1
|
Sun J, Gu M, Peng L, Guo J, Chen P, Wen Y, Feng F, Chen X, Liu T, Chen Y, Lu X, Gao L, Yao SQ, Yuan P. A Self-Assembled Nano-Molecular Glue (Nano-mGlu) Enables GSH/H 2O 2-Triggered Targeted Protein Degradation in Cancer Therapy. J Am Chem Soc 2024. [PMID: 39703105 DOI: 10.1021/jacs.4c11003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Molecular glues are promising protein-degrading agents that hold great therapeutic potential but face significant challenges in rational design, effective synthesis, and precise targeting of tumor sites. In this study, we first overcame some of these limitations by introducing a fumarate-based molecular glue handle onto specific ligands of therapeutic kinases (TBK1, FGFR, and Bcr-Abl), resulting in the effective degradation of these important cancer targets. Despite the broad applicability of the strategy, we unexpectedly discovered potent and widespread cytotoxicity across various cell lines, including noncancerous ones, rendering it less effective in cancer therapy. To address this critical issue, we next developed a self-assembled nanoparticle-based molecular glue (nano-mGlu) based on one of the newly discovered Bcr-Abl-degrading molecular glues (H1-mGlu). We showed that the resulting nano-mGlu (named Cle-NP) was able to release H1-mGlu in vitro in the presence of a high concentration of GSH or H2O2 (commonly found in the tumor microenvironment). Subsequent in vivo antitumor studies with a K562-xenografted mouse model indicated that Cle-NP was highly effective in tumor-specific degradation of endogenous Bcr-Abl expressed in K562 cells, leading to eventual tumor regression while maintaining good biosafety profiles. With key advantages of generality in molecular glue design, targeted delivery (e.g., H1-mGlu), potent antitumor activity partially induced by target-specific degradation, and minimized collateral damage to healthy tissues, our self-assembled nano-mGlu strategy thus provides a novel approach that might hold a significant promise for effective and personalized cancer therapy.
Collapse
Affiliation(s)
- Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Department of Pharmacy, Linyi People's Hospital, Linyi 276000, China
| | - Mingxi Gu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Lvyang Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jing Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yalei Wen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Fang Feng
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
3
|
Yuan B, Feng Y, Ma M, Duan W, Wu Y, Liu J, Zhao HY, Yang Z, Zhang SQ, Xin M. Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation. J Med Chem 2024; 67:20076-20099. [PMID: 39561981 DOI: 10.1021/acs.jmedchem.4c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Targeting the lysine residue of protein kinases to develop covalent inhibitors is an emerging hotspot. Herein, we have reported an approach to develop lysine-targeted covalent inhibitors of PI3Kδ by in situ interaction upgradation of the H-bonding to covalent bonding. Several warhead groups were introduced and screened in situ, leading to lysine-targeted covalent inhibitors bearing aromatic esters with high bioactivity and PI3Kδ selectivity. Compound A11 bearing phenolic ester was finally optimized to show a long duration of action in SU-DHL-6 cells by multiple assays. Docking simulation and further protein mass spectrometry confirmed that A11 bound to PI3Kδ by covalent-bonding interactions with Lys779. Furthermore, A11 exhibited potently antitumor efficacy without obvious toxicity in the SU-DHL-6 and Pfeiffer xenograft mouse models. This study identified A11 to be a much more effective antitumor agent in vitro and in vivo as a lysine-targeted covalent inhibitor, and it also provided a practical approach for the development of lysine-targeted covalent inhibitors.
Collapse
Affiliation(s)
- Bo Yuan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yifan Feng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Mengyan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Weiming Duan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Yujie Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Jiaxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Hong-Yi Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Zhe Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - San-Qi Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Minhang Xin
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
4
|
Zhou M, Li S, Tan Y, Huang W, Li Y, Yuan X, Li Z. Global Profiling Lysine Reactivity and Ligandability with Oxidant-Triggered Bioconjugation Chemistry. Angew Chem Int Ed Engl 2024:e202418473. [PMID: 39543955 DOI: 10.1002/anie.202418473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Due to the high abundance and diverse functions of lysine residues, both in the interior and on the surface of proteins, the development of new methods to characterize their reactivity and ligandability could significantly expand the pool of druggable targets. To date, only a limited number of aminophilic electrophiles have been assessed for interactions with the lysine proteome, resulting in a substantial fraction remaining inaccessible to current probes. Here, to the best of our knowledge, we report the first oxidant-triggered bioconjugation platform for in-depth profiling of lysines. We quantified over 7000 covalently modifiable lysine residues, which significantly expands the coverage of ligandable lysines in the whole proteome. Chemical proteomics enabled the mapping of more than 100 endogenous kinases, thus providing a comprehensive landscape of ligandable catalytic lysines within the kinome. Moreover, we identified a suite of new ligandable lysines such as K60 of ENO1 and K31 of PPIA, offering insights for exploring new functional and targetable residues. These findings could provide valuable clues for the development of targeted covalent inhibitors (TCIs).
Collapse
Affiliation(s)
- Mengya Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Shengrong Li
- Guangdong Second Provincial General Hospital, Postdoctoral Station of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Weizhen Huang
- The First Huizhou Affiliated Hospital of Guangdong Medical University, 516001, Huizhou, China
| | - Yifang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| | - Xia Yuan
- The First Huizhou Affiliated Hospital of Guangdong Medical University, 516001, Huizhou, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China
| |
Collapse
|
5
|
Sun J, Lou L, Zhu C, Chen P, Tang G, Gu M, Xia S, Dong X, Zhang ZM, Gao L, Yao SQ, Xiao Q. Rationally designed BCR-ABL kinase inhibitors for improved leukemia treatment via covalent and pro-/dual-drug targeting strategies. J Adv Res 2024:S2090-1232(24)00392-8. [PMID: 39255927 DOI: 10.1016/j.jare.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Chronic Myeloid Leukemia (CML) is a blood cancer that remains challenging to cure due to drug resistance and side effects from current BCR-ABL inhibitors. There is an urgent need for novel and more effective BCR-ABL targeting inhibitors and therapeutic strategies to combat this deadly disease. METHOD We disclose an "OH-implant" strategy to improve a noncovalent BCR-ABL inhibitor, PPY-A, by adding a hydroxyl group to its scaffold. By taking advantage of this OH "hot spot", we designed a panel of irreversible covalent kinase inhibitors and hypoxia-responsive pro-/dual-drugs, and their biological activities were studied in vitro, in cellulo and in vivo. RESULT The resulting compound B1 showed enhanced solubility and biological activity. B4 achieved sustained BCR-ABL inhibition by forming a stable covalent bond with ABL kinase. Hypoxia-responsive prodrug P1 and dual-drugs D1/D2/D3 demonstrated significant anti-tumor effects under hypoxic conditions. The in vivo studies using K562-xenografted mice showed that B1 displayed superior antitumor activity than PPY-A, while P1 and D3 offered better safety profiles alongside significant tumor control. CONCLUSION We have successfully developed a chemical biology approach to convert a known noncovalent BCR-ABL inhibitor into more potent and safer inhibitors through covalent and pro-/dual-drug targeting strategies. Our "OH-implant" approach and the resulting drug design strategies have general applicability and hold promise for improvement the performance of various other reported drugs/drug candidates, thereby providing advanced medicines for disease treatment.
Collapse
Affiliation(s)
- Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Mingxi Gu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Shu Xia
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Xiao Dong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
6
|
Weaver J, Craven GB, Tram L, Chen H, Taunton J. Aminomethyl Salicylaldehydes Lock onto a Surface Lysine by Forming an Extended Intramolecular Hydrogen Bond Network. J Am Chem Soc 2024; 146:24233-24237. [PMID: 39177126 DOI: 10.1021/jacs.4c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The development of electrophilic ligands that rapidly modify specific lysine residues remains a major challenge. Salicylaldehyde-based inhibitors have been reported to form stable imine adducts with the catalytic lysine of protein kinases. However, the targeted lysine in these examples is buried in a hydrophobic environment. A key unanswered question is whether this strategy can be applied to a lysine on the surface of a protein, where rapid hydrolysis of the resulting salicylaldimine is more likely. Here, we describe a series of aminomethyl-substituted salicylaldehydes that target a fully solvated lysine on the surface of the ATPase domain of Hsp90. By systematically varying the orientation of the salicylaldehyde, we discovered ligands with long residence times, the best of which engages Hsp90 in a quasi-irreversible manner. Crystallographic analysis revealed a daisy-chain network of intramolecular hydrogen bonds in which the salicylaldimine is locked into position by the adjacent piperidine linker. This study highlights the potential of aminomethyl salicylaldehydes to generate conformationally stabilized, hydrolysis-resistant imines, even when the targeted lysine is far from the ligand binding site and is exposed to bulk solvent.
Collapse
Affiliation(s)
- Jacqueline Weaver
- Chemistry and Chemical Biology Program, University of California─San Francisco, San Francisco, California 94143, United States
| | - Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California─San Francisco, San Francisco, California 94158, United States
| | - Linh Tram
- Chemistry and Chemical Biology Program, University of California─San Francisco, San Francisco, California 94143, United States
| | - Hao Chen
- Department of Cellular and Molecular Pharmacology, University of California─San Francisco, San Francisco, California 94158, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California─San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
7
|
Tang G, Wang X, Huang H, Xu M, Ma X, Miao F, Lu X, Zhang CJ, Gao L, Zhang ZM, Yao SQ. Small Molecule-Induced Post-Translational Acetylation of Catalytic Lysine of Kinases in Mammalian Cells. J Am Chem Soc 2024; 146:23978-23988. [PMID: 39162335 DOI: 10.1021/jacs.4c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable. Small-molecule strategies that enable post-translational acetylation of the catalytic lysine on kinases in a target-selective manner therefore provide tremendous potential in kinase biology. Herein, we report the first small molecule-induced chemical strategy capable of global acetylation of the catalytic lysine on kinases from mammalian cells. By surveying various lysine-acetylating agents installed on a promiscuous kinase-binding scaffold, Ac4 was identified and shown to effectively acetylate the catalytic lysine of >100 different protein kinases from live Jurkat/K562 cells. In order to demonstrate that this strategy was capable of target-selective and reversible chemical acetylation of protein kinases, we further developed six acetylating compounds on the basis of VX-680 (a noncovalent inhibitor of AURKA). Among them, Ac13/Ac14, while displaying excellent in vitro potency and sustained cellular activity against AURKA, showed robust acetylation of its catalytic lysine (K162) in a target-selective manner, leading to irreversible inhibition of endogenous kinase activity. The reversibility of this chemical acetylation was confirmed on Ac14-treated recombinant AURKA protein, followed by deacetylation with SIRT3 (a lysine deacetylase). Finally, the reversible Ac13-induced acetylation of endogenous AURKA was demonstrated in SIRT3-transfected HCT116 cells. By disclosing the first cell-active acetylating compounds capable of both global and target-selective post-translational acetylation of the catalytic lysine on kinases, our strategy could provide a useful chemical tool in kinase biology and drug discovery.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xuan Wang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fengfei Miao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
8
|
Ren X, Li H, Peng H, Yang Y, Su H, Huang C, Wang X, Zhang J, Liu Z, Wei W, Cheng K, Zhu T, Lu Z, Li Z, Zhao Q, Tang BZ, Yao SQ, Song X, Sun H. Reactivity-Tunable Fluorescent Platform for Selective and Biocompatible Modification of Cysteine or Lysine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402838. [PMID: 38896788 PMCID: PMC11336953 DOI: 10.1002/advs.202402838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.
Collapse
Affiliation(s)
- Xiaojie Ren
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Haokun Li
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Hui Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Yang Yang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Hang Su
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Chen Huang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Xuan Wang
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Jie Zhang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhiyang Liu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Wenyu Wei
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Ke Cheng
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Tianyang Zhu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Zhenpin Lu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Shao Q. Yao
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Xiangzhi Song
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Hongyan Sun
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| |
Collapse
|
9
|
Patil BR, Bhadane KV, Ahmad I, Agrawal YJ, Shimpi AA, Dhangar MS, Patel HM. Exploring the structural activity relationship of the Osimertinib: A covalent inhibitor of double mutant EGFR L858R/T790M tyrosine kinase for the treatment of Non-Small Cell Lung Cancer (NSCLC). Bioorg Med Chem 2024; 109:117796. [PMID: 38879996 DOI: 10.1016/j.bmc.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The USFDA granted regular approval to Osimertinib (AZD9291) on March 2017, for treating individuals with metastatic Non-Small Cell Lung Cancer having EGFR T790M mutation. Clinically, Osimertinib stands at the forefront for the treatment of patients with Non-Small Cell Lung Cancer. Osimertinib forms a covalent bond with the Cys797 residue and predominantly spares binding to WT-EGFR, thereby reducing toxicity and enabling the administration of doses that effectively inhibit T790M. However, a high percentage of patients treated with Osimertinib (AZD9291) developed a tertiary cysteine797 to serine797 (C797S) mutation in the EGFR kinase domain, rendering resistance to it. This comprehensive review sheds light on the chemistry, computational aspects, structural features, and expansive spectrum of biological activities of Osimertinib and its analogues. The in-depth exploration of these facets serves as a valuable resource for medicinal chemists, empowering them to design better Osimertinib analogues. This exhaustive study not only provides insights into improving potency but also emphasizes considerations for mutant selectivity and optimizing pharmacokinetic properties. This review acts as a guiding beacon for the strategic design and development of next-generation Osimertinib analogues.
Collapse
Affiliation(s)
- Bhatu R Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Kunal V Bhadane
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Yogesh J Agrawal
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Amit A Shimpi
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Mayur S Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India.
| |
Collapse
|
10
|
Wang X, Sun J, Huang H, Tang G, Chen P, Xiang M, Li L, Zhang ZM, Gao L, Yao SQ. Kinase Inhibition via Small Molecule-Induced Intramolecular Protein Cross-Linking. Angew Chem Int Ed Engl 2024; 63:e202404195. [PMID: 38695161 DOI: 10.1002/anie.202404195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 07/02/2024]
Abstract
Remarkable progress has been made in the development of cysteine-targeted covalent inhibitors. In kinase drug discovery, covalent inhibitors capable of targeting other nucleophilic residues (i.e. lysine, or K) have emerged in recent years. Besides a highly conserved catalytic lysine, almost all human protein kinases possess an equally conserved glutamate/aspartate (e.g. E/D) that forms a K-E/D salt bridge within the enzyme's active site. Electrophilic ynamides were previously used as effective peptide coupling reagents and to develop E/D-targeting covalent protein inhibitors/probes. In the present study, we report the first ynamide-based small-molecule inhibitors capable of inducing intramolecular cross-linking of various protein kinases, leading to subsequent irreversible inhibition of kinase activity. Our strategy took advantage of the close distance between the highly conserved catalytic K and E/D residues in a targeted kinase, thus providing a conceptually general approach to achieve irreversible kinase inhibition with high specificity and desirable cellular potency. Finally, this ynamide-facilitated, ligand-induced mechanism leading to intramolecular kinase cross-linking and inhibition was unequivocally established by using recombinant ABL kinase as a representative.
Collapse
Affiliation(s)
- Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 West Huangpu Avenue West, Guangzhou, 510632, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 West Huangpu Avenue West, Guangzhou, 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
11
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Koperniku A, Meanwell NA. Tying the knot with lysine. Nat Rev Chem 2024; 8:235-237. [PMID: 38499680 DOI: 10.1038/s41570-024-00592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Ana Koperniku
- The Center for the Study of Language and Information, Stanford University, Stanford, CA, USA.
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Insitute, Doylestown, PA, USA
- The School of Pharmacy, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Tang G, Wang W, Zhu C, Huang H, Chen P, Wang X, Xu M, Sun J, Zhang CJ, Xiao Q, Gao L, Zhang ZM, Yao SQ. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development. Angew Chem Int Ed Engl 2024; 63:e202316394. [PMID: 38248139 DOI: 10.1002/anie.202316394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/23/2024]
Abstract
Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
14
|
Kawano M, Murakawa S, Higashiguchi K, Matsuda K, Tamura T, Hamachi I. Lysine-Reactive N-Acyl- N-aryl Sulfonamide Warheads: Improved Reaction Properties and Application in the Covalent Inhibition of an Ibrutinib-Resistant BTK Mutant. J Am Chem Soc 2023; 145:26202-26212. [PMID: 37987622 DOI: 10.1021/jacs.3c08740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The covalent inhibition of a target protein has gained widespread attention in the field of drug discovery. Most of the current covalent drugs utilize the high reactivity of cysteines toward modest electrophiles. However, there is a growing need for warheads that can target lysine residues to expand the range of covalently druggable proteins and to deal with emerging proteins with mutations resistant to cysteine-targeted covalent drugs. We have recently developed an N-acyl-N-alkyl sulfonamide (NASA) as a lysine-targeted electrophile. Despite its successful application, this NASA warhead suffered from instability in physiological environments, such as serum-containing medium, because of its high intrinsic reactivity. In this study, we sought to modify the structure of the NASA warhead and found that N-acyl-N-aryl sulfonamides (ArNASAs) are promising electrophiles for use in a lysine-targeted covalent inhibition strategy. We prepared a focused library of ArNASA derivatives with diverse structures and reactivity and identified several warhead candidates with suppressed hydrolysis-mediated inactivation and reduced nonspecific reactions with off-target proteins, without sacrificing the reactivity toward the target. These reaction properties enabled the improved covalent inhibition of intracellular heat shock protein 90 (HSP90) in the presence of serum and the development of the first irreversible inhibitor for ibrutinib-resistant Bruton's tyrosine kinase (BTK) bearing the C481S mutation. This study clearly demonstrated the use of a set of ArNASA warheads to create highly potent covalent drugs and highlighted the importance of enriching the current arsenal of lysine-reactive warheads.
Collapse
Affiliation(s)
- Masaharu Kawano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Syunsuke Murakawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
15
|
Tang G, Wang W, Wang X, Ding K, Ngan SC, Chen JY, Sze SK, Gao L, Yuan P, Lu X, Yao SQ. Cell-active, irreversible covalent inhibitors that selectively target the catalytic lysine of EGFR by using fluorosulfate-based SuFEx chemistry. Eur J Med Chem 2023; 259:115671. [PMID: 37499291 DOI: 10.1016/j.ejmech.2023.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
EGFR signaling is involved in multiple cellular processes including cell proliferation, differentiation and development, making this protein kinase one of the most valuable drug targets for the treatment of non-small cell lung carcinomas (NSCLC). Herein, we describe the design and synthesis of a series of potential covalent inhibitors targeting the catalytically conserved lysine (K745) of EGFR on the basis of Erlotinib, an FDA-approved first-generation EGFR drug. Different amine-reactive electrophiles were introduced at positions on the Erlotinib scaffold proximal to K745 in EGFR. The optimized compound 26 (as well as its close analog 30), possessing a novel arylfluorosulfate group (ArOSO2F), showed excellent in vitro potency (as low as 0.19 nM in independent IC50 determination) and selectivity against EGFR and many of its drug-resistant mutants. Both intact protein mass spectrometry (MS) and site-mapping analysis revealed that compound 26 covalently bound to EGFR at K745 through the formation of a sulfamate. In addition, compound 26 displayed good anti-proliferative potency against EGFR-overexpressing HCC827 cells by inhibiting endogenous EGFR autophosphorylation. The pharmacokinetic studies of compound 26 demonstrated the druggable potential of other ArOSO2F-containing compounds. Finally, competitive activity-based protein profiling (ABPP), cellular thermal shift assay (CETSA), as well as cellular wash-out experiments, all showed compound 26 to be the first cell-active, fluorosulfate-based targeted covalent inhibitor (TCI) of protein kinases capable of covalently engaging the catalytically conserved lysine of its target in live mammalian cells.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jiao-Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518000, China.
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
16
|
Csorba N, Ábrányi-Balogh P, Keserű GM. Covalent fragment approaches targeting non-cysteine residues. Trends Pharmacol Sci 2023; 44:802-816. [PMID: 37770315 DOI: 10.1016/j.tips.2023.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Covalent fragment approaches combine advantages of covalent binders and fragment-based drug discovery (FBDD) for target identification and validation. Although early applications focused mostly on cysteine labeling, the chemistries of available warheads that target other orthosteric and allosteric protein nucleophiles has recently been extended. The range of different warheads and labeling chemistries provide unique opportunities for screening and optimizing warheads necessary for targeting non-cysteine residues. In this review, we discuss these recently developed amino-acid-specific and promiscuous warheads, as well as emerging labeling chemistries, which includes novel transition metal catalyzed, photoactive, electroactive, and noncatalytic methodologies. We also highlight recent applications of covalent fragments for the development of molecular glues and proteolysis-targeting chimeras (PROTACs), and their utility in chemical proteomics-based target identification and validation.
Collapse
Affiliation(s)
- Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary.
| |
Collapse
|
17
|
McGary LC, Regan GL, Bearne SL. Reactive architecture profiling with a methyl acyl phosphate electrophile. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140945. [PMID: 37536394 DOI: 10.1016/j.bbapap.2023.140945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Activity-based protein profiling has facilitated the study of the activity of enzymes in proteomes, inhibitor development, and identification of enzymes that share mechanistic and active-site architectural features. Since methyl acyl phosphate monoesters act as electrostatically selective anionic electrophiles for the covalent modification of nucleophiles that reside adjacent to cationic sites in proteins, we synthesized methyl hex-5-ynoyl phosphate (MHP) to broadly target such protein architectures. After treating the soluble proteome of Paucimonas lemoignei with MHP, biotinylating the resulting acylated proteins using click chemistry, enriching the protein adducts using streptavidin, and analyzing the proteins by LC-MS/MS, a set of 240 enzymes and 132 non-enzyme proteins were identified for a wide spectrum of biological processes and from all 7 enzyme classes. Among those enzymes identified, β-hydroxybutyrate dehydrogenase (PlHBDH) and CTP synthase (E. coli orthologue, EcCTPS) were purified as recombinant enzymes and their rates of inactivation and sites of modification by MHP and methyl acetyl phosphate (MAP) were characterized. MHP reacted more slowly with these proteins than MAP but exhibited greater specificity, despite its lack of multiple binding determinants. Generally, MAP modified more surface residues than MHP. MHP specifically modified Ser 146, Lys 156, and Lys 163 at the active site of PlHBDH. MHP and MAP modified numerous residues of EcCTPS with CTP furnishing the greatest level of protection against MHP- and MAP-dependent modification and inactivation, respectively, followed by ATP and glutamine. Overall, MHP served as an effective probe to identify proteins that are potentially amenable to inhibition by methyl acyl phosphates.
Collapse
Affiliation(s)
- Laura C McGary
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Gemma L Regan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
18
|
Wang W, Wang X, Tang G, Zhu C, Xiang M, Xiao Q, Zhang ZM, Gao L, Yao SQ. Multitarget inhibitors/probes that target LRRK2 and AURORA A kinases noncovalently and covalently. Chem Commun (Camb) 2023; 59:10789-10792. [PMID: 37594149 DOI: 10.1039/d3cc03530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Herein, we report a salicylaldehyde-based, reversible covalent inhibitor (A2) that possesses moderate cellular activity against AURKA with a prolonged residence time and shows significant non-covalent inhibition towards LRRK2. Our results indicated that this multitarget kinase inhibitor may be used as the starting point for future development of more potent, selective and dual-targeting covalent kinase inhibitors against AURKA and LRRK2 for mitophagy.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518000, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|