1
|
Sbaraini N, Crombie A, Kalaitzis JA, Vuong D, Bracegirdle J, Windsor F, Lau A, Chen R, Tan YP, Lacey A, Lacey E, Piggott AM, Chooi YH. The aquastatin biosynthetic gene cluster encodes a versatile polyketide synthase capable of synthesising heteromeric depsides with diverse alkyl side chains. Chem Sci 2024:d4sc05557h. [PMID: 39479171 PMCID: PMC11514314 DOI: 10.1039/d4sc05557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Depsides have garnered substantial interest due to the diverse biological activities exhibited by members of this class. Among these are the antibacterial aquastatins, glycosylated heteromeric depsides formed through the condensation of orsellinic acid with corticiolic acid. In this work, we isolated aquastatins and the recently described geministatins, along with several novel aquastatin-related depsides with different alkyl side chains from the fungus Austroacremonium gemini MST-FP2131. The structures were determined through comprehensive spectroscopic analysis and chemical degradation. Genome mining and heterologous expression in Aspergillus nidulans and Saccharomyces cerevisiae revealed that aquastatin biosynthesis requires only two genes: a non-reducing polyketide synthase (SAT-KS-AT-PT-ACP-TE) and a glycosyltransferase. We demonstrated that the single polyketide synthase can synthesise an acetyl-primed orsellinic acid and alkylresorcylate with various chain lengths (C14, C16, or C18) by incorporating different long-chain acyl-CoAs as starter units, and then join these as heteromeric depsides. Using chemical degradation, we generated a series of analogues and showed that several aglycone depsides exhibit antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA), as well as antifungal and cytotoxic activities. Interestingly, heterologous expression of the aquastatin gene cluster in A. nidulans produced higher levels of geministatins with Δ15,16 and Δ18,19 double bonds, which have superior bioactivities compared to the aquastatins but are only present as minor compounds in the native fungus A. gemini.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Joe Bracegirdle
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Fraser Windsor
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Ashli Lau
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Rachel Chen
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Plant Pathology Herbarium Dutton Park QLD 4102 Australia
- Centre for Crop Health, University of Southern Queensland Toowoomba QLD 4350 Australia
| | - Alastair Lacey
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| |
Collapse
|
2
|
Yang H, Shang Z, Chen Y, Li F, Li K, Zhu H, Peng M, Yang J, Cai C, Ju J. Metabologenomics-Inspired Discovery and Combinatorial Biosynthesis-Based Diversification of Fungal O-Glycosylated Depsides. Org Lett 2024; 26:8317-8322. [PMID: 39303077 DOI: 10.1021/acs.orglett.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Through metabologenomics mining, we prioritized Exophiala xenobiotica SDU 039, a deep-sea sediment-derived fungus producing O-glycosylated depsides (1-9), including seven new species with varying aliphatic chains. Heterologous expression validated the exo gene cluster, and in vitro enzyme assays elucidated the function of glycosyltransferase ExoC. The chemical diversity of O-glycosylated depsides is expanded by combinatorial biosynthesis using homologues depside biosynthetic genes and in vitro transformation with ExoC and different sugars as substrate.
Collapse
Affiliation(s)
- Hu Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhuo Shang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Feng Li
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kunlong Li
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongjie Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ming Peng
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Cunlei Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
3
|
Mailänder LK, Nosrati Gazafroudi K, Lorenz P, Daniels R, Stintzing FC, Kammerer DR. It Is Not All about Alkaloids-Overlooked Secondary Constituents in Roots and Rhizomes of Gelsemium sempervirens (L.) J.St.-Hil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2208. [PMID: 39204644 PMCID: PMC11358907 DOI: 10.3390/plants13162208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Gelsemium sempervirens (L.) J.St.-Hil. is an evergreen shrub occurring naturally in North and Middle America. So far, more than 120 alkaloids have been identified in this plant in addition to steroids, coumarins and iridoids, and its use in traditional medicine has been traced back to these compound classes. However, a comprehensive phytochemical investigation of the plant with a special focus on further compound classes has not yet been performed. Therefore, the present study aimed at an extensive HPLC-MSn characterization of secondary metabolites and, for the first time, reports the occurrence of various depsides and phenolic glycerides in G. sempervirens roots and rhizomes, consisting of benzoic and cinnamic acid derivatives as well as dicarboxylic acids. Furthermore, mono- and disaccharides were assigned by GC-MS. Applying the Folin-Ciocalteu assay, the phenolic content of extracts obtained with different solvents was estimated to range from 30 to 50% calculated as chlorogenic acid equivalents per g dry weight and was related to the DPPH radical scavenging activity of the respective extracts. Upon lactic acid fermentation of aqueous G. sempervirens extracts, degradation of phenolic esters was observed going along with the formation of low-molecular volatile metabolites.
Collapse
Affiliation(s)
- Lilo K. Mailänder
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Khadijeh Nosrati Gazafroudi
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Peter Lorenz
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Tübingen University, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany
| | - Florian C. Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.)
| |
Collapse
|
4
|
Bai G, Li D, Wang Y, Yi J, Xu K, Wang W, Li J, Tan G, Yu X. Challenging Aromaticity: Revealing a Thioesterase Domain in a Fungal Nonreducing Polyketide Synthase Governing the Production of 3-Methylene Isochromanone. Org Lett 2024; 26:6303-6308. [PMID: 38815056 DOI: 10.1021/acs.orglett.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Thioesterase (TE) domain exerts a great influence over the structure of the final product and TE-released nonreduced polyketides (nrPKs) retain aromaticity. 3-Methylene isochromanones are lactones with a unique olefin at C3 that disrupts the aromaticity, whose biosynthetic details are speculative. Our study unveils the complete biosynthesis of ascochin, in which the construction of the 3-methylene isochromanone backbone is achieved by a nonreducing polyketide synthase (nrPKS) alone and two subsequent oxidations are involved. Intriguingly, the TEAscD serves as a gatekeeper to direct the product release toward formation of nonaromatic 3-methylene isochromanone, rather than the typical aromatic product.
Collapse
Affiliation(s)
- Guitao Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Dan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jiale Yi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jing Li
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Guishan Tan
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
5
|
Liu Q, Gao S, Fang J, Gong Y, Zheng Y, Xu Y, Zhang D, Wei J, Liao L, Yao M, Wang W, Han X, Chen F, Molnár I, Yang X. Novel fungal diphenyl ether biosynthetic gene clusters encode a promiscuous oxidase for elevated antibacterial activities. Chem Sci 2024:d4sc01435a. [PMID: 39144458 PMCID: PMC11320064 DOI: 10.1039/d4sc01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Diphenyl ethers (DPEs) are produced by filamentous fungi using polyketide synthases (PKSs) directly, or via Cu oxidase-catalyzed oxidative rearrangements of benzophenone intermediates. Here, we use heterologous expression to reveal a third route towards DPEs in Preussia isomera that relies on an oxidative multienzyme cascade to convert a PKS-generated, ester-linked didepside to depsidones and further to DPEs, and apply comparative genomics to identify conserved biosynthetic gene clusters for this pathway in multiple fungi. The distribution of DPE products is modulated by the expression chassis upon pathway reconstitution. Among the post-PKS enzymes, the DpeH tyrosinase shows considerable substrate promiscuity towards synthetic DPE analogues. By creating hybrid enzymes with a DpeH orthologue from Aspergillus nidulans, we identify the C-terminal region of DpeH to alter substrate recognition. Our work highlights an evolutionarily conserved way to produce DPEs, and provides enzymatic tools to generate DPE analogues with broad spectrum antibiotic activity against multidrug-resistant human pathogens.
Collapse
Affiliation(s)
- Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Shuaibiao Gao
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Jin Fang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Yifu Gong
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Yiling Zheng
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Yao Xu
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Dan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Jiayuan Wei
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Liangxiu Liao
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| | - Xiaole Han
- School of Chemistry and Materials Science, South-Central Minzu University Wuhan 430074 P.R. China
| | - Fusheng Chen
- School of Life Sciences, Guizhou Normal University Guiyang 550025 P.R. China
- College of Food Science and Technology, Huazhong Agricultural University Wuhan 430070 P.R. China
| | - István Molnár
- VTT Technical Research Centre of Finland FI-02044 VTT Espoo Finland
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P.R. China
| |
Collapse
|
6
|
Tang J, Matsuda Y. Discovery of fungal onoceroid triterpenoids through domainless enzyme-targeted global genome mining. Nat Commun 2024; 15:4312. [PMID: 38773118 PMCID: PMC11109268 DOI: 10.1038/s41467-024-48771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
Genomics-guided methodologies have revolutionized the discovery of natural products. However, a major challenge in the field of genome mining is determining how to selectively extract biosynthetic gene clusters (BGCs) for untapped natural products from numerous available genome sequences. In this study, we developed a fungal genome mining tool that extracts BGCs encoding enzymes that lack a detectable protein domain (i.e., domainless enzymes) and are not recognized as biosynthetic proteins by existing bioinformatic tools. We searched for BGCs encoding a homologue of Pyr4-family terpene cyclases, which are representative examples of apparently domainless enzymes, in approximately 2000 fungal genomes and discovered several BGCs with unique features. The subsequent characterization of selected BGCs led to the discovery of fungal onoceroid triterpenoids and unprecedented onoceroid synthases. Furthermore, in addition to the onoceroids, a previously unreported sesquiterpene hydroquinone, of which the biosynthesis involves a Pyr4-family terpene cyclase, was obtained. Our genome mining tool has broad applicability in fungal genome mining and can serve as a beneficial platform for accessing diverse, unexploited natural products.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
7
|
Ji Q, Xiang H, Wang WG, Matsuda Y. Mechanism Behind the Programmed Biosynthesis of Heterotrimeric Fungal Depside Thielavin A. Angew Chem Int Ed Engl 2024; 63:e202402663. [PMID: 38467568 DOI: 10.1002/anie.202402663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Thielavin A (1) is a fungal depside composed of one 3-methylorsellinic acid and two 3,5-dimethylorsellinic acid units. It displays diverse biological activities. However, the mechanism underlying the assembly of the heterotrimeric structure of 1 remains to be clarified. In this study, we identified the polyketide synthase (PKS) involved in the biosynthesis of 1. This PKS, designated as ThiA, possesses an unusual domain organization with the C-methyltransferase (MT) domain situated at the C-terminus following the thioesterase (TE) domain. Our findings indicated that the TE domain is solely responsible for two rounds of ester bond formation, along with subsequent chain hydrolysis. We identified a plausible mechanism for TE-catalyzed reactions and obtained insights into how a single PKS can selectively yield a specific heterotrimeric product. In particular, the tandem acyl carrier protein domains of ThiA are critical for programmed methylation by the MT domain. Overall, this study highlighted the occurrence of highly optimized domain-domain communication within ThiA for the selective synthesis of 1, which can advance our understanding of the programming rules of fungal PKSs.
Collapse
Affiliation(s)
- Qiaolin Ji
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hao Xiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, 650031, Yunnan, China
| | - Wei-Guang Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, 650031, Yunnan, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
8
|
Chen D, Song Z, Han J, Liu J, Liu H, Dai J. Targeted Discovery of Glycosylated Natural Products by Tailoring Enzyme-Guided Genome Mining and MS-Based Metabolome Analysis. J Am Chem Soc 2024; 146:9614-9622. [PMID: 38545685 DOI: 10.1021/jacs.3c12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glycosides make up a biomedically important class of secondary metabolites. Most naturally occurring glycosides were isolated from plants and bacteria; however, the chemical diversity of glycosylated natural products in fungi remains largely unexplored. Herein, we present a paradigm to specifically discover diverse and bioactive glycosylated natural products from fungi by combining tailoring enzyme-guided genome mining with mass spectrometry (MS)-based metabolome analysis. Through in vivo genes deletion and heterologous expression, the first fungal C-glycosyltransferase AuCGT involved in the biosynthesis of stromemycin was identified from Aspergillus ustus. Subsequent homology-based genome mining for fungal glycosyltransferases by using AuCGT as a probe revealed a variety of biosynthetic gene clusters (BGCs) containing its homologues in diverse fungi, of which the glycoside-producing capability was corroborated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Consequently, 28 fungal aromatic polyketide C/O-glycosides, including 20 new compounds, were efficiently discovered and isolated from the three selected fungi. Moreover, several novel fungal C/O-glycosyltransferases, especially three novel α-pyrone C-glycosyltransferases, were functionally characterized and verified in the biosynthesis of these glycosides. In addition, a proof of principle for combinatorial biosynthesis was applied to design the production of unnatural glycosides in Aspergillus nidulans. Notably, the newly discovered glycosides exhibited significant antiviral, antibacterial, and antidiabetic activities. Our work demonstrates the promise of tailoring enzyme-guided genome-mining approach for the targeted discovery of fungal glycosides and promotes the exploration of a broader chemical space for natural products with a target structural motif in microbial genomes.
Collapse
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhijun Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Junjie Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongwei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Zhou R, Liu R, Kang KB, Kim W, Hur JS, Kim H. The Depside Derivative Pericodepside Inhibits Cancer Cell Metastasis and Proliferation by Suppressing Epithelial-Mesenchymal Transition. ACS OMEGA 2024; 9:6828-6836. [PMID: 38371795 PMCID: PMC10870356 DOI: 10.1021/acsomega.3c08136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
A depside derivative, named pericodepside (2), along with the known depside proatranorin III (1), was isolated from the solid cultivation of an Ascochyta rabiei strain that heterologously expresses atr1 and atr2 that are involved in the biosynthesis of atranorin in a fruticose lichen, Stereocaulon alpinum. The structure of 2 was determined by 1D and 2D NMR and MS spectroscopic data. The structure of 2 consisted of a depside-pericosine conjugate, with the depside moiety being identical to that found in 1, suggesting that 1 acted as an intermediate during the formation of 2 through the esterification process. Pericodepside (2) strongly suppressed cell invasion and proliferation by inhibiting epithelial-mesenchymal transition and the transcriptional activities of β-catenin, STAT, and NF-κB in U87 (glioma cancer), MCF-7 (breast cancer), and PC3 (prostate cancer) cell lines.
Collapse
Affiliation(s)
- Rui Zhou
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Rundong Liu
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Kyo Bin Kang
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Wonyong Kim
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
- Department
of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Seoun Hur
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| |
Collapse
|
10
|
Huang Z, Liu D, Chen S, Ren J, Gao C, Li Z, Fan A, Lin W. Brominated Depsidones with Antibacterial Effects from a Deep-Sea-Derived Fungus Spiromastix sp. Mar Drugs 2024; 22:78. [PMID: 38393049 PMCID: PMC10890614 DOI: 10.3390/md22020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Eleven new brominated depsidones, namely spiromastixones U-Z5 (1-11) along with five known analogues (12-16), were isolated from a deep-sea-derived fungus Spiromastix sp. through the addition of sodium bromide during fermentation. Their structures were elucidated by extensive analysis of the spectroscopic data including high-resolution MS and 1D and 2D NMR data. Compounds 6-10 and 16 exhibited significant inhibition against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) with MIC values ranging from 0.5 to 2.0 μM. Particularly, tribrominated 7 displayed the strongest activity against MRSA and VRE with a MIC of 0.5 and 1.0 μM, respectively, suggesting its potential for further development as a new antibacterial agent.
Collapse
Affiliation(s)
- Zequan Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.H.); (D.L.); (S.C.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.H.); (D.L.); (S.C.)
| | - Shang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.H.); (D.L.); (S.C.)
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.H.); (D.L.); (S.C.)
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.H.); (D.L.); (S.C.)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| |
Collapse
|
11
|
Yan D, Arakelyan J, Wan T, Raina R, Chan TK, Ahn D, Kushnarev V, Cheung TK, Chan HC, Choi I, Ho PY, Hu F, Kim Y, Lau HL, Law YL, Leung CS, Tong CY, Wong KK, Yim WL, Karnaukhov NS, Kong RY, Babak MV, Matsuda Y. Genomics-driven derivatization of the bioactive fungal sesterterpenoid variecolin: Creation of an unnatural analogue with improved anticancer properties. Acta Pharm Sin B 2024; 14:421-432. [PMID: 38261827 PMCID: PMC10793096 DOI: 10.1016/j.apsb.2023.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 01/25/2024] Open
Abstract
A biosynthetic gene cluster for the bioactive fungal sesterterpenoids variecolin (1) and variecolactone (2) was identified in Aspergillus aculeatus ATCC 16872. Heterologous production of 1 and 2 was achieved in Aspergillus oryzae by expressing the sesterterpene synthase VrcA and the cytochrome P450 VrcB. Intriguingly, the replacement of VrcB with homologous P450s from other fungal terpenoid pathways yielded three new variecolin analogues (5-7). Analysis of the compounds' anticancer activity in vitro and in vivo revealed that although 5 and 1 had comparable activities, 5 was associated with significantly reduced toxic side effects in cancer-bearing mice, indicating its potentially broader therapeutic window. Our study describes the first tests of variecolin and its analogues in animals and demonstrates the utility of synthetic biology for creating molecules with improved biological activities.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Jemma Arakelyan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Teng Wan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Ritvik Raina
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Tsz Ki Chan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Dohyun Ahn
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Vladimir Kushnarev
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Tsz Kiu Cheung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Ho Ching Chan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Inseo Choi
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Pui Yi Ho
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Feijun Hu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Yujeong Kim
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Hill Lam Lau
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Ying Lo Law
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Chi Seng Leung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Chun Yin Tong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Kap Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Wing Lam Yim
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Nikolay S. Karnaukhov
- Moscow Clinical Research Center Named After A.S. Loginov, Moscow 111123, Russian Federation
| | - Richard Y.C. Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Maria V. Babak
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Dunbar KL, Perlatti B, Liu N, Cornelius A, Mummau D, Chiang YM, Hon L, Nimavat M, Pallas J, Kordes S, Ng HL, Harvey CJB. Resistance gene-guided genome mining reveals the roseopurpurins as inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci U S A 2023; 120:e2310522120. [PMID: 37983497 PMCID: PMC10691236 DOI: 10.1073/pnas.2310522120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 11/22/2023] Open
Abstract
With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sina Kordes
- Proteros Biostructures GmbH, PlaneggD-82152, Germany
| | | | | |
Collapse
|
13
|
Yang J, Zhou Z, Chen Y, Song Y, Ju J. Characterization of the depsidone gene cluster reveals etherification, decarboxylation and multiple halogenations as tailoring steps in depsidone assembly. Acta Pharm Sin B 2023; 13:3919-3929. [PMID: 37719379 PMCID: PMC10501868 DOI: 10.1016/j.apsb.2023.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 09/19/2023] Open
Abstract
Depsides and depsidones have attracted attention for biosynthetic studies due to their broad biological activities and structural diversity. Previous structure‒activity relationships indicated that triple halogenated depsidones display the best anti-pathogenic activity. However, the gene cluster and the tailoring steps responsible for halogenated depsidone nornidulin (3) remain enigmatic. In this study, we disclosed the complete biosynthetic pathway of the halogenated depsidone through in vivo gene disruption, heterologous expression and in vitro biochemical experiments. We demonstrated an unusual depside skeleton biosynthesis process mediated by both highly-reducing polyketide synthase and non-reducing polyketide synthase, which is distinct from the common depside skeleton biosynthesis. This skeleton was subsequently modified by two in-cluster enzymes DepG and DepF for the ether bond formation and decarboxylation, respectively. In addition, the decarboxylase DepF exhibited substrate promiscuity for different scaffold substrates. Finally, and interestingly, we discovered a halogenase encoded remotely from the biosynthetic gene cluster, which catalyzes triple-halogenation to produce the active end product nornidulin (3). These discoveries provide new insights for further understanding the biosynthesis of depsidones and their derivatives.
Collapse
Affiliation(s)
- Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Zhenbin Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| |
Collapse
|
14
|
Zhao X, Chen Y, Long T, Liu Z, Zhang Q, Zhang H, Yan Y, Zhang C, Zhu Y. Genome Mining and Biosynthetic Reconstitution of Fungal Depsidone Mollicellins Reveal a Dual Functional Cytochrome P450 for Ether Formation. JOURNAL OF NATURAL PRODUCTS 2023; 86:2046-2053. [PMID: 37566707 DOI: 10.1021/acs.jnatprod.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Depsidones are significant in structural diversity and broad in biological activities; however, their biosynthetic pathways have not been well understood and have attracted considerable attention. Herein, we heterologously reconstituted a depsidone encoding gene cluster from Ovatospora sp. SCSIO SY280D in Aspergillus nidulans A1145, leading to production of mollicellins, a representative family of depsidones, and discovering a bifunctional P450 monooxygenase that catalyzes both ether formation and hydroxylation in the biosynthesis of the mollicellins. The functions of a decarboxylase and an aromatic prenyltransferase are also characterized to understand the tailoring modification steps. This work provides important insights into the biosynthesis of mollicellins.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youzhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ting Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yan Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
15
|
Yang R, Feng J, Xiang H, Cheng B, Shao LD, Li YP, Wang H, Hu QF, Xiao WL, Matsuda Y, Wang WG. Ketoreductase Domain-Catalyzed Polyketide Chain Release in Fungal Alkyl Salicylaldehyde Biosynthesis. J Am Chem Soc 2023; 145:11293-11300. [PMID: 37172192 DOI: 10.1021/jacs.3c02011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alkyl salicylaldehyde derivatives are polyketide natural products, which are widely distributed in fungi and exhibit great structural diversity. Their biosynthetic mechanisms have recently been intensively studied; however, how the polyketide synthases (PKSs) involved in the fungal alkyl salicylaldehyde biosyntheses release their products remained elusive. In this study, we discovered an orphan biosynthetic gene cluster of salicylaldehyde derivatives in the fungus Stachybotrys sp. g12. Intriguingly, the highly reducing PKS StrA, encoded by the gene cluster, performs a reductive polyketide chain release, although it lacks a C-terminal reductase domain, which is typically required for such a reductive release. Our study revealed that the chain release is achieved by the ketoreductase (KR) domain of StrA, which also conducts cannonical β-keto reductions during polyketide chain elongation. Furthermore, we found that the cupin domain-containing protein StrC plays a critical role in the aromatization reaction. Collectively, we have provided an unprecedented example of a KR domain-catalyzed polyketide chain release and a clearer image of how the salicylaldehyde scaffold is generated in fungi.
Collapse
Affiliation(s)
- Run Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Jian Feng
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Hao Xiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Bin Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory and Yunnan Provincial Center of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500 Yunnan, China
| | - Yan-Ping Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500 Yunnan, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qiu-Fen Hu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory and Yunnan Provincial Center of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, Yunnan, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Wei-Guang Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| |
Collapse
|
16
|
Tseng CC, Chen L, Lee C, Tu Z, Lin CH, Lin HC. Characterization and catalytic investigation of fungal single-module nonribosomal peptide synthetase in terpene-amino acid meroterpenoid biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad043. [PMID: 38049376 PMCID: PMC10720950 DOI: 10.1093/jimb/kuad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Hybrid natural products are compounds that originate from diverse biosynthetic pathways and undergo a conjugation process, which enables them to expand their chemical diversity and biological functionality. Terpene-amino acid meroterpenoids have garnered increasing attention in recent years, driven by the discovery of noteworthy examples such as the anthelmintic CJ-12662, the insecticidal paeciloxazine, and aculene A (1). In the biosynthesis of terpene-amino acid natural products, single-module nonribosomal peptide synthetases (NRPSs) have been identified to be involved in the esterification step, catalyzing the fusion of modified terpene and amino acid components. Despite prior investigations into these NRPSs through gene deletion or in vivo experiments, the enzymatic basis and mechanistic insights underlying this family of single-module NRPSs remain unclear. In this study, we performed biochemical characterization of AneB by in vitro characterization, molecular docking, and site-directed mutagenesis. The enzyme reaction analyses, performed with L-proline and daucane/nordaucane sesquiterpene substrates, revealed that AneB specifically esterifies the C10-OH of aculenes with L-proline. Notably, in contrast to ThmA in CJ-12662 biosynthesis, which exclusively recognizes oxygenated amorpha-4,11-diene sesquiterpenes for L-tryptophan transfer, AneB demonstrates broad substrate selectivity, including oxygenated amorpha-4,11-diene and 2-phenylethanol, resulting in the production of diverse unnatural prolyl compounds. Furthermore, site-directed mutagenesis experiments indicated the involvement of H794 and D798 in the esterification catalyzed by AneB. Lastly, domain swapping between AneB and ThmA unveiled that the A‒T domains of ThmA can be effectively harnessed by the C domain of AneB for L-tryptophan transfer, thus highlighting the potential of the C domain of AneB for generating various terpene-amino acid meroterpenoid derivatives. ONE-SENTENCE SUMMARY The enzymatic basis and mechanistic insights into AneB, a single-module NRPS, highlight its capacity to generate various terpene-amino acid meroterpenoid derivatives.
Collapse
Affiliation(s)
- Cheng-Chung Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
| | - Li‐Xun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Chi‐Fang Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| |
Collapse
|
17
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2022; 39:2209-2214. [PMID: 36412123 DOI: 10.1039/d2np90043b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chlorfortunone A from Chloranthus fortunei.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
18
|
Ning Y, Xu Y, Jiao B, Lu X. Application of Gene Knockout and Heterologous Expression Strategy in Fungal Secondary Metabolites Biosynthesis. Mar Drugs 2022; 20:705. [PMID: 36355028 PMCID: PMC9699552 DOI: 10.3390/md20110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
The in-depth study of fungal secondary metabolites (SMs) over the past few years has led to the discovery of a vast number of novel fungal SMs, some of which possess good biological activity. However, because of the limitations of the traditional natural product mining methods, the discovery of new SMs has become increasingly difficult. In recent years, with the rapid development of gene sequencing technology and bioinformatics, new breakthroughs have been made in the study of fungal SMs, and more fungal biosynthetic gene clusters of SMs have been discovered, which shows that the fungi still have a considerable potential to produce SMs. How to study these gene clusters to obtain a large number of unknown SMs has been a research hotspot. With the continuous breakthrough of molecular biology technology, gene manipulation has reached a mature stage. Methods such as gene knockout and heterologous expression techniques have been widely used in the study of fungal SM biosynthesis and have achieved good effects. In this review, the representative studies on the biosynthesis of fungal SMs by gene knockout and heterologous expression under the fungal genome mining in the last three years were summarized. The techniques and methods used in these studies were also briefly discussed. In addition, the prospect of synthetic biology in the future under this research background was proposed.
Collapse
Affiliation(s)
| | | | | | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| |
Collapse
|