1
|
Pan Q, Jia S, Fan ZH, Cao L, Ma YN, Chen X. Trinuclear Borane (B 3H 7)-Mediated Selective C4-H Alkylation and Phosphonation of Quinolines and Tetrahydroquinolines. Org Lett 2025. [PMID: 39743625 DOI: 10.1021/acs.orglett.4c04713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Herein, we report a method for the regioselective alkylation and phosphonation of quinoline C4-H via a B3H7-mediated nucleophilic addition of Turbo Grignard reagents and phosphine oxide anions to quinolines bearing different substituents, affording the 4-alkyl and 4-phosphoryl quinolines and tetrahydroquinolines after one-pot oxidation or reduction. The results indicate that coordination of the B3H7 group can activate substrates toward a potential 1,4-dearomative addition and subtly control the regioselectivity by preventing the 1,2-dearomative addition.
Collapse
Affiliation(s)
- Qiaojing Pan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Sihan Jia
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zi-Heng Fan
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Cao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Thompson LC, Kinsey AM, Shahla Z, Scheerer JR. Polysubstituted Pyridines from 1,4-Oxazinone Precursors. J Org Chem 2024; 89:17635-17642. [PMID: 39532705 PMCID: PMC11629385 DOI: 10.1021/acs.joc.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study describes a general method for the preparation of 1,4-oxazin-2-one intermediates from acetylene dicarboxylate and β-amino alcohol precursors. Oxazinones prepared in this manner were employed in a tandem cycloaddition/cycloreversion reaction sequence with a model alkyne (phenyl acetylene) to give substituted pyridine products. Fundamental reactivity and selectivity studies are complemented by the synthesis of the polycyclic ergot alkaloid natural product xylanigripone A.
Collapse
Affiliation(s)
- L. C. Thompson
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Adrianne M. Kinsey
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Zannatul Shahla
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R. Scheerer
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
3
|
Wrigley L, Hwang D, Pios SV, Schlenker CW. Optically Gated Dissociation of a Heptazinyl Radical Liberates H • through a Reactive πσ* State. ACS PHYSICAL CHEMISTRY AU 2024; 4:598-604. [PMID: 39634635 PMCID: PMC11613297 DOI: 10.1021/acsphyschemau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 12/07/2024]
Abstract
Using trianisole heptazine (TAHz) as a monomeric analogue for carbon nitride, we performed ultrafast pump-photolysis-probe transient absorption (TA) spectroscopy on the intermediate TAHzH• heptazinyl radical produced from an excited state PCET reaction with 4-methoxyphenol (MeOPhOH). Our results demonstrate an optically gated photolysis that releases H• and regenerates ground state TAHz. The TAHzH• radical signature at 520 nm had a lifetime of 7.0 ps, and its photodissociation by the photolysis pulse is clearly demonstrated by the ground state bleach recovery of the closed-shell neutral TAHz. This behavior has been previously predicted as evidence of a dissociative πσ* state. For the first time, we experimentally demonstrate photolysis of the TAHzH• heptazinyl radical through a repulsive πσ* state. This is a critical feature of the proposed reaction mechanisms involving water oxidation and CO2 reduction.
Collapse
Affiliation(s)
- Liam Wrigley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Doyk Hwang
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Cody W. Schlenker
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195-1652, United States
- Clean
Energy Institute, University of Washington, Seattle, Washington 98195-1653, United
States
| |
Collapse
|
4
|
Liu J, Wang W, Liao LL, Zhang W, Yue JP, Liu Y, Chen XW, Ye JH, Yu DG. Photo-induced carboxylation of C(sp 2)-S bonds in aryl thiols and derivatives with CO 2. Nat Commun 2024; 15:10132. [PMID: 39578448 PMCID: PMC11584649 DOI: 10.1038/s41467-024-53351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/04/2024] [Indexed: 11/24/2024] Open
Abstract
Aryl thiols have proven to be a useful class of electron donors and hydrogen atom sources in photochemical processes. However, the direct activation and functionalization of C(sp2)-S bonds in aryl thiols remains elusive in the field of photochemistry. Herein, a photochemical carboxylation of C(sp2)-S bonds in aryl thiols with CO2 is reported, providing a synthetic route to important aryl carboxylic acids. Moreover, different kinds of aryl thiol derivatives, benzeneselenol and diphenyl diselenide also show moderate-to-high reactivity in this transformation. Mechanistic studies, including DFT calculations, suggest that the in situ generated carbon dioxide radical anion (CO2•-) and disulfide might be the key intermediates, which undergo radical substitution to yield products. This reaction features mild and catalyst-free conditions, good functional group tolerance and wide substrate scope. Furthermore, the efficient degradation of polyphenylene sulfide highlights the usefulness of this methodology.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
5
|
Tan Y, Pei M, Yang K, Zhou T, Hu A, Guo JJ. Catalytic Generation of Pyridyl Radicals via Electron Donor-Acceptor Complex Photoexcitation: Synthesis of 2-Pyridylindole-Based Heterobiaryls. Org Lett 2024; 26:8084-8089. [PMID: 39287652 DOI: 10.1021/acs.orglett.4c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We report the catalytic generation of pyridyl radicals through photoexcitation of the electron donor-acceptor (EDA) complex, which enables the C2-selective heteroarylation of indole under ambient conditions. In this manifold, catalytic triarylamine and chloropyridine aggregate into an EDA complex in the presence of an inorganic base, making readily available chloropyridines good precursors for the generation of diverse pyridyl radicals. Given the broad reaction scope, this catalytic EDA complex protocol provides robust access to heterobiaryl scaffolds that are widely present in biologically important molecules.
Collapse
Affiliation(s)
- Yingfei Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Meiting Pei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Kang Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Tingting Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Anhua Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jing-Jing Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
6
|
Shi Q, Huang X, Yang R, Liu WH. Unified ionic and radical C-4 alkylation and arylation of pyridines. Chem Sci 2024; 15:12442-12450. [PMID: 39118600 PMCID: PMC11304543 DOI: 10.1039/d4sc03739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
C-H Functionalization of pyridines is an efficient strategy to access pyridine derivatives occurring in pharmaceuticals, agrochemicals, and materials. Nucleophilic additions to pyridiniums via both ionic and radical species have proven particularly useful. However, these reactions suffer from poor regioselectivity. By identifying an enzyme-mimic pocket-type urea activation reagent, we report a general platform for pyridine C-4 functionalization. Both ionic and radical nucleophiles can be incorporated to achieve the alkylation and arylation. Notably, the highly regioselective C-4 radical arylation is disclosed for the first time. The broad scope of nucleophiles and pyridines renders this platform applicable to the late-stage functionalization of drug-like molecules and the preparation of complex biologically important molecules.
Collapse
Affiliation(s)
- Qiu Shi
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Xiaofeng Huang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Ruizhi Yang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
7
|
Kikura T, Taura Y, Aramaki Y, Ooi T. p-Diarylboryl Halothiophenols as Multifunctional Catalysts via Photoactive Intramolecular Frustrated Lewis Pairs. J Am Chem Soc 2024; 146:20425-20431. [PMID: 38973719 DOI: 10.1021/jacs.4c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
p-Diarylboryl halothiophenols are developed and unequivocally characterized. Their photophysical properties and catalytic performance are unveiled by experimental and theoretical investigations. This novel class of triarylboranes behaves as a Brønsted acid to generate the corresponding borylthiophenolate that can absorb visible light to undergo intramolecular charge transfer to form a radical pair consisting of a boron radical anion and thiyl radical, which acts as a single-electron reductant while engaging in hydrogen atom transfer to regenerate the parent borylthiophenol. The synthetic relevance of this mode of action is demonstrated by the establishment of unique catalysis that integrates three different yet tunable functions in a single catalytic cycle, thereby allowing borylthiophenols to solely promote the assembly of sterically congested 1,2-diols and 1,2-aminoalcohol derivatives via radical-radical cross-coupling.
Collapse
Affiliation(s)
- Takeru Kikura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yuya Taura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshitaka Aramaki
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Krämer K, Schmitz M, Kelm H, van Wüllen C, Krüger HJ. Unexpected Reduction of a Coordinated Diazapyridinophane Ligand Bound to Chromium(III) Ion Leading to Delocalization of the Unpaired Electron across Two Isolated Pyridine Units. Chemistry 2024; 30:e202301099. [PMID: 37903737 DOI: 10.1002/chem.202301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023]
Abstract
In the tetraazamacrocyclic ligand N,N'-dimethyl-2,11-diaza-[3.3](2,6)pyridinophane (L-N4 Me2 ), the two pyridine units are separated from each other by sp3 -hybridized triatomic bridges. Such electronically isolated pyridine moieties are considerably less prone to reductions than di- or triimines. A detailed structural, magnetic, and spectroscopic investigation of the complexes [Cr(L-N4 Me2 )(OAc)2 ] and [Cr(L-N4 Me2 )(OAc)2 ](PF6 ), in combination with theoretical calculations, reveals that the reduced complex must be described as a chromium(III) ion coordinated to the anionic radical ligand (L-N4 Me2 )⋅- rather than a low-spin chromium(II) ion bound to closed-shell ligands. Thus, it is, to the best of our knowledge, only the second example of a stable and structurally characterized metal complex containing a reduced isolated pyridine unit. The stability is attributed to the delocalization of the unpaired electron across the two pyridine units, mediated by their interaction to the metal ion.
Collapse
Affiliation(s)
- Kristin Krämer
- RPTU Kaiserslautern-Landau, Department of Chemistry, Erwin-Schrödinger Straße 54, 67663, Kaiserslautern, Germany
| | - Markus Schmitz
- RPTU Kaiserslautern-Landau, Department of Chemistry, Erwin-Schrödinger Straße 54, 67663, Kaiserslautern, Germany
| | - Harald Kelm
- RPTU Kaiserslautern-Landau, Department of Chemistry, Erwin-Schrödinger Straße 54, 67663, Kaiserslautern, Germany
| | - Christoph van Wüllen
- RPTU Kaiserslautern-Landau, Department of Chemistry and Forschungszentrum OPTIMAS, Erwin-Schrödinger Straße 54, 67663, Kaiserslautern, Germany
| | - Hans-Jörg Krüger
- RPTU Kaiserslautern-Landau, Department of Chemistry, Erwin-Schrödinger Straße 54, 67663, Kaiserslautern, Germany
| |
Collapse
|
9
|
Wang J, Zuo L, Guo Z, Yang C, Jiang Y, Huang X, Wu L, Tang Z. Al 2 O 3 -coated BiVO 4 Photoanodes for Photoelectrocatalytic Regioselective C-H Activation of Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202315478. [PMID: 37946688 DOI: 10.1002/anie.202315478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Photoelectrochemistry is becoming an innovative approach to organic synthesis. Generally, the current photoelectrocatalytic organic transformations suffer from limited reaction type, low conversion efficiency and poor stability. Herein, we develop efficient and stable photoelectrode materials using metal oxide protective layer, with a focus on achieving regioselective activation of amine compounds. Notably, our photoelectrochemistry process is implemented under mild reaction conditions and does not involve any directing groups, transition metals or oxidants. The results demonstrate that beyond photocatalysis and electrocatalysis, photoelectrocatalysis exhibits high efficiency, remarkable repeatability and good functional group tolerance, highlighting its great potential for applications.
Collapse
Affiliation(s)
- Jinghao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyu Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuewei Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Lizhu Wu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Xu C, Jin Y, Fang H, Zheng H, Carozza JC, Pan Y, Wei PJ, Zhang Z, Wei Z, Zhou Z, Han H. A High-Nuclearity Copper Sulfide Nanocluster [S-Cu 50] Featuring a Double-Shell Structure Configuration with Cu(II)/Cu(I) Valences. J Am Chem Soc 2023; 145:25673-25685. [PMID: 37889075 DOI: 10.1021/jacs.3c08549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
This work represents an important step in the quest for creating atomically precise binary semiconductor nanoclusters (BS-NCs). Compared with coinage metal NCs, the preparation of BS-NCs requires strict control of the reaction kinetics to guarantee the formation of an atomically precise single phase under mild conditions, which otherwise could lead to the generation of multiple phases. Herein, we developed an acid-assisted thiolate dissociation approach that employs suitable acid to induce cleavage of the S-C bonds in the Cu-S-R (R = alkyl) precursor, spontaneously fostering the formation of the [Cu-S-Cu] skeleton upon the addition of extra Cu sources. Through this method, a high-nuclearity copper sulfide nanocluster, Cu50S12(SC(CH3)3)20(CF3COO)12 (abbreviated as [S-Cu50] hereafter), has been successfully prepared in high yield, and its atomic structure was accurately modeled through single-crystal X-ray diffraction. It was revealed that [S-Cu50] exhibits a unique double-shell structural configuration of [Cu14S12]@[Cu36S20], and the innermost [Cu14] moiety displays a rhombic dodecahedron geometry, which has never been observed in previously synthesized Cu metal, hydride, or chalcogenide NCs. Importantly, [S-Cu50] represents the first example incorporating mixed Cu(II)/Cu(I) valences in reported atomically precise copper sulfide NCs, which was unambiguously confirmed by XPS, EPR, and XANES. In addition, the electronic structure of [S-Cu50] was established by a variety of optical investigations, including absorption, photoluminescence, and ultrafast transient absorption spectroscopies, as well as theoretical calculations. Moreover, [S-Cu50] is air-stable and demonstrates electrocatalytic activity in ORR with a four-electron pathway.
Collapse
Affiliation(s)
- Cheng Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuhao Jin
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Hao Fang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry, East China University of Science and Technology Shanghai, Shanghai 200237, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Zheng Wei
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
11
|
Qin J, Barday M, Jana S, Sanosa N, Funes-Ardoiz I, Teskey CJ. Photoinduced Cobalt Catalysis for the Reductive Coupling of Pyridines and Dienes Enabled by Paired Single-Electron Transfer. Angew Chem Int Ed Engl 2023; 62:e202310639. [PMID: 37676106 DOI: 10.1002/anie.202310639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Selective hydroarylation of dienes has potential to provide swift access to useful building blocks. However, most existing methods rely on dienes stabilised by an aromatic group and transmetallation or nucleophilic attack steps require electron-rich aryl coupling partners. As such, there are few examples which tolerate wide-spread heteroarenes such as pyridine. Whilst allylic C-H functionalisation could be considered an alternative approach, the positional selectivity of unsymmetrical substrates is hard to control. Here, we report a general approach for selective hydropyridylation of dienes under mild conditions using metal catalysed hydrogen-atom transfer. Photoinduced, reductive conditions enable simultaneous formation of a cobalt-hydride catalyst and the persistent radical of easily-synthesised pyridyl phosphonium salts. This facilitates selective coupling of dienes in a traceless manner at the C4-position of a wide-range of pyridine substrates. The mildness of the method is underscored by its functional-group tolerance and demonstrated by applications in late-stage functionalisation. Based on a combination of experimental and computational studies, we propose a mechanistic pathway which proceeds through non-reversible hydrogen-atom transfer (HAT) from a cobalt hydride species which is uniquely selective for dienes in the presence of other olefins due to a much higher relative barrier associated with olefin HAT.
Collapse
Affiliation(s)
- Jingyang Qin
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Manuel Barday
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Samikshan Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Nil Sanosa
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
12
|
Rosadoni E, Bombonato E, Del Vecchio A, Guariento S, Ronchi P, Bellina F. Direct Decarboxylative C-2 Alkylation of Azoles through Minisci-Type Coupling. J Org Chem 2023; 88:14236-14241. [PMID: 37729603 DOI: 10.1021/acs.joc.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
This note discusses the application of a Minisci-type reaction for the direct alkylation of azoles with carboxylic acids as radical precursors. Different reaction conditions were investigated to achieve high yield of the desired products, focusing on acid strength and solvent screening. Moreover, the reactivity of imidazoles with various carboxylic acids was investigated, showing good yield for most cases. The study reveals the potential of this approach for late-stage functionalization in drug discovery.
Collapse
Affiliation(s)
- Elisabetta Rosadoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elena Bombonato
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Antonio Del Vecchio
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Sara Guariento
- Chemistry Research and Drug Design, Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/A, 43122 Parma, Italy
| | - Paolo Ronchi
- Chemistry Research and Drug Design, Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/A, 43122 Parma, Italy
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
13
|
Han BH, Sun Y, Cai XP, Qu JP, Kang YB. Salicylaldehyde as an SET-HAT Bifunctional Photocatalyst for the Intermolecular Transalkylation of Phthalimide. J Org Chem 2023; 88:13327-13330. [PMID: 37615542 DOI: 10.1021/acs.joc.3c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Salicylaldehyde works as an efficient photocatalyst for the intermolecular transalkylation of phthalimide. The well-designed dimethyl N-hydroxyphthalimide ester proves to be a good alkylation reagent. It inhibits the competing intramolecular alkylation of alkylating reagent, enabling the site-specific synthesis of N-substituted phthalimide.
Collapse
Affiliation(s)
- Bin-Hong Han
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xian-Peng Cai
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
15
|
Cao H, Bhattacharya D, Cheng Q, Studer A. C-H Functionalization of Pyridines via Oxazino Pyridine Intermediates: Switching to para-Selectivity under Acidic Conditions. J Am Chem Soc 2023. [PMID: 37428649 DOI: 10.1021/jacs.3c05242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
para-Selective C-H functionalization of pyridines holds a significant value but remains underdeveloped. Site-switchable C-H functionalization of pyridines under easily tunable conditions expedites drug development. We recently reported a redox-neutral dearomatization-rearomatization strategy for meta-C-H functionalization of pyridines via oxazino pyridine intermediates. Here, we demonstrate that these oxazino pyridine intermediates undergo highly para-selective functionalization simply by switching to acidic conditions. A broad scope of para-alkylated and arylated pyridines is prepared through radical as well as ionic pathways. These mild and catalyst-free methods are applied to the late-stage para-functionalization of drugs using pyridines as the limiting reagents. Consecutive meta,para-difunctionalization of pyridines is also achieved with complete regiocontrol relying on the pH-dependent reactivity of oxazino pyridines.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Debkanta Bhattacharya
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
16
|
Wu D, Shiozuka A, Kawashima K, Mori T, Sekine K, Kuninobu Y. Bifunctional 1-Hydroxypyrene Photocatalyst for Hydrodesulfurization via Reductive C(Aryl)-S Bond Cleavage. Org Lett 2023; 25:3293-3297. [PMID: 37114776 DOI: 10.1021/acs.orglett.3c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We developed the visible-light-induced hydrodesulfurization of alkyl aryl thioethers via the reductive cleavage of the C(aryl)-S bond using 1-hydroxypyrene as a Brønsted acid-reductant bifunctional photocatalyst. The hydrodesulfurization reaction proceeded under simple reaction conditions (1-hydroxypyrene and Et3N in THF under purple LED illumination); this reaction did not require chemicals commonly used for hydrodesulfurization, such as hydrosilanes, transition metal catalysts, and/or stoichiometric amounts of metal reagents. Detailed mechanistic studies based on control experiments, spectroscopic measurements, and computational studies revealed that the cleavage of the C(aryl)-S bond and the formation of the C(aryl)-H bond proceeded via the formation of the ion pair between the radical anion of alkyl aryl thioether and Et3N+H, resulting in the generation of a sulfur radical. In addition, the 1-hydroxypyrene catalyst was regenerated via hydrogen atom transfer (HAT) from Et3N.
Collapse
Affiliation(s)
- Di Wu
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Akira Shiozuka
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|