1
|
Yu T, Zhao X, Nie Z, Qin L, Ding Z, Xu L, Li P. Diverse Synthesis of Arene-Fused [n.1.1]-Bridged Molecules via Catalytic Cycloaddition and Rearrangement Reactions. Angew Chem Int Ed Engl 2024:e202420831. [PMID: 39714393 DOI: 10.1002/anie.202420831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge. Herein a collective, selective, and diversity-oriented approach for up to 6 types of 2D/3D polycyclic scaffolds featuring bicyclo[n.1.1] substructure is reported. A boronyl radical-catalyzed [2σ+2π] cycloaddition between bicyclo[1.1.0]butanes and ortho-quinone methides afforded spirocyclic compounds containing a bicyclo[2.1.1]hexanes unit, which were used as intermediates for synthesis of three types of 2D/3D scaffolds via judiciously controlled Lewis acid-catalyzed rearrangements. The reaction and rearrangement of para-quinone methides worked analogously and provided another two polycyclic scaffolds.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xue Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zaicheng Nie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Lulu Qin
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Ma L, Zhang K, Huang Z, Guo Y, Liu N, Chen J, Wang X, Liu Y, Li M, Li J, Yang C, Liu S, Yang G. Development of Novel Silicon-Based Hydrophobic Tags (SiHyT) for Targeted Proteins Degradation. J Med Chem 2024; 67:21344-21363. [PMID: 39620633 DOI: 10.1021/acs.jmedchem.4c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Recent advances in targeted protein degradation (TPD) have propelled it to the forefront of small molecular drug discovery. Among these, hydrophobic tagging (HyT) strategies have garnered significant interest. Carbon-based hydrophobic tags have been recognized as effective Hyts for degrading a variety of target proteins. In this study, we introduce a novel class of potential EGFR degraders for the first time, which combine Gefitinib with silicon-based hydrophobic tags (SiHyT). The most promising candidate, degrader 7, which links Gefitinib to a simple TBDPS silyl ether, has shown efficacy in degrading mutant EGFRs via the ubiquitin-proteosome system (UPS) both in vitro and in vivo. Notably, degrader 7 exhibits enhanced oral bioavailability owing to its superior metabolic stability compared to traditional carbon-based Hyts. Mechanistically, it was revealed that degrader 7 disrupts EGFR stability by dissociating the EGFR-HSP90 complex and recruiting E3 ligase, RNF149. More importantly, the potent and selective PD-L1 and BTK degraders were discovered successfully by utilizing the SiHyT strategy. The development of these innovative SiHyT compounds could broaden the repertoire of HyTs, enhancing the future design of TPD agents.
Collapse
Affiliation(s)
- Lan Ma
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ziqi Huang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yuda Guo
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ning Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Jia Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Xinyue Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ying Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Mei Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Jinxiao Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Shuangwei Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Wright BA, Okada T, Regni A, Luchini G, Sowndarya S V S, Chaisan N, Kölbl S, Kim SF, Paton RS, Sarpong R. Molecular Complexity-Inspired Synthetic Strategies toward the Calyciphylline A-Type Daphniphyllum Alkaloids Himalensine A and Daphenylline. J Am Chem Soc 2024. [PMID: 39565045 DOI: 10.1021/jacs.4c11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this report, we detail two distinct synthetic approaches to calyciphylline A-type Daphniphyllum alkaloids himalensine A and daphenylline, which are inspired by our analysis of the structural complexity of these compounds. Using MolComplex, a Python-based web application that we have developed, we quantified the structural complexity of all possible precursors resulting from one-bond retrosynthetic disconnections. This led to the identification of transannular bonds as especially simplifying to the molecular graph, and, based on this analysis, we pursued a total synthesis of himalensine A from macrocyclic intermediates with planned late-stage transannular ring formations. Despite initial setbacks in accessing an originally designed macrocycle, targeting a simplified macrocycle ultimately enabled investigation of this intermediate's unique transannular reactivity. Given the lack of success to access himalensine A based solely on molecular graph analysis, we revised our approach to the related alkaloid, daphenylline. Herein, we also provide the details of the various synthetic challenges that we encountered and overcame en route to a total synthesis of daphenylline. First, optimization of a Rh-mediated intramolecular Buchner/6π-electrocyclic ring-opening sequence enabled construction of the pentacyclic core. We then describe various attempts to install a key quaternary methyl group and, ultimately, our solution to leverage a [2 + 2] photocycloaddition/bond cleavage sequence to achieve this elusive goal. Finally, a late-stage Friedel-Crafts cyclization and deoxygenation facilitated the 11-step total synthesis, which was made formally enantioselective by a Rh-mediated dihydropyridone conjugate arylation. Complexity analysis of the daphenylline synthesis highlights how complexity-building/C-C cleavage combinations can be uniquely effective in achieving synthetic outcomes.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Taku Okada
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alessio Regni
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Guilian Luchini
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shree Sowndarya S V
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nattawadee Chaisan
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sebastian Kölbl
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Pan L, Schneider F, Ottenbruch M, Wiechert R, List T, Schoch P, Mertes B, Gaich T. A general strategy for the synthesis of taxane diterpenes. Nature 2024; 632:543-549. [PMID: 38862025 DOI: 10.1038/s41586-024-07675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The carbon skeleton of any organic molecule serves as the foundation for its three-dimensional structure, playing a pivotal role in determining its physical and biological properties1. As such, taxane diterpenes are one of the most well-known natural product families, primarily owing to the success of their most prominent compound, paclitaxel, an effective anticancer therapeutic for more than 25 years2-6. In contrast to classical taxanes, the bioactivity of cyclotaxanes (also referred to as complex taxanes) remains significantly underexplored. The carbon skeletons of these two groups of taxanes differ significantly, and so would typically their own distinct synthetic approaches. Here we report a versatile synthetic strategy based on the interconversion of complex molecular frameworks, providing general access to the wider taxane diterpene family. A range of classical and cyclotaxane frameworks was prepared including, among others, the total syntheses of taxinine K (2), canataxapropellane (5) and dipropellane C from a single advanced intermediate. The synthetic approach deliberately eschews biomimicry, emphasizing instead the power of stereoelectronic control in orchestrating the interconversion of polycyclic frameworks.
Collapse
Affiliation(s)
- Lu Pan
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| | - Fabian Schneider
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Scripps Research, La Jolla, CA, USA
| | | | - Rainer Wiechert
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Tatjana List
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Philipp Schoch
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Bastian Mertes
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Tanja Gaich
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| |
Collapse
|
5
|
Shenvi RA. Natural Product Synthesis in the 21st Century: Beyond the Mountain Top. ACS CENTRAL SCIENCE 2024; 10:519-528. [PMID: 38559299 PMCID: PMC10979479 DOI: 10.1021/acscentsci.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
Research into natural products emerged from humanity's curiosity about the nature of matter and its role in the materia medica of diverse civilizations. Plants and fungi, in particular, supplied materials that altered behavior, perception, and well-being profoundly. Many active principles remain well-known today: strychnine, morphine, psilocybin, ephedrine. The potential to circumvent the constraints of natural supply and explore the properties of these materials led to the field of natural product synthesis. This research delivered new molecules with new properties, but also led to fundamental insights into the chemistry of the nonmetal elements H, C, N, O, P, S, Se, and their combinations, i.e., organic chemistry. It also led to a potent culture focused on bigger molecules and races to the finish line, perhaps at the expense of actionable next steps. About 20 years ago, the field began to contract in the United States. Research that focused solely on chemical reaction development, especially catalysis, filled the void. After all, new reactions and mechanistic insight could be immediately implemented by the chemistry community, so it became hard to justify the lengthy procurement of a complex molecule that sat in the freezer unused. This shift coincided with a divestment of natural product portfolios by pharmaceutical companies and an emphasis in academic organic chemistry on applications-driven research, perhaps at the expense of more fundamental science. However, as bioassays and the tools of chemical biology become widespread, synthesis finds a new and powerful ally that allows us to better deliver on the premise of the field. And the hard-won insights of complex synthesis can be better encoded digitally, mined by data science, and applied to new challenges, as chemists perturb and even surpass the properties of complex natural products. The 21st century promises powerful developments, both in fundamental organic chemistry and at the interface of synthesis and biology, if the community of scientists fosters its growth. This essay tries to contextualize natural product synthesis for a broad audience, looks ahead to its transformation in the coming years, and expects the future to be bright.
Collapse
Affiliation(s)
- Ryan A. Shenvi
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Hardy MA, Hayward Cooke J, Feng Z, Noda K, Kerschgens I, Massey LA, Tantillo DJ, Sarpong R. Unified Synthesis of 2-Isocyanoallopupukeanane and 9-Isocyanopupukeanane through a "Contra-biosynthetic" Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202317348. [PMID: 38032339 PMCID: PMC11646677 DOI: 10.1002/anie.202317348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Herein, we describe our synthetic efforts toward the pupukeanane natural products, in which we have completed the first enantiospecific route to 2-isocyanoallopupukeanane in 10 steps (formal synthesis), enabled by a key Pd-mediated cyclization cascade. This subsequently facilitated an unprecedented bio-inspired "contra-biosynthetic" rearrangement, providing divergent access to 9-isocyanopupukeanane in 15 steps (formal synthesis). Computational studies provide insight into the nature of this rearrangement.
Collapse
Affiliation(s)
- Melissa A. Hardy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhitao Feng
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kenta Noda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Isabel Kerschgens
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lynée A. Massey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Bakanas I, Lusi RF, Wiesler S, Hayward Cooke J, Sarpong R. Strategic application of C-H oxidation in natural product total synthesis. Nat Rev Chem 2023; 7:783-799. [PMID: 37730908 DOI: 10.1038/s41570-023-00534-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Wiesler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
9
|
Williams OP, Chmiel AF, Mikhael M, Bates DM, Yeung CS, Wickens ZK. Practical and General Alcohol Deoxygenation Protocol. Angew Chem Int Ed Engl 2023; 62:e202300178. [PMID: 36840940 PMCID: PMC10121858 DOI: 10.1002/anie.202300178] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Herein, we describe a practical protocol for the removal of alcohol functional groups through reductive cleavage of their benzoate ester analogs. This transformation requires a strong single electron transfer (SET) reductant and a means to accelerate slow fragmentation following substrate reduction. To accomplish this, we developed a photocatalytic system that generates a potent reductant from formate salts alongside Brønsted or Lewis acids that promote fragmentation of the reduced intermediate. This deoxygenation procedure is effective across structurally and electronically diverse alcohols and enables a variety of difficult net transformations. This protocol requires no precautions to exclude air or moisture and remains efficient on multigram scale. Finally, the system can be adapted to a one-pot benzoylation-deoxygenation sequence to enable direct alcohol deletion. Mechanistic studies validate that the role of acidic additives is to promote the key C(sp3 )-O bond fragmentation step.
Collapse
Affiliation(s)
- Oliver P. Williams
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| |
Collapse
|
10
|
Bakanas I, Tang JC, Sarpong R. Skeletal diversification by C-C cleavage to access bicyclic frameworks from a common tricyclooctane intermediate. Chem Commun (Camb) 2023; 59:3858-3861. [PMID: 36916206 PMCID: PMC10518267 DOI: 10.1039/d3cc00945a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Herein, the diversification of tricyclo[3.2.1.03,6]octane scaffolds to afford diverse bicyclic scaffolds is described. The strained tricyclooctanes are prepared in two steps featuring a blue light-mediated [2+2] cycloaddition. Strategies for the cleavage of this scaffold were then explored resulting in the selective syntheses of the bicyclo[3.1.1]heptane, bicyclo[3.2.1]octane, and bicyclo[3.2.0]heptane cores. These findings may guide future studies of C-C cleavage reactions in strained carbon frameworks and their application in complex molecule synthesis.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California-Berkeley, Berkeley, California, USA.
| | - Jess C Tang
- Department of Chemistry, University of California-Berkeley, Berkeley, California, USA.
| | - Richmond Sarpong
- Department of Chemistry, University of California-Berkeley, Berkeley, California, USA.
| |
Collapse
|
11
|
Yu T, Yang J, Wang Z, Ding Z, Xu M, Wen J, Xu L, Li P. Selective [2σ + 2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes. J Am Chem Soc 2023; 145:4304-4310. [PMID: 36763965 DOI: 10.1021/jacs.2c13740] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In contrast to the traditional and widely-used cycloaddition reactions involving at least a π bond component, a [2σ + 2σ] radical cycloaddition between bicyclo[1.1.0]butanes (BCBs) and cyclopropyl ketones has been developed to provide a modular, concise, and atom-economical synthetic route to substituted bicyclo[3.1.1]heptane (BCH) derivatives that are 3D bioisosteres of benzenes and core skeleton of a number of terpene natural products. The reaction was catalyzed by a combination of simple tetraalkoxydiboron(4) compound B2pin2 and 3-pentyl isonicotinate. The broad substrate scope has been demonstrated by synthesizing a series of new highly functionalized BCHs with up to six substituents on the core with up to 99% isolated yield. Computational mechanistic investigations supported a pyridine-assisted boronyl radical catalytic cycle.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Xu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingru Wen
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|