1
|
Jin JL, Zhang SF, Fang JJ, Shen YL, Xie YP, Lu X. Assembly of silver(I)-copper(I) bimetallic thiolate complexes assisted by phenylacetylene stabilizers. Dalton Trans 2025; 54:1270-1275. [PMID: 39624945 DOI: 10.1039/d4dt02753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
AgI/CuI bimetallic clusters have been widely reported, but synthesis of such clusters via simple self-assembly of heterometallic ions in air remains challenging due to the susceptibility of CuI ions to oxidation. In this study, protected by the phenylacetylene auxiliary ligand, we utilized [Cu(CH3CN)4]PF6 in conjunction with the (iPrSAg)n polymer to form Ag(I)-Cu(I) oligomer precursors, serving as the starting point for constructing a new [Ag11-xCux(iPrS)9(DPPM)3](PF6)2 cluster (DPPM = bis(diphenylphosphino)methane, Ag11-xCux, x = 5-9). When the (iPrSAg)n precursor was replaced by (tBuSAg)n, another cluster [Ag21Cu4S2(tBuS)18(CH3CN)4](CH3OH)2(H3O)(PF6)4 (Ag21Cu4) was obtained. By combining crystallographic data and electrospray ionization mass spectrometry (ESI-MS) results, the compositions and structures of these two new clusters were determined. Additionally, the optical physical properties of the luminescent Ag11-xCux were investigated, showing red phosphorescence emission in both solid-state and solution phases. The solid-state phosphorescence quantum yield (QY) is 8%, with a lifetime of 7.2 μs. These findings suggest that phenylacetylene auxiliary ligands can effectively stabilize CuI ions and guide the assembly of silver-copper bimetallic thiolate motifs into new compounds under ambient conditions.
Collapse
Affiliation(s)
- Jun-Ling Jin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Sheng-Fa Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Jun-Jie Fang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yang-Lin Shen
- School of Materials and Chemical Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China
| | - Yun-Peng Xie
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xing Lu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Chen Y, Zhou X, Liu X, Tang Z, Wang L, Tang Q. Understanding the Role of Potential and Cation Effect on Electrocatalytic CO 2 Reduction in All-Alkynyl-Protected Ag 15 Nanoclusters. J Am Chem Soc 2025. [PMID: 39772524 DOI: 10.1021/jacs.4c15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Atomically precise metal nanoclusters (NCs) have emerged as an intriguing class of model catalysts for electrochemical CO2 reduction reactions (CO2RR). However, the interplay between the interface environment (e.g., potential, cation concentration) and electron-proton transfer (ET/PT) kinetics─particularly in alkynyl-protected metal NCs─remains poorly understood. Here, we combined first-principles simulations and electrochemical experiments to investigate the role of potential and cation effect on CO2RR performance in a prototype all-alkynyl-protected Ag15(C≡C-CH3)+ cluster. Our simulations revealed that the applied reduction potential triggers the elimination of the alkynyl ligand via sequentially breaking two π-type Ag-C bonds and one σ-type Ag-C bond to expose the catalytically active Ag sites, and the barrier of the Ag-C breakage monotonically decreases with the lowering in potential. Furthermore, we show that introducing the inner-sphere Na+ ions greatly enhances *CO2 activation and promotes proton transfer to generate *COOH and *CO by forming the Na+-CO2(*COOH) complexes, while the competitive hydrogen evolution reaction (HER) from water dissociation is greatly suppressed, thus dramatically improving the selectivity of CO2 electroreduction. The electrochemical measurements further validated our predictions, where the CO Faradaic efficiency (FECO) and current density (jCO) show a pronounced dependence on the Na+ concentration. At an optimal concentration of 0.1 M NaCl, FECO can reach up to ∼96%, demonstrating the crucial role of cations in promoting the CO2RR. Our findings provide vital insights into the atomic-level reaction mechanism of the CO2RR on alkynyl-protected Ag15 NCs and highlight the important role of potential and electrolyte cation in governing the electron/proton transfer kinetics.
Collapse
Affiliation(s)
- Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Xia Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xunying Liu
- New Energy Research Institute, School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| |
Collapse
|
3
|
Zhang LP, Fang JJ, Liu Z, Xie YP, Lu X. Recent Progress in Atomically Precise Cu-M Alloy Nanoclusters. Chemistry 2024:e202404281. [PMID: 39727333 DOI: 10.1002/chem.202404281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 12/28/2024]
Abstract
Metal nanoclusters (NCs) with dimensions of approximately 3 nm serve as a crucial link between metal-organic complexes and metal nanoparticles, garnering significant interest due to their distinctive molecule-like characteristics. These include well-defined molecular structures, clear HOMO-LUMO transitions, quantized charge, and robust luminescence emission. Atomically precise alloy NCs, in contrast to homometallic NCs, exhibit a wealth of structures and intriguing properties, with their novel attributes often intricately tied to the positions of alloyed elements within the structure, facilitating the exploration of structure-property relationships. A notable subgroup within this category comprises Cu-M (where M represents metals such as Au, Ag, Rh, Ir, Pd, Pt, Zn, Al etc.) alloy NCs. In this review, we initially outline recent advancements in the development of efficient synthetic techniques for Cu-M alloy NCs, emphasizing the underlying physical and chemical properties that enable precise control over their sizes and surface characteristics. Subsequently, we delve into recent progress in structural elucidation techniques for Cu-M alloy NCs. This structural insight is instrumental in comprehensively understanding the structure-property correlations at the molecular level. Finally, we showcase various examples of Cu-M alloy NCs to illustrate their photoluminescent and catalytic properties, shedding light on their diverse functionalities and potential applications.
Collapse
Affiliation(s)
- Lai-Ping Zhang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, 453000, China
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department College of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
4
|
Deng G, Yun H, Chen Y, Yoo S, Lee K, Jang J, Liu X, Lee CW, Tang Q, Bootharaju MS, Hwang YJ, Hyeon T. Ferrocene-Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO 2 Electroreduction. Angew Chem Int Ed Engl 2024:e202418264. [PMID: 39628114 DOI: 10.1002/anie.202418264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/14/2024]
Abstract
The integration of organometallic compounds with metal nanoparticles can, in principle, generate hybrid nanocatalysts endowed with augmented functionality, presenting substantial promise for catalytic applications. Herein, we synthesize an atomically precise metal cluster (Ag9Cu6) catalyst integrated with alkynylferrocene molecules (Ag9Cu6-Fc). This hybrid catalyst design facilitates a continuous electron transfer channel via an ethynyl bridge and establishes a distinctive local chemical environment, resulting in remarkably enhanced catalytic activity in CO2 electroreduction. The Ag9Cu6-Fc catalyst achieves a record-high product selectivity of CO Faradaic efficiency of 100 % and an industrial-level CO partial current density of -680 mA/cm2, surpassing the performance of the Ag9Cu6 cluster (62 % and -230 mA/cm2, respectively) without ferrocene functionalization in a membrane electrode assembly cell. Operando experimental and computational findings offer valuable insights into the role of ferrocene functionalization in synergistically improving the catalytic performance of metal clusters, propelling the advancement of metallic-organometallic hybrid nanoparticles for energy conversion technologies.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Li JK, Dong JP, Liu SS, Hua Y, Zhao XL, Li Z, Zhao SN, Zang SQ, Wang R. Promoting CO 2 Electroreduction to Hydrocarbon Products via Sulfur-Enhanced Proton Feeding in Atomically Precise Thiolate-Protected Cu Clusters. Angew Chem Int Ed Engl 2024; 63:e202412144. [PMID: 39169221 DOI: 10.1002/anie.202412144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Thiolate-protected Cu clusters with well-defined structures and stable low-coordinated Cu+ species exhibit remarkable potential for the CO2RR and are ideal model catalysts for establishing structure-electrocatalytic property relationships at the atomic level. However, extant Cu clusters employed in the CO2RR predominantly yield 2e- products. Herein, two model Cu4(MMI)4 and Cu8(MMI)4(tBuS)4 clusters (MMI=2-mercapto-1-methylimidazole) are prepared to investigate the synergistic effect of Cu+ and adjacent S sites on the CO2RR. Cu4(MMI)4 can reduce CO2 to deep-reduced products with a 91.0 % Faradaic efficiency (including 53.7 % for CH4) while maintaining remarkable stability. Conversely, Cu8(MMI)4(tBuS)4 shows a remarkable preference for C2+ products, achieving a maximum FE of 58.5 % with a C2+ current density of 152.1 mA⋅cm-2. In situ XAS and ex situ XPS spectra reveal the preservation of Cu+ species in Cu clusters during CO2RR, extensively enhancing the adsorption capacity of *CO intermediate. Moreover, kinetic analysis and theoretical calculations confirm that S sites facilitate H2O dissociation into *H species, which directly participate in the protonation process on adjacent Cu sites for the protonation of *CO to *CHO. This study highlights the important role of Cu-S dual sites in Cu clusters and provides mechanistic insights into the CO2RR pathway at the atomic level.
Collapse
Affiliation(s)
- Jun-Kang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian-Peng Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Shuang Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Li Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhongjun Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Du Y, Wang P, Fang Y, Zhu M. Asymmetric Charge Distribution in Atomically Precise Metal Nanoclusters for Boosted CO 2 Reduction Catalysis. CHEMSUSCHEM 2024:e202402085. [PMID: 39472281 DOI: 10.1002/cssc.202402085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Recently, atomically precise metal nanoclusters (NCs) have been widely applied in CO2 reduction reaction (CO2RR), achieving exciting activity and selectivity and revealing structure-performance correlation. However, at present, the efficiency of CO2RR is still unsatisfactory and cannot meet the requirements of practical applications. One of the main reasons is the difficulty in CO2 activation due to the chemical inertness of CO2. Constructing symmetry-breaking active sites is regarded as an effective strategy to promote CO2 activation by modulating electronic and geometric structure of CO2 molecule. In addition, in the subsequent CO2RR process, asymmetric charge distributed sites can break the charge balance in adjacent adsorbed C1 intermediates and suppress electrostatic repulsion between dipoles, benefiting for C-C coupling to generate C2+ products. Although compared to single atoms, metal nanoparticles, and inorganic materials the research on the construction of asymmetric catalytic sites in metal NCs is in a newly-developing stage, the precision, adjustability and diversity of metal NCs structure provide many possibilities to build asymmetric sites. This review summarizes several strategies of construction asymmetric charge distribution in metal NCs for boosting CO2RR, concludes the mechanism investigation paradigm of NCs-based catalysts, and proposes the challenges and opportunities of NCs catalysis.
Collapse
Affiliation(s)
- Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Pei Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yi Fang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
7
|
Zhou HN, Liu QY, Chen XY, Xu JG, Li LY, Liu KY, Yan J, Liu C. In Situ Oxidative Ring-Opening of Calix[8]arene to Construct Stable Bismuth-Oxo Clusters with Exposed Catalytic Sites for Specific Electroreduction of CO 2 to HCOOH. Inorg Chem 2024; 63:20501-20509. [PMID: 39403728 DOI: 10.1021/acs.inorgchem.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Nanocluster catalysts typically face challenges in balancing stability with catalytic efficiency. This study introduces a unique bismuth-oxo cluster, solely protected by two ring-opened calixarenes, which demonstrates not only enhanced structural stability but also superior catalytic performance in the sustained conversion of CO2 to HCOOH via electrocatalysis. For the first time, we reveal that under specific solvothermal conditions, tert-butylcalix[8]arene (TBC[8]) can undergo in situ oxidative cleavage of its C-C bond, leading to ring-opened polyphenolic molecules. These molecules serve as protective ligands for the bismuth-oxo cluster, bestowing exceptional structural stability and offering a more flexible and diverse configuration compared to intact TBC[8]. This adaptability promotes the exposure of active bismuth sites on the cluster surface, enhancing catalytic efficiency. Notably, the Bi10 cluster, featuring a monobismuth active site, achieves an exceptional formate production efficiency of 98.79% at -1.25 V vs RHE while maintaining superb durability over 8 h. The stability and catalytic processes of Bi10 surpass those of the Bi13 cluster, which is structurally reinforced by two intact TBC[8] molecules and stabilized by four benzoic ligands. Through in situ infrared spectroscopy and density functional theory calculations, we demonstrate that the monobismuth active site in Bi10 more effectively stabilizes the *OCHO intermediate, thereby promoting the electrocatalytic reduction of CO2 to HCOOH compared to Bi13. This comparative performance underscores the potential of ring-opened calixarene ligands in enhancing the functionality of nanocluster catalysts.
Collapse
Affiliation(s)
- Hao-Nan Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Qing-Yi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xin-Yu Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ji-Guang Xu
- Wuhan Xiansi Technology Co., Ltd., Wuhan 430000, P. R. China
| | - Lan-Yan Li
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, Hunan 410205, P. R. China
| | - Kai-Yu Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
8
|
Mu WL, Li L, Cong XZ, Chen X, Xia P, Liu Q, Wang L, Yan J, Liu C. Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO 2 Electroreduction Catalyst toward Hydrocarbons. J Am Chem Soc 2024. [PMID: 39365080 DOI: 10.1021/jacs.4c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pursuit of precision in the engineering of metal nanoparticle assemblies has long fascinated scientists, but achieving atomic-level accuracy continues to pose a significant challenge. This research sheds light on the hierarchical assembly processes of two high-nuclearity Cu(I) nanoclusters (NCs). By employing a multiligand cooperative stabilization strategy, we have isolated a series of thiacalix[4]arene (TC4A)/alkynyl coprotected Cu(I) NCs (Cux, where x = 9, 13, 17, 22). These NCs are intricately coassembled from the fundamental building units of {Cu4(TC4A)} and alkynyl-stabilized Cu5L6 in various ratios. By capturing active anion templates such as O2-, Cl-, or C22- that are generated in situ, we have further explored the secondary structural self-assembly of these clusters. Cu13 serves as a secondary assembly module for constructing Cu38 and Cu43, which exhibit the highest nuclearity reported to date among Cu(I) NCs encased in macrocyclic ligands. Notably, Cu38 demonstrates an impressive Faradaic efficiency of 62.01% for hydrocarbons at -1.57 V vs RHE during CO2 electroreduction, with 34.03% for C2H4 and 27.98% for CH4. This performance establishes it as an exceptionally rare, large, atomically precise metal NC (nuclearity >30) capable of catalyzing the formation of highly electro-reduced hydrocarbon products. Our research has introduced a new approach for constructing high-nuclearity Cu(I) NCs through a hierarchical assembly method and investigating their potential in the electrocatalytic transformation of CO2 into hydrocarbons.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lanyan Li
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, Hunan 410205, PR China
| | - Xu-Zi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Pengkun Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qingyi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
9
|
Deng G, Malola S, Ki T, Liu X, Yoo S, Lee K, Bootharaju MS, Häkkinen H, Hyeon T. Structural Isomerism in Bimetallic Ag 20Cu 12 Nanoclusters. J Am Chem Soc 2024; 146:26751-26758. [PMID: 39292876 DOI: 10.1021/jacs.4c06832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Structural isomers of atomically precise metal nanoclusters are highly sought after for investigating structure-property relationships in nanostructured materials. However, they are extremely rare, particularly those of alloys, primarily due to the challenges in their synthesis and structural characterization. Herein, for the first time, a pair of bimetallic isomeric AgCu nanoclusters has been controllably synthesized and structurally characterized. These two isomers share an identical molecular formula, Ag20Cu12(C≡CR)24 (denoted as Ag20Cu12-1 and Ag20Cu12-2; HC≡CR is 3,5-bis(trifluoromethyl)phenylacetylene). Single-crystal X-ray diffraction data analysis revealed that Ag20Cu12-1 possesses an Ag17Cu4 core composed of two interpenetrating hollow Ag11Cu2 structures. This core is stabilized by four different types of surface motifs: eight -C≡CR, one Cu(C≡CR)2, one Ag3Cu3(C≡CR)6, and two Cu2(C≡CR)4 units. Ag20Cu12-2 features a bitetrahedron Ag14 core, which is stabilized by three Ag2Cu4(C≡CR)8 units. Interestingly, Ag20Cu12-2 undergoes spontaneous transformation to Ag20Cu12-1 in the solution-state. Density functional theory calculations explain the electronic and optical properties and confirm the higher relative stability of Ag20Cu12-1 compared to Ag20Cu12-2. The controlled synthesis and structural isomerism of alloy nanoclusters presented in this work will stimulate and broaden research on nanoscale isomerism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Zhu X, Zhu P, Cong X, Ma G, Tang Q, Wang L, Tang Z. Atomically precise alkynyl-protected Ag 19Cu 2 nanoclusters: synthesis, structure analysis, and electrocatalytic CO 2 reduction application. NANOSCALE 2024; 16:16952-16957. [PMID: 39207260 DOI: 10.1039/d4nr02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report the synthesis, structure analysis, and electrocatalytic CO2 reduction application of Ag19Cu2(CCArF)12(PPh3)6Cl6 (abbreviated as Ag19Cu2, CCArF: 3,5-bis(trifluoromethyl)phenylacetylene) nanoclusters. Ag19Cu2 has characteristic absorbance features and is a superatomic cluster with 2 free valence electrons. Single-crystal X-ray diffraction (SC-XRD) revealed that the metal core of Ag19Cu2 is composed of an Ag11Cu2 icosahedron connected by two Ag4 tetrahedra at the two terminals of the Cu-Ag-Cu axis. Notably, Ag19Cu2 exhibited excellent catalytic performance in the electrochemical CO2 reduction reaction (eCO2RR), manifested by a high CO faradaic efficiency of 95.26% and a large CO current density of 257.2 mA cm-2 at -1.3 V. In addition. Ag19Cu2 showed robust long-term stability, with no significant drop in current density and FECO after 14 h of continuous operation. Density functional theory (DFT) calculations disclosed that the high selectivity of Ag19Cu2 for CO in the eCO2RR process is due to the shedding of the -CCArF ligand from the Ag atom at the very center of the Ag4 unit, exposing the active site. This study enriches the potpourri of alkynyl-protected bimetallic nanoclusters and also highlights the great advantages of using atomically precise metal nanoclusters to probe the atomic-level structure-performance relationship in the catalytic field.
Collapse
Affiliation(s)
- Xin Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Pan Zhu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Guanyu Ma
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Qing Tang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150001, China
| |
Collapse
|
11
|
Curet L, Foix D, Palomares E, Billon L, Viterisi A. Porphyrin-silver acetylide cluster catalysts with dual active sites for the electrochemical reduction of CO 2. Chem Commun (Camb) 2024; 60:10168-10171. [PMID: 39190321 DOI: 10.1039/d4cc03836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A one-step synthesis of porphyrin-silver acetylide clusters from tetra alkyne-substituted porphyrin is described. The solid-state properties of three 2D-like compounds were fully characterised using XPS and XRD while their catalytic properties under CO2 electroreduction reaction conditions were assessed and their faradaic efficiency quantified.
Collapse
Affiliation(s)
- Leonard Curet
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| | - Dominique Foix
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| | - Emilio Palomares
- Institute of chemical research of Catalonia (ICIQ) Avda, Països Catalans, 16 43007 Tarragona, Spain
- ICREA. Passeig Lluís Companys, 28, E-08010 Barcelona, Spain
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| | - Aurelien Viterisi
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254 Technopole Hélioparc 2 avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France.
| |
Collapse
|
12
|
Yao Y, Hao W, Tang J, Kirschbaum K, Gianopoulos CG, Ren A, Ma L, Zheng L, Li H, Li Q. Anomalous Structural Transformation of Cu(I) Clusters into Multifunctional CuAg Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202407214. [PMID: 38777942 DOI: 10.1002/anie.202407214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an anomalous structural transformation of a Cu(I) cluster into two different types of copper-silver (CuAg) alloy nanoclusters. Different from previous reports, we demonstrate that under specifically designed reaction conditions, the Ag-doping could induce a substantial growth of the starting Cu15 and a Ag13Cu20 nanocluster was obtained via the unexpected insertion of an Ag13 kernel inside the Cu(I)-S shell. Ag13Cu20 demonstrates high activity to initiate the photopolymerization of previously hard-to-print inorganic polymers in 3D laser microprinting. Interestingly, a slight modification of the reaction condition leads to the formation of another Ag18-xCuxS (8≤x) nanocluster templated by a central S2- anion, which possesses a unique electronic structure compared to conventional template-free CuAg nanoclusters. Overall, this work unveils the intriguing doping chemistry of Cu clusters, as well as their capability to create different types of alloy nanoclusters with previously unobtainable structures and multifunctionality.
Collapse
Affiliation(s)
- Yuqing Yao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kristin Kirschbaum
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, 43606, United States
| | | | - An Ren
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liang Ma
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Letian Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hanying Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Zhu C, Chen ZL, Li H, Lu L, Kang X, Xuan J, Zhu M. Rational Design of Highly Phosphorescent Nanoclusters for Efficient Photocatalytic Oxidation. J Am Chem Soc 2024; 146:23212-23220. [PMID: 39084600 DOI: 10.1021/jacs.4c05530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Analyzing the molecular structure-photophysical property correlations of metal nanoclusters to accomplish function-oriented photocatalysis could be challenging. Here, the selective heteroatom alloying has been exploited to a Au15 nanocluster, making up a structure-correlated nanocluster series, including homogold Au15, bimetallic AgxAu15-x and CuxAu15-x, trimetallic AgxCuyAu15-x-y, and tetrametallic Pt1AgxCuyAu15-x-y. Their structure-dependent photophysical properties were investigated due to the atomically precise structures of these nanoclusters. Cu-alloyed CuxAu15-x showed intense phosphorescence and the highest singlet oxygen production efficiency. Moreover, the generation of 1O2 species from excited nanoclusters enabled CuxAu15-x as a suitable catalyst for efficient photocatalytic oxidation of silyl enol ethers to produce α,β-unsaturated carbonyl compounds. The generality and applicability of the CuxAu15-x catalysts toward different photocatalytic oxidations were assessed. Overall, this study presents an intriguing Au15-based cluster series enabling an atomic-level understanding of structure-photophysical property correlations, which hopefully provides guidance for the fabrication of cluster-based catalysts with customized photocatalytic performance.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ze-Le Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Luyao Lu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Su S, Zhou Y, Xiong L, Jin S, Du Y, Zhu M. Structure-Activity Relationships of the Structural Analogs Au 8Cu 1 and Au 8Ag 1 in the Electrocatalytic CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202404629. [PMID: 38845560 DOI: 10.1002/anie.202404629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.
Collapse
Affiliation(s)
- Shangyu Su
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yanting Zhou
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, PR China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yuanxin Du
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Anhui Tongyuan Environment Energy Saving Co., Ltd., Hefei, 230041, China
| |
Collapse
|
15
|
Liu X, Ki T, Deng G, Yoo S, Lee K, Lee BH, Hyeon T, Bootharaju MS. Recent advances in synthesis and properties of silver nanoclusters. NANOSCALE 2024; 16:12329-12344. [PMID: 38860477 DOI: 10.1039/d4nr01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.
Collapse
Affiliation(s)
- Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Deng G, Ki T, Yoo S, Liu X, Lee K, Bootharaju MS, Hyeon T. [Au 9Ag 6(CCR) 10(DPPM) 2Cl 2](PPh 4): a four-electron cluster with a bi-decahedral twisted metal core. NANOSCALE 2024; 16:11090-11095. [PMID: 38766759 DOI: 10.1039/d4nr01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The assembly of cluster units in a distinct manner can give rise to nanoclusters exhibiting unique geometrical structures and properties. Herein, we present a one-pot synthesis and structural characterization of a AuAg alloy cluster, [Au9Ag6(CCR)10(DPPM)2Cl2](PPh4), denoted as Au9Ag6 (where HCCR is 3,5-bis(trifluoromethyl)phenylacetylene, and DPPM is bis(diphenylphosphino)methane). Single-crystal X-ray diffraction data analysis reveals that Au9Ag6 features a distinctive Au7Ag6 bi-decahedral core, formed by a twisted assembly of two Au4Ag3 decahedra sharing one vertex. The Au4Ag3 building blocks are bridged by two gold atoms on opposite sides of the bi-decahedral core. The Au9Ag6 cluster is monoanionic and it is stabilized by two chloride, two DPPM and ten alkynyl ligands. This cluster represents the first instance of a cluster of clusters built upon decahedral units.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
18
|
Li LJ, Mu WL, Tian YQ, Yu WD, Li LY, Yan J, Liu C. Ag 1+ incorporation via a Zr 4+-anchored metalloligand: fine-tuning catalytic Ag sites in Zr/Ag bimetallic clusters for enhanced eCO 2RR-to-CO activity. Chem Sci 2024; 15:7643-7650. [PMID: 38784741 PMCID: PMC11110141 DOI: 10.1039/d3sc07005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/24/2024] [Indexed: 05/25/2024] Open
Abstract
Attaining meticulous dominion over the binding milieu of catalytic metal sites remains an indispensable pursuit to tailor product selectivity and elevate catalytic activity. By harnessing the distinctive attributes of a Zr4+-anchored thiacalix[4]arene (TC4A) metalloligand, we have pioneered a methodology for incorporating catalytic Ag1+ sites, resulting in the first Zr-Ag bimetallic cluster, Zr2Ag7, which unveils a dualistic configuration embodying twin {ZrAg3(TC4A)2} substructures linked by an {AgSal} moiety. This cluster unveils a trinity of discrete Ag sites: a pair ensconced within {ZrAg3(TC4A)2} subunits and one located between two units. Expanding the purview, we have also crafted ZrAg3 and Zr2Ag2 clusters, meticulously mimicking the two Ag site environment inherent in the {ZrAg3(TC4A)2} monomer. The distinct structural profiles of Zr2Ag7, ZrAg3, and Zr2Ag provide an exquisite foundation for a precise comparative appraisal of catalytic prowess across three Ag sites intrinsic to Zr2Ag7. Remarkably, Zr2Ag7 eclipses its counterparts in the electroreduction of CO2, culminating in a CO faradaic efficiency (FECO) of 90.23% at -0.9 V. This achievement markedly surpasses the performance metrics of ZrAg3 (FECO: 55.45% at -1.0 V) and Zr2Ag2 (FECO: 13.09% at -1.0 V). Utilizing in situ ATR-FTIR, we can observe reaction intermediates on the Ag sites. To unveil underlying mechanisms, we employ density functional theory (DFT) calculations to determine changes in free energy accompanying each elementary step throughout the conversion of CO2 to CO. Our findings reveal the exceptional proficiency of the bridged-Ag site that interconnects paired {ZrAg3(TC4A)2} units, skillfully stabilizing *COOH intermediates, surpassing the stabilization efficacy of the other Ag sites located elsewhere. The invaluable insights gleaned from this pioneering endeavor lay a novel course for the design of exceptionally efficient catalysts tailored for CO2 reduction reactions, emphatically underscoring novel vistas this research unshrouds.
Collapse
Affiliation(s)
- Liang-Jun Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Lan-Yan Li
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
19
|
Mu WL, Luo YT, Xia PK, Jia YL, Wang P, Pei Y, Liu C. Atomically Precise Mo 2Cu 17 Bimetallic Nanocluster: Synergistic Mo 2O 4-Coupled Copper Alkynyl Cluster for the Improved Hydrogen Evolution Reaction Performance. Inorg Chem 2024; 63:6767-6775. [PMID: 38569160 DOI: 10.1021/acs.inorgchem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Electrolytic hydrogen production via water splitting holds significant promise for the future of the energy revolution. The design of efficient and abundant catalysts, coupled with a comprehensive understanding of the hydrogen evolution reaction (HER) mechanism, is of paramount importance. In this study, we propose a strategy to craft an atomically precise cluster catalyst with superior HER performance by cocoupling a Mo2O4 structural unit and a Cu(I) alkynyl cluster into a structured framework. The resulting bimetallic cluster, Mo2Cu17, encapsulates a distinctive structure [Mo2O4Cu17(TC4A)4(PhC≡C)6], comprising a binuclear Mo2O4 subunit and a {Cu17(TC4A)2(PhC≡C)6} cluster, both shielded by thiacalix[4]arene (TC4A) and phenylacetylene (PhC≡CH). Expanding our exploration, we synthesized two homoleptic CuI alkynyl clusters coprotected by the TC4A and PhC≡C- ligands: Cu13 and Cu22. Remarkably, Mo2Cu17 demonstrates superior HER efficiency compared to its counterparts, achieving a current density of 10 mA cm-2 in alkaline solution with an overpotential as low as 120 mV, significantly outperforming Cu13 (178 mV) and Cu22 (214 mV) nanoclusters. DFT calculations illuminate the catalytic mechanism and indicate that the intrinsically higher activity of Mo2Cu17 may be attributed to the synergistic Mo2O4-Cu(I) coupling.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-Ting Luo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Peng-Kun Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Lei Jia
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
20
|
Ma A, Ren Y, Zuo Y, Wang J, Huang S, Ma X, Wang S. Ligand-controlled exposure of active sites on the Pd 1Ag 14 nanocluster surface to boost electrocatalytic CO 2 reduction. Chem Commun (Camb) 2024; 60:3162-3165. [PMID: 38407303 DOI: 10.1039/d4cc00152d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd1Ag14 nanoclusters: Pd1Ag14(PPh3)8(SPh(CF3)2)6 and Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, each with well-defined structures. Notably, in Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, the detachment of a phosphine ligand from the top silver atom facilitates the exposure of singular active sites. This exposure significantly enhances its selectivity for the electrocatalytic reduction of CO2 to CO, achieving a Faraday efficiency of 83.3% at -1.3 V, markedly surpassing the 28.1% performance at -1.2 V of Pd1Ag14(PPh3)8(SPh(CF3)2)6. This work underscores the impact of atomic-level structural manipulation on enhancing nanocatalyst performance.
Collapse
Affiliation(s)
- Along Ma
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yonggang Ren
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yang Zuo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shutong Huang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaoshuang Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuxin Wang
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
21
|
Wang YM, Yan FQ, Wang QY, Du CX, Wang LY, Li B, Wang S, Zang SQ. Single-atom tailored atomically-precise nanoclusters for enhanced electrochemical reduction of CO 2-to-CO activity. Nat Commun 2024; 15:1843. [PMID: 38418496 PMCID: PMC10901820 DOI: 10.1038/s41467-024-46098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
The development of facile tailoring approach to adjust the intrinsic activity and stability of atomically-precise metal nanoclusters catalysts is of great interest but remians challenging. Herein, the well-defined Au8 nanoclusters modified by single-atom sites are rationally synthesized via a co-eletropolymerization strategy, in which uniformly dispersed metal nanocluster and single-atom co-entrenched on the poly-carbazole matrix. Systematic characterization and theoretical modeling reveal that functionalizing single-atoms enable altering the electronic structures of Au8 clusters, which amplifies their electrocatalytic reduction of CO2 to CO activity by ~18.07 fold compared to isolated Au8 metal clusters. The rearrangements of the electronic structure not only strengthen the adsorption of the key intermediates *COOH, but also establish a favorable reaction pathway for the CO2 reduction reaction. Moreover, this strategy fixing nanoclusters and single-atoms on cross-linked polymer networks efficiently deduce the performance deactivation caused by agglomeration during the catalytic process. This work contribute to explore the intrinsic activity and stability improvement of metal clusters.
Collapse
Affiliation(s)
- Yi-Man Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fang-Qin Yan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Xia Du
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Ya Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Feng Y, Fu F, Zeng L, Zhao M, Xin X, Liang J, Zhou M, Fang X, Lv H, Yang GY. Atomically Precise Silver Clusters Stabilized by Lacunary Polyoxometalates with Photocatalytic CO 2 Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202317341. [PMID: 38153620 DOI: 10.1002/anie.202317341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
The syntheses of atomically precise silver (Ag) clusters stabilized by multidentate lacunary polyoxometalate (POM) ligands have been emerging as a promising but challenging research direction, the combination of redox-active POM ligands and silver clusters will render them unexpected geometric structures and catalytic properties. Herein, we report the successful construction of two structurally-new lacunary POM-stabilized Ag clusters, TBA6 H14 Ag14 (DPPB)4 (CH3 CN)9 [Ag24 (Si2 W18 O66 )3 ] ⋅ 10CH3 CN ⋅ 9H2 O ({Ag24 (Si2 W18 O66 )3 }, TBA=tetra-n-butylammonium, DPPB=1,4-Bis(diphenylphosphino)butane) and TBA14 H6 Ag9 Na2 (H2 O)9 [Ag27 (Si2 W18 O66 )3 ] ⋅ 8CH3 CN ⋅ 10H2 O ({Ag27 (Si2 W18 O66 )3 }), using a facile one-pot solvothermal approach. Under otherwise identical synthetic conditions, the molecular structures of two POM-stabilized Ag clusters could be readily tuned by the addition of different organic ligands. In both compounds, the central trefoil-propeller-shaped {Ag24 }14+ and {Ag27 }17+ clusters bearing 10 delocalized valence electrons are stabilized by three C-shaped {Si2 W18 O66 } units. The femtosecond/nanosecond transient absorption spectroscopy revealed the rapid charge transfer between {Ag24 }14+ core and {Si2 W18 O66 } ligands. Both compounds have been pioneeringly investigated as catalysts for photocatalytic CO2 reduction to HCOOH with a high selectivity.
Collapse
Affiliation(s)
- Yeqin Feng
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Fangyu Fu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Linlin Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengyun Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xing Xin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiakai Liang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
23
|
Deng G, Yun H, Bootharaju MS, Sun F, Lee K, Liu X, Yoo S, Tang Q, Hwang YJ, Hyeon T. Copper Doping Boosts Electrocatalytic CO 2 Reduction of Atomically Precise Gold Nanoclusters. J Am Chem Soc 2023; 145:27407-27414. [PMID: 38055351 DOI: 10.1021/jacs.3c08438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Unraveling the atomistic synergistic effects of nanoalloys on the electrocatalytic CO2 reduction reaction (eCO2RR), especially in the presence of copper, is of paramount importance. However, this endeavor encounters significant challenges due to the lack of the crystallographically determined atomic-level structure of appropriate monometallic and bimetallic analogues. Herein, we report a one-pot synthesis and structure characterization of a AuCu nanoalloy cluster catalyst, [Au15Cu4(DPPM)6Cl4(C≡CR)1]2+ (denoted as Au15Cu4). Single-crystal X-ray diffraction analysis reveals that Au15Cu4 comprises two interpenetrating incomplete, centered icosahedra (Au9Cu2 and Au8Cu3) and is protected by six DPPM, four halide, and one alkynyl ligand. The Au15Cu4 cluster and its closest monometal structural analogue, [Au18(DPPM)6Br4]2+ (denoted as Au18), as model systems, enable the elucidation of the atomistic synergistic effects of Au and Cu on eCO2RR. The results reveal that Au15Cu4 is an excellent eCO2RR catalyst in a gas diffusion electrode-based membrane electrode assembly (MEA) cell, exhibiting a high CO Faradaic efficiency (FECO) of >90%, and this efficiency is substantially higher than that of the undoped Au18 (FECO: 60% at -3.75 V). Au15Cu4 exhibits an industrial-level CO partial current density of up to -413 mA/cm2 at -3.75 V with the gas CO2-fed MEA, which is 2-fold higher than that of Au18. The density functional theory (DFT) calculations demonstrate that the synergistic effects are induced by Cu doping, where the exposed pair of AuCu dual sites was suggested for launching the eCO2RR process. Besides, DFT simulations reveal that these special dual sites synergistically coordinate a moderate shift in the d-state, thus enhancing its overall catalytic performance.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Yoo S, Yoo S, Deng G, Sun F, Lee K, Jang H, Lee CW, Liu X, Jang J, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Nanocluster Surface Microenvironment Modulates Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2313032. [PMID: 38113897 DOI: 10.1002/adma.202313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/21/2023]
Abstract
The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2 RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2 RR activity (CO Faradaic efficiency, FECO : 90.3%) with higher CO partial current density (jCO ) in an H-cell compared to Ag25 cluster (FECO : 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2 . Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2 RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2 RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsung Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Megalamane Siddaramappa Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
25
|
Liu XH, He Y, Li Z, Cheng AH, Song Z, Yu ZX, Chai S, Cheng C, He C. Size transformation of Au nanoclusters for enhanced photocatalytic hydrogen generation: Interaction behavior at nanocluster/semiconductor interface. J Colloid Interface Sci 2023; 651:368-375. [PMID: 37544225 DOI: 10.1016/j.jcis.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Recently, atomically precise metal nanoclusters (NCs) become a new class of photosensitizer for light energy conversion in metal-cluster-sensitized semiconductor (MCSS) system. However, fundamental understanding for the suitable combination of NCs and semiconductor is still unclear. Aside from aspects of light harvesting, energy level alignment and catalytic activity, interfacial interaction behavior at NCs/semiconductor interface is also crucial due to its important influence in charge transportation. In this work, the interface interaction between Au NCs and TiO2 is examined by precise transformation of Au NCs from Au22(SG)18 to Au18(SG)14, as well as its effect on photocatalytic hydrogen production activity. From the optical, charge transport and solid-states spectroscopy analyses, it is able to display that precisely tuning the number of core atoms from Au22(SG)18 to Au18(SG)14 results in the strong interface interaction between Au NCs and TiO2, reflecting in high difference of work function and modified surface band bending of TiO2, therefore promoting the injection of electrons from NCs to TiO2 and reducing interfacial charges recombination. As a result, Au18(SG)14/TiO2 shows higher hydrogen generation rate than Au22(SG)18/TiO2 under light irradiation. This work would provide new insights into rational combination of metal NCs with semiconductor and highlights the overlooked effect of interfacial interaction behavior on light energy conversion.
Collapse
Affiliation(s)
- Xiao-He Liu
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yi He
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhi Li
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Ai-Hua Cheng
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhiqi Song
- Department of Environmental Engineering, College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhi-Xuan Yu
- Department of Electrical Engineering, Columbia University, NY 10025, USA
| | - Shouning Chai
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Cheng Cheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chi He
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
26
|
Chen Z, Sun F, Tang Q. Thermal Stability and Electronic Properties of N-Heterocyclic Carbene-Protected Au 13 Nanocluster and Phosphine-Protected Analogues. J Phys Chem Lett 2023; 14:10648-10656. [PMID: 38031664 DOI: 10.1021/acs.jpclett.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Despite significant advances in manufacturing atomically precise gold nanoclusters protected by various ligands, there is a limited understanding of the thermal stability dynamics and electronic properties of ligand effects. We conducted ab initio molecular dynamics (AIMD) simulations on the well-characterized [Au13(NHCMe)9Cl3]2+ nanocluster and its counterpart [Au13(PMe3)9Cl3]2+ cluster to evaluate the thermal stability induced by N-heterocyclic carbene (NHC) and phosphine ligands. The result shows that under vacuum conditions, [Au13(PMe3)9Cl3]2+ is more stable than [Au13(NHCMe)9Cl3]2+, and both lead to metal nucleation decomposition, breaking into the Au12 fragment and L-Au-Cl (L = NHCMe or PMe3) complexes eventually. The optical and electronic properties of these two clusters change significantly due to ligand alteration. Furthermore, we have designed a novel [Au13(NHCMe)(PMe3)8Cl3]2+ cluster coprotected by NHC and phosphine ligands, displaying higher thermal stability than the homoligand protected [Au13(NHCMe)9Cl3]2+ and [Au13(PMe3)9Cl3]2+. Our hypothetical species are an interesting model for nanostructured materials, facilitating the experimental exploration of cluster synthesis and catalytic applications.
Collapse
Affiliation(s)
- Zhimin Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
27
|
Shen Q, Cong X, Chen L, Wang L, Liu Y, Wang L, Tang Z. Synthesis, structure anatomy, and catalytic properties of Ag 14Cu 2 nanoclusters co-protected by alkynyl and phosphine ligands. Dalton Trans 2023; 52:16812-16818. [PMID: 37905669 DOI: 10.1039/d3dt02838k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report the synthesis, structure anatomy, and catalytic properties of Ag14Cu2(CCArF)14(PPh3)4 (CCArF: 3,5-bis(trifluoromethyl)phenylacetylene) nanoclusters, denoted as Ag14Cu2. Ag14Cu2 has a robust electronic structure with two free valence electrons, and it has a distinctive absorbance feature. Single-crystal X-ray diffraction (SC-XRD) disclosed that Ag14Cu2 possesses an octahedral Ag6 metal kernel capped by two Ag4Cu1(CCArF)7(PPh3)2 metal-ligand units. Remarkably, it exhibits excellent bifunctional catalytic performance for 4-nitrophenol reduction and the electrochemical CO2 reduction reaction (eCO2RR). In 4-nitrophenol reduction, it adopts first-order reaction kinetics with a rate constant of 0.137 min-1, while in the eCO2RR, it shows a CO faradaic efficiency (FECO) of 83.71% and a high current density of 92.65 mA cm-2 at -1.6 V vs. RHE. Moreover, Ag14Cu2 showed robust long-term stability with no significant decay in current density and FECO over 10 h of continuous operation in the eCO2RR. This study not only enriches the potpourri of alkynyl-protected bimetallic AgCu nanoclusters, but also demonstrates the great potential of employing metal nanoclusters for bifunctional catalytic applications.
Collapse
Affiliation(s)
- Quanli Shen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Leyi Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Yonggang Liu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Peng SK, Yang H, Luo D, Ning GH, Li D. A Highly NIR Emissive Cu 16 Pd 1 Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306863. [PMID: 37963848 DOI: 10.1002/smll.202306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Indexed: 11/16/2023]
Abstract
The construction of stable copper nanoclusters (Cu-NCs) with near-infrared (NIR) emission that can be used for catalysis is highly desired, yet remains a challenge. Herein, an atomically precise bimetallic Cu/Pd NC with a molecular formula of Cu16 Pd1 L10 (PPh3 )2 (Pz)6 (Pz = 3,5-(CF3 )2 Pyrazolate, L = 4-CH3 OPhC≡C- ), abbreviated as Cu16 Pd1 , is synthesized. Single-crystal X-ray crystallographic analysis of Cu16 Pd1 reveals a Cu10 Pd1 kernel with pseudo-gyroelongated square bipyramid confirmation surrounded by other 6 Cu(I) ions and protected ligands. Interestingly, it exhibits strong NIR emission with the highest photoluminescence quantum yield (PLQY) among all the Cu NCs/Cu alloys (λem > 800 nm) in the solid-state, and also displays NIR emission in solution. Experimental results and theoretical calculations suggest that the impressive NIR emission is attributed to abundant supramolecular interactions in the solid-state, including intramolecular metal-metal and intermolecular interactions. Of note, the bimetallic Cu16 Pd1 can catalyze the reduction of 4-nitrophenol. This work provides a novel method for synthesizing Cu/Pd NCs and reminds that the less studied Cu/Pd NC can serve as outstanding luminescent material, which is seldom noticed in atomically precise nanoclusters.
Collapse
Affiliation(s)
- Su-Kao Peng
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Hu Yang
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
29
|
Li Y, Stec GJ, Thorarinsdottir AE, McGillicuddy RD, Zheng SL, Mason JA. The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters. Chem Sci 2023; 14:12283-12291. [PMID: 37969596 PMCID: PMC10631301 DOI: 10.1039/d3sc04085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Grant J Stec
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Agnes E Thorarinsdottir
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
30
|
Sun X, Wang P, Yan X, Guo H, Wang L, Xu Q, Yan B, Li S, He J, Chen G, Shen H, Zheng N. Hydride-doped Ag 17Cu 10 nanoclusters as high-performance electrocatalysts for CO 2 reduction. iScience 2023; 26:107850. [PMID: 37752951 PMCID: PMC10518712 DOI: 10.1016/j.isci.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
The atomically precise metal electrocatalysts for driving CO2 reduction reactions are eagerly pursued as they are model systems to identify the active sites, understand the reaction mechanism, and further guide the exploration of efficient and practical metal nanocatalysts. Reported herein is a nanocluster-based electrocatalyst for CO2 reduction, which features a clear geometric and electronic structure, and more importantly excellent performance. The nanocatalysts with the molecular formula of [Ag17Cu10(dppm)4(PhC≡C)20H4]3+ have been obtained in a facile way. The unique metal framework of the cluster, with silver, copper, and hydride included, and dedicated surface structure, with strong (dppm) and labile (alkynyl) ligands coordinated, endow the cluster with excellent performance in electrochemical CO2 reduction reaction to CO. With the atomically precise electrocatalysts in hand, not only high reactivity and selectivity (Faradaic efficiency for CO up to 91.6%) but also long-term stability (24 h), are achieved.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Guo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
31
|
Sun F, Qin L, Tang Z, Deng G, Bootharaju MS, Wei Z, Tang Q, Hyeon T. -SR removal or -R removal? A mechanistic revisit on the puzzle of ligand etching of Au 25(SR) 18 nanoclusters during electrocatalysis. Chem Sci 2023; 14:10532-10546. [PMID: 37800008 PMCID: PMC10548520 DOI: 10.1039/d3sc03018k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/07/2023] Open
Abstract
Accurate identification of active sites is highly desirable for elucidation of the reaction mechanism and development of efficient catalysts. Despite the promising catalytic performance of thiolated metal nanoclusters (NCs), their actual catalytic sites remain elusive. Traditional first-principles calculations and experimental observations suggested dealkylated S and dethiolated metal, respectively, to be the active centers. However, the real kinetic origin of thiolate etching during the electrocatalysis of NCs is still puzzling. Herein, we conducted advanced first-principles calculations and electrochemical/spectroscopic experiments to unravel the electrochemical etching kinetics of thiolate ligands in prototype Au25(SCH3)18 NC. The electrochemical processes are revealed to be spontaneously facilitated by dethiolation (i.e., desorption of -SCH3), forming the free HSCH3 molecule after explicitly including the solvent effect and electrode potential. Thus, exposed under-coordinated Au atoms, rather than the S atoms, serve as the real catalytic sites. The thermodynamically preferred Au-S bond cleavage arises from the selective attack of H from proton/H2O on the S atom under suitable electrochemical bias due to the spatial accessibility and the presence of S lone pair electrons. Decrease of reduction potential promotes the proton attack on S and significantly accelerates the kinetics of Au-S bond breakage irrespective of the pH of the medium. Our theoretical results are further verified by the experimental electrochemical and spectroscopic data. At more negative electrode potentials, the number of -SR ligands decreased with concomitant increase of the vibrational intensity of S-H bonds. These findings together clarify the atomic-level activation mechanism on the surface of Au25(SR)18 NCs.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
32
|
Hu F, Guan ZJ, Yuan SF, Wang QM. Alkynyl-Protected Bimetallic Nanoclusters with a Hybrid Mackay Icosahedral Ag 42 Cu 12 Cl Kernel and an Octahedral Ag 22 Cu 12 Kernel. Chem Asian J 2023; 18:e202300605. [PMID: 37550250 DOI: 10.1002/asia.202300605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
A facile strategy that directly reduces alkynyl-silver precursors and copper salts for the synthesis of bimetallic nanoclusters using the weak reducing agent Ph2 SiH2 is demonstrated. Two alkynyl-protected concentric-shell nanoclusters, (Ph4 P)2 [Ag22 Cu12 (C≡CR)28 ] and (Ph4 P)3 [Ag42 Cu12 Cl(C≡CR)36 ] (Ag22 Cu12 and Ag42 Cu12 Cl, R=bis(trifluoromethyl)phenyl), were successfully obtained and characterized by single-crystal X-ray diffraction and electro-spray ionization mass spectrometry. For the first time, a hybrid 55-atom two-shell Mackay icosahedron was found in Ag42 Cu12 Cl, which is icosahedral M54 Cl instead of M55 . The incorporation of a chloride in the metal icosahedron contributes to the stability of the cluster from both electronic and geometric aspects. Alkynyl ligands show various binding-modes including linear "RC≡C-Cu-C≡CR" staple motifs.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
33
|
Wang Q, Wang H, Ren X, Pang R, Zhao X, Zhang L, Li S. Synergetic Role of Thermal Catalysis and Photocatalysis in CO 2 Reduction on Cu 2/MoS 2. J Phys Chem Lett 2023; 14:8421-8427. [PMID: 37712525 DOI: 10.1021/acs.jpclett.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.
Collapse
Affiliation(s)
- Qiuyu Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Hening Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Pang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xingju Zhao
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Shen H, Zhu Q, Xu J, Ni K, Wei X, Du Y, Gao S, Kang X, Zhu M. Stepwise construction of Ag 29 nanocluster-based hydrogen evolution electrocatalysts. NANOSCALE 2023; 15:14941-14948. [PMID: 37655628 DOI: 10.1039/d3nr03537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Although several silver-based nanoclusters have been controllably prepared and structurally determined, their electrochemical catalytic performances have been relatively unexplored (or showed relatively weak ability towards electro-catalysis). In this work, we accomplished the step-by-step enhancement of the electrocatalytic hydrogen evolution reaction (HER) efficiency based on an Ag29 cluster template. A combination of atomically precise operations, including the kernel alloying, ligand engineering, and surface activation, was exploited to produce a highly efficient Pt1Ag28-BTT-Mn(10) nano-catalyst towards HER, derived from both experimental characterization and theoretical modelling. The precision characteristic of the Ag29-based cluster system enables us to understanding the correlations between nanocluster structures and HER performances at the atomic level. Overall, the findings of this work will hopefully provide more opportunities for the customization of new cluster-based nano-catalysts with enhanced electrocatalytic capacities.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Qingtao Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Kun Ni
- CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering & iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Yuanxin Du
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China.
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
35
|
Li LJ, Luo YT, Tian YQ, Wang P, Yi XY, Yan J, Pei Y, Liu C. Unveiling the Remarkable Stability and Catalytic Activity of a 6-Electron Superatomic Ag 30 Nanocluster for CO 2 Electroreduction. Inorg Chem 2023; 62:14377-14384. [PMID: 37620296 DOI: 10.1021/acs.inorgchem.3c02083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nanocluster catalysts face a significant challenge in striking the right balance between stability and catalytic activity. Here, we present a thiacalix[4]arene-protected 6-electron [Ag30(TC4A)4(iPrS)8] nanocluster that demonstrates both high stability and catalytic activity. The Ag30 nanocluster features a metallic core, Ag104+, consisting of two Ag3 triangles and one Ag4 square, shielded by four {Ag5@(TC4A)4} staple motifs. Based on DFT calculations, the Ag104+ metallic kernel can be viewed as a trimer comprising 2-electron superatomic units, exhibiting a valence electron structure similar to that of the Be3 molecule. Notably, this is the first crystallographic evidence of the trimerization of 2-electron superatomic units. Ag30 can reduce CO2 into CO with a Faraday efficiency of 93.4% at -0.9 V versus RHE along with excellent long-term stability. Its catalytic activity is far superior to that of the chain-like AgI polymer ∞1{[H2Ag5(TC4A)(iPrS)3]} (∞1Agn), with the composition similar to Ag30. DFT calculations elucidated the catalytic mechanism to clarify the contrasting catalytic performances of the Ag30 and ∞1Agn polymers and disclosed that the intrinsically higher activity of Ag30 may be due to the greater stability of the dual adsorption mode of the *COOH intermediate on the metallic core.
Collapse
Affiliation(s)
- Liang-Jun Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-Ting Luo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Yi-Qi Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411100, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
36
|
Wu QJ, Si DH, Sun PP, Dong YL, Zheng S, Chen Q, Ye SH, Sun D, Cao R, Huang YB. Atomically Precise Copper Nanoclusters for Highly Efficient Electroreduction of CO 2 towards Hydrocarbons via Breaking the Coordination Symmetry of Cu Site. Angew Chem Int Ed Engl 2023; 62:e202306822. [PMID: 37468435 DOI: 10.1002/anie.202306822] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu-S2 N1 active sites (named Cu6 (MBD)6 , MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu-S3 sites, the Cu6 (MBD)6 with Cu-S2 N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at -1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2 H4 ), with the hydrocarbons partial current density of -183.4 mA cm-2 . Theoretical calculations reveal that the symmetry-broken Cu-S2 N1 sites can rearrange the Cu 3d orbitals withd x 2 - y 2 ${d_{x^2 - y^2 } }$ as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C-C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2 RR towards highly-valued products.
Collapse
Affiliation(s)
- Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Pan-Pan Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engi-neering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yu-Liang Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Song Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Shi-Hua Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engi-neering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
37
|
Xin J, Xu J, Zhu C, Tian Y, Zhang Q, Kang X, Zhu M. Restriction of intramolecular rotation for functionalizing metal nanoclusters. Chem Sci 2023; 14:8474-8482. [PMID: 37592984 PMCID: PMC10430645 DOI: 10.1039/d3sc01698f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The restriction of intramolecular rotation has been extensively exploited to trigger the property enhancement of nanocluster-based materials. However, such a restriction is induced mainly by intermolecular aggregation. The direct restriction of intramolecular rotation of metal nanoclusters, which could boost their properties at the single molecular level, remains rarely explored. Here, ligand engineering was applied to activate intramolecular interactions at the interface between peripheral ligands and metallic kernels of metal nanoclusters. For the newly reported Au4Ag13(SPhCl2)9(DPPM)3 nanocluster, the molecule-level interactions between the Cl terminals on thiol ligands and the Ag atoms on the cluster kernel remarkably restricted the intramolecular rotation, endowing this robust nanocluster with superior thermal stability, emission intensity, and non-linear optical properties over its cluster analogue. This work presents a novel case of the restriction of intramolecular rotation (i.e., intramolecular interaction-induced property enhancement) for functionalizing metal clusters at the single molecular level.
Collapse
Affiliation(s)
- Junsheng Xin
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Jing Xu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Chen Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Yupeng Tian
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Qiong Zhang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei Anhui 230601 China
- Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| |
Collapse
|
38
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|