
Li B, Wang Z, Luo Y, Wei H, Chen J, Liu D, Zhang W. Nickel-catalyzed asymmetric hydrogenation for the preparation of α-substituted propionic acids. Nat Commun 2024; 15:5482. [PMID: 38942809 PMCID: PMC11213955 DOI: 10.1038/s41467-024-49801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Transition metal-catalyzed asymmetric hydrogenation is one of the most efficient methods for the preparation of chiral α-substituted propionic acids. However, research on this method, employing cleaner earth-abundant metal catalysts, is still insufficient in both academic and industrial contexts. Herein, we report an efficient nickel-catalyzed asymmetric hydrogenation of α-substituted acrylic acids affording the corresponding chiral α-substituted propionic acids with up to 99.4% ee (enantiomeric excess) and 10,000 S/C (substrate/catalyst). In particular, this method can be used to obtain (R)-dihydroartemisinic acid with 99.8:0.2 dr (diastereomeric ratio) and 5000 S/C, which is an essential intermediate for the preparation of the antimalarial drug Artemisinin. The reaction mechanism has been investigated via experiments and DFT (Density Functional Theory) calculations, which indicate that the protonolysis of the C-Ni bond of the key intermediate via an intramolecular proton transfer from the carboxylic acid group of the substrate, is the rate-determining step.
Collapse
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiling Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Delong Liu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Buzsaki SR, Mason SM, Kattamuri PV, Serviano JMI, Rodriguez DN, Wilson CV, Hood DM, Ellefsen JD, Lu YC, Kan J, West JG, Miller SJ, Holland PL. Fe/Thiol Cooperative Hydrogen Atom Transfer Olefin Hydrogenation: Mechanistic Insights That Inform Enantioselective Catalysis. J Am Chem Soc 2024; 146:17296-17310. [PMID: 38875703 PMCID: PMC11209773 DOI: 10.1021/jacs.4c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Asymmetric hydrogenation of activated olefins using transition metal catalysis is a powerful tool for the synthesis of complex molecules, but traditional metal catalysts have difficulty with enantioselective reduction of electron-neutral, electron-rich, and minimally functionalized olefins. Hydrogenation based on radical, metal-catalyzed hydrogen atom transfer (mHAT) mechanisms offers an outstanding opportunity to overcome these difficulties, enabling the mild reduction of these challenging olefins with selectivity that is complementary to traditional hydrogenations with H2. Further, mHAT presents an opportunity for asymmetric induction through cooperative hydrogen atom transfer (cHAT) using chiral thiols. Here, we report insights from a mechanistic study of an iron-catalyzed achiral cHAT reaction and leverage these insights to deliver stereocontrol from chiral thiols. Kinetic analysis and variation of silane structure point to the transfer of hydride from silane to iron as the likely rate-limiting step. The data indicate that the selectivity-determining step is quenching of the alkyl radical by thiol, which becomes a more potent H atom donor when coordinated to iron(II). The resulting iron(III)-thiolate complex is in equilibrium with other iron species, including FeII(acac)2, which is shown to be the predominant off-cycle species. The enantiodetermining nature of the thiol trapping step enables enantioselective net hydrogenation of olefins through cHAT using a commercially available glucose-derived thiol catalyst with up to 80:20 enantiomeric ratio. To the best of our knowledge, this is the first demonstration of asymmetric hydrogenation via iron-catalyzed mHAT. These findings advance our understanding of cooperative radical catalysis and act as a proof of principle for the development of enantioselective iron-catalyzed mHAT reactions.
Collapse
Affiliation(s)
- Sarah R. Buzsaki
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Savannah M. Mason
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Juan M. I. Serviano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dinora N. Rodriguez
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Conner V. Wilson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Drew M. Hood
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jolie Kan
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Shen M, Niu C, Wang X, Huang JB, Zhao Z, Ni SF, Rong ZQ. Regio- and Enantioselective Hydromethylation of 3-Pyrrolines and Glycals Enabled by Cobalt Catalysis. JACS AU 2024; 4:2312-2322. [PMID: 38938800 PMCID: PMC11200246 DOI: 10.1021/jacsau.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Enantioenriched 3-methylpyrrolidine, with its unique chiral nitrogen-containing core skeleton, exists widely in various functional molecules, including natural products, bioactive compounds, and pharmaceuticals. Traditional methods for synthesizing these valuable methyl-substituted heterocycles often involve enzymatic processes or complex procedures with chiral auxiliaries, limiting the substrate scope and efficiency. Efficient catalytic methylation, especially in an enantioselective manner, has been a long-standing challenge in chemical synthesis. Herein, we present a novel approach for the remote and stereoselective installation of a methyl group onto N-heterocycles, leveraging a CoH-catalyzed asymmetric hydromethylation strategy. By effectively combining a commercial cobalt precursor with a modified bisoxazoline (BOX) ligand, a variety of easily accessible 3-pyrrolines can be converted to valuable enantiopure 3-(isotopic labeling)methylpyrrolidine compounds with outstanding enantioselectivity. This efficient protocol streamlines the two-step synthesis of enantioenriched 3-methylpyrrolidine, which previously required up to five or six steps under harsh conditions or expensive starting materials.
Collapse
Affiliation(s)
- Mengyang Shen
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Caoyue Niu
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xuchao Wang
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Jia-Bo Huang
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zhen Zhao
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Fei Ni
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zi-Qiang Rong
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
10
|
Zhao L, Liu F, Zhuang Y, Shen M, Xue J, Wang X, Zhang Y, Rong ZQ. CoH-catalyzed asymmetric remote hydroalkylation of heterocyclic alkenes: a rapid approach to chiral five-membered S- and O-heterocycles. Chem Sci 2024; 15:8888-8895. [PMID: 38873055 PMCID: PMC11168172 DOI: 10.1039/d4sc01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Saturated heterocycles, which incorporate S and O heteroatoms, serve as fundamental frameworks in a diverse array of natural products, bioactive compounds, and pharmaceuticals. Herein, we describe a unique cobalt-catalyzed approach integrated with a desymmetrization strategy, facilitating precise and enantioselective remote hydroalkylation of unactivated heterocyclic alkenes. This method delivers hydroalkylation products with high yields and excellent stereoselectivity, representing good efficiency in constructing alkyl chiral centers at remote C3-positions within five-membered S/O-heterocycles. Notably, the broad scope and good functional group tolerance of this asymmetric C(sp3)-C(sp3) coupling enhance its applicability.
Collapse
Affiliation(s)
- Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Mengyang Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuting Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
11
|
Wen J, Huang Y, Zhang Y, Grützmacher H, Hu P. Cobalt catalyzed practical hydroboration of terminal alkynes with time-dependent stereoselectivity. Nat Commun 2024; 15:2208. [PMID: 38467660 PMCID: PMC10928171 DOI: 10.1038/s41467-024-46550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Stereodefined vinylboron compounds are important organic synthons. The synthesis of E-1-vinylboron compounds typically involves the addition of a B-H bond to terminal alkynes. The selective generation of the thermodynamically unfavorable Z-isomers remains challenging, necessitating improved methods. Here, such a proficient and cost-effective catalytic system is introduced, comprising a cobalt salt and a readily accessible air-stable CNC pincer ligand. This system enables the transformation of terminal alkynes, even in the presence of bulky substituents, with excellent Z-selectivity. High turnover numbers (>1,600) and turnover frequencies (>132,000 h-1) are achieved at room temperature, and the reaction can be scaled up to 30 mmol smoothly. Kinetic studies reveal a formal second-order dependence on cobalt concentration. Mechanistic investigations indicate that the alkynes exhibit a higher affinity for the catalyst than the alkene products, resulting in exceptional Z-selective performance. Furthermore, a rare time-dependent stereoselectivity is observed, allowing for quantitative conversion of Z-vinylboronate esters to the E-isomers.
Collapse
Affiliation(s)
- Jinglan Wen
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yu Zhang
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China.
| |
Collapse
|
12
|
Chakrabortty S, de Bruin B, de Vries JG. Cobalt-Catalyzed Asymmetric Hydrogenation: Substrate Specificity and Mechanistic Variability. Angew Chem Int Ed Engl 2024; 63:e202315773. [PMID: 38010301 DOI: 10.1002/anie.202315773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area.
Collapse
Affiliation(s)
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johannes G de Vries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
13
|
Chen T, Hu Y, Tang X, Zou Y, Wei L, Zhang Z, Zhang W. Cobalt-Catalyzed Enantioselective Reductive Amination of Ketones with Hydrazides. Org Lett 2024; 26:769-774. [PMID: 38047613 DOI: 10.1021/acs.orglett.3c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An efficient cobalt-catalyzed asymmetric reductive amination of ketones with hydrazides has been realized, directly producing valuable chiral hydrazines in high yields and enantioselectivities (up to 98% enantiomeric excess).
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuyang Tang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Liangming Wei
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
14
|
Zobernig DP, Luxner M, Stöger B, Veiros LF, Kirchner K. Hydrogenation of Terminal Alkenes Catalyzed by Air-Stable Mn(I) Complexes Bearing an N-Heterocyclic Carbene-Based PCP Pincer Ligand. Chemistry 2024; 30:e202302455. [PMID: 37814821 PMCID: PMC10952557 DOI: 10.1002/chem.202302455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Efficient hydrogenations of terminal alkenes with molecular hydrogen catalyzed by well-defined bench stable Mn(I) complexes containing an N-heterocyclic carbene-based PCP pincer ligand are described. These reactions are environmentally benign and atom economic, implementing an inexpensive, earth abundant non-precious metal catalyst. A range of aromatic and aliphatic alkenes were efficiently converted into alkanes in good to excellent yields. The hydrogenation proceeds at 100 °C with catalyst loadings of 0.25-0.5 mol %, 2.5-5 mol % base (KOt Bu) and a hydrogen pressure of 20 bar. Mechanistic insight into the catalytic reaction is provided by means of DFT calculations.
Collapse
Affiliation(s)
- Daniel P. Zobernig
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| | - Michael Luxner
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| | | | - Luis F. Veiros
- Centro de Química Estrutural, Institute of Molecular SciencesDepartamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais1049 001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| |
Collapse
|
15
|
Yang H, Hu Y, Zou Y, Zhang Z, Zhang W. Cobalt-Catalyzed Efficient Asymmetric Hydrogenation of α-Primary Amino Ketones. JACS AU 2023; 3:2981-2986. [PMID: 38034968 PMCID: PMC10685343 DOI: 10.1021/jacsau.3c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Based on an amino-group-assisted coordination strategy and a proton-shuttle-activated outer-sphere mode, the cobalt-catalyzed asymmetric hydrogenation of α-primary amino ketones has been developed, resulting in the efficient synthesis of chiral vicinal amino alcohols bearing functionalized aryl rings in high yields and enantioselectivities (up to 99% enantiomeric excess (ee)) within 0.5 h.
Collapse
Affiliation(s)
- Huiwen Yang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Hu
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yashi Zou
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenfeng Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
| |
Collapse
|
16
|
Guan J, Chen J, Luo Y, Guo L, Zhang W. Copper-Catalyzed Chemoselective Asymmetric Hydrogenation of C=O Bonds of Exocyclic α,β-Unsaturated Pentanones. Angew Chem Int Ed Engl 2023; 62:e202306380. [PMID: 37307027 DOI: 10.1002/anie.202306380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
A highly chemoselective earth-abundant transition metal copper catalyzed asymmetric hydrogenation of C=O bonds of exocyclic α,β-unsaturated pentanones was realized using H2 . The desired products were obtained with up to 99 % yield and 96 % ee (enantiomeric excess) (99 % ee, after recrystallization). The corresponding chiral exocyclic allylic pentanol products can be converted into several bioactive molecules. The hydrogenation mechanism was investigated via deuterium-labelling experiments and control experiments, which indicate that the keto-enol isomerization rate of the substrate is faster than that of the hydrogenation and also show that the Cu-H complex can only catalyze chemoselectively the asymmetric reduction of the carbonyl group. Computational results indicate that the multiple attractive dispersion interactions (MADI effect) between the catalyst with bulky substituents and substrate play important roles which stabilize the transition states and reduce the generation of by-products.
Collapse
Affiliation(s)
- Jing Guan
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yicong Luo
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lisen Guo
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Frontier Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Zeng L, Zhao M, Lin B, Song J, Tucker JHR, Wen J, Zhang X. Cobalt-Catalyzed Enantioselective Hydrogenation of Diaryl Ketones with Ferrocene-Based Secondary Phosphine Oxide Ligands. Org Lett 2023; 25:6228-6233. [PMID: 37585346 DOI: 10.1021/acs.orglett.3c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
A new class of cobalt catalytic system for asymmetric hydrogenation of ketones was herein reported, involving the development of novel ferrocene-based secondary phosphine oxide ligands. An unusual P-O bidentate coordination pattern with cobalt was confirmed by an X-ray diffraction study. The bichelating tetrahedral cobalt(II) complexes afforded high reactivities (up to 99% yield) and good to excellent enantioselectivities (up to 92% ee) in the AH of various ortho-substituted diaryl ketones. In addition, the diferrocenyl cobalt complex was characterized with intriguing UV-vis absorption and electrochemical properties.
Collapse
Affiliation(s)
- Liyao Zeng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Menglong Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bijin Lin
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jingyuan Song
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
18
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
19
|
Wei H, Chen H, Chen J, Gridnev ID, Zhang W. Nickel-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinylphosphonates and Diarylvinylphosphine Oxides. Angew Chem Int Ed Engl 2023; 62:e202214990. [PMID: 36507919 DOI: 10.1002/anie.202214990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Chiral α-substituted ethylphosphonate and ethylphosphine oxide compounds are widely used in drugs, pesticides, and ligands. However, their catalytic asymmetric synthesis is still rare. Of the only asymmetric hydrogenation methods available at present, all cases use rare metal catalysts. Herein, we report an efficient earth-abundant transition-metal nickel catalyzed asymmetric hydrogenation affording the corresponding chiral ethylphosphine products with up to 99 % yield, 96 % ee (enantiomeric excess) (99 % ee, after recrystallization) and 1000 S/C (substrate/catalyst); this is also the first study on the asymmetric hydrogenation of terminal olefins using a nickel catalyst under a hydrogen atmosphere. The catalytic mechanism was investigated via deuterium-labelling experiments and calculations which indicate that the two added hydrogen atoms of the products come from hydrogen gas. Additionally, it is believed that the reaction involves a NiII rather than Ni0 cyclic process based on the weak attractive interactions between the Ni catalyst and terminal olefin substrate.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hao Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|