1
|
Cheng MJ, Wu YY, Zeng H, Zhang TH, Hu YX, Liu SY, Cui RQ, Hu CX, Zou QM, Li CC, Ye WC, Huang W, Wang L. Asymmetric total synthesis of polycyclic xanthenes and discovery of a WalK activator active against MRSA. Nat Commun 2024; 15:5879. [PMID: 38997253 PMCID: PMC11245619 DOI: 10.1038/s41467-024-49629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
The development of new antibiotics continues to pose challenges, particularly considering the growing threat of multidrug-resistant Staphylococcus aureus. Structurally diverse natural products provide a promising source of antibiotics. Herein, we outline a concise approach for the collective asymmetric total synthesis of polycyclic xanthene myrtucommulone D and five related congeners. The strategy involves rapid assembly of the challenging benzopyrano[2,3-a]xanthene core, highly diastereoselective establishment of three contiguous stereocenters through a retro-hemiketalization/double Michael cascade reaction, and a Mitsunobu-mediated chiral resolution approach with high optical purity and broad substrate scope. Quantum mechanical calculations provide insight into stereoselective construction mechanism of the three contiguous stereocenters. Additionally, this work leads to the discovery of an antibacterial agent against both drug-sensitive and drug-resistant S. aureus. This compound operates through a unique mechanism that promotes bacterial autolysis by activating the two-component sensory histidine kinase WalK. Our research holds potential for future antibacterial drug development.
Collapse
Affiliation(s)
- Min-Jing Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan-Yi Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, P. R. China
| | - Tian-Hong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan-Xia Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Shi-Yi Liu
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Rui-Qin Cui
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Chun-Xia Hu
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, P. R. China.
| | - Chuang-Chuang Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China.
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| | - Wei Huang
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
| | - Lei Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, P. R. China.
- Center for Bioactive Natural Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
2
|
Wu BL, Yao JN, Long XX, Tan ZQ, Liang X, Feng L, Wei K, Yang YR. Enantioselective Total Synthesis of (-)-Daphenylline. J Am Chem Soc 2024; 146:1262-1268. [PMID: 38180776 DOI: 10.1021/jacs.3c12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A concise enantioselective total synthesis of (-)-daphenylline, a hexacyclic Daphniphyllum alkaloid with a unique benzene ring, was achieved in 14 steps. The synthesis commences with two chiral stereocenters, C2 and C18, readily installed via Carreira's Ir/amine dual-catalyzed allylation. The allylic bridgehead amine 6 was rapidly prepared through Wickens' photoredox-catalyzed hydrocarboxylation of olefin and CuBr2-catalyzed α-amination of ketone. The tetracycle 4 was formed via Pd-catalyzed reductive Heck reaction or, more concisely, by Krische's Rh-catalyzed reductive 1,6-enyne cyclization. In this synthesis, newly reported Wickens' photoredox-catalyzed hydrocarboxylation was used twice, and Friedel-Crafts acylation thrice.
Collapse
Affiliation(s)
- Bing-Lu Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Neng Yao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiang-Xi Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Qin Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Zhao W, Zhang D, Wang Y, Yang M. Total Syntheses of Rhodomollins A and B. J Am Chem Soc 2023. [PMID: 38016018 DOI: 10.1021/jacs.3c12249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The first and asymmetric total syntheses of rhodomollins A and B, two rhodomollane type grayanoids featuring a d-homograyanane carbon skeleton and an oxa-bicyclo[3.2.1] core, were accomplished via a convergent strategy. A Stille coupling and a lithium-halogen exchange/intramolecular nucleophilic addition to the aldehyde sequence were employed to assemble two enantioenriched fragments. The oxa-bicyclo[3.2.1] core was achieved through an intramolecular SN2 substitution of cyclic sulfate of 1,2-diols (Williamson ether synthesis). The A ring oxidation states were adjusted by a Payne/Meinwald rearrangement sequence and subsequent redox transformations.
Collapse
Affiliation(s)
- Weizhao Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Duo Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Yuran Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu Province 730000, China
| |
Collapse
|
4
|
Zou YP, Lai ZL, Zhang MW, Peng J, Ning S, Li CC. Total Synthesis of (±)- and (-)-Daphnillonin B. J Am Chem Soc 2023; 145:10998-11004. [PMID: 37167083 DOI: 10.1021/jacs.3c03755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first total synthesis of (±)- and (-)-daphnillonin B, a daphnicyclidin-type alkaloid with a new [7-6-5-7-5-5] A/B/C/D/E/F hexacyclic core, has been achieved. The [6-5-7] B/C/D ring system was efficiently and diastereoselectively constructed via a mild type I intramolecular [5+2] cycloaddition, followed by a Grubbs II catalyst-catalyzed radical cyclization. The [5-5] fused E/F ring system was synthesized via a diastereoselective intramolecular Pauson-Khand reaction. Notably, the synthetically challenging [7-6-5-7-5-5] hexacyclic core was reassembled by a unique Wagner-Meerwein-type rearrangement from the [6-6-5-7-5-5] hexacyclic framework found in calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Yun-Peng Zou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng-Lin Lai
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhao Peng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Ning
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
5
|
Yagi K, Ohira K, Yamana K, Imato K, Kawasaki R, Ikeda A, Ooyama Y. Development of water-soluble phenazine-2,3-diol-based photosensitizers for singlet oxygen generation. Org Biomol Chem 2023. [PMID: 37161772 DOI: 10.1039/d3ob00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phenazine-2,3-diol-based dyes, KY-1Na and KY-2Na bearing one and two carboxylic acid sodium salts, respectively, have been newly developed as water-soluble photosensitizers (PSs) possessing the ability to generate singlet oxygen (1O2). In order to evaluate the solubility of KY-1Na and KY-2Na in water, the hydrophobicity/hydrophilicity of the two PSs was investigated by experimental measurement of the logarithms (log Po/w) of the 1-octanol/water partition coefficient (Po/w) for the PS. The log Po/w values of both KY-1Na and KY-2Na were determined to be -0.9, indicating that both the PSs are more hydrophilic than Rose Bengal (-0.6) and have hydrophilicity equivalent to methylene blue (-0.9). Both the PSs in water show a broad photoabsorption band in the range of 500 to 600 nm. Thus, we estimated the 1O2 quantum yields (ΦΔ) of KY-1Na and KY-2Na in water by using 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) as a water-soluble 1O2 scavenger. It was found that in water the ΦΔ value (0.19) of KY-2Na is higher than that of KY-1Na (0.06). Density functional theory (DFT) calculations suggested that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) distributions for the molecular structure of KY-2Na are adequately separated, leading to a decrease in the energy gap (ΔEST) between the singlet state (S1) and the triplet state (T1) that causes efficient intersystem crossing (ISC), compared to that for the molecular structure of KY-1Na. Indeed, time-dependent DFT (TD-DFT) calculations demonstrated that the ΔEST(S1-T1) value (0.82 eV) of KY-2Na is smaller than that (0.98 eV) of KY-1Na, resulting in a relatively high ΦΔ value of KY-2Na. Consequently, we demonstrate that phenazine-2,3-diol-based PSs bearing carboxylic acid salts possess high solubility and moderate 1O2 generation ability in water.
Collapse
Affiliation(s)
- Kazunori Yagi
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
6
|
Nakajima D, Yokoshima S. Construction of the [7-5-5] Tricyclic Core of Daphniphyllum Alkaloids via a Cationic Cascade Reaction. Org Lett 2022; 24:9520-9524. [PMID: 36524720 DOI: 10.1021/acs.orglett.2c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The [7-5-5] tricyclic core of daphniphyllum alkaloids, containing contiguous stereogenic centers at C14 and C15 and a tetrasubstituted alkene moiety between C9 and C10, was constructed via a cascade reaction that involved an electrocyclic reaction of a pentadienyl cation and intramolecular interception of the resultant cyclopentenyl cation.
Collapse
Affiliation(s)
- Daisuke Nakajima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|