1
|
Xiao P, Wang L, Toyoda H, Wang Y, Nakamura K, Huang J, Osuga R, Nishibori M, Gies H, Yokoi T. Revealing Active Sites and Reaction Pathways in Direct Oxidation of Methane over Fe-Containing CHA Zeolites Affected by the Al Arrangement. J Am Chem Soc 2024. [PMID: 39499854 DOI: 10.1021/jacs.4c11773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fe-containing zeolites are effective catalysts in converting the greenhouse gases CH4 and N2O into valuable chemicals. However, the activities of Fe-containing zeolites in methane conversion and N2O decomposition are frequently conflated, and the activities of different Fe species are still controversial. Herein, Fe-containing aluminosilicate CHA zeolites with Fe species at different spatial distances affected by the arrangement of framework Al atoms were synthesized in a one-pot manner in the presence or absence of Na. The arrangement of framework Al atoms was identified by 27Al and 29Si MAS NMR spectra and thermogravimetry-differential thermal analysis (TG-DTA) curves. Ultraviolet (UV)-vis, X-ray absorption spectroscopy (XAS), and NO adsorption fourier transform infrared spectroscopy (FTIR) spectra were adopted to analyze Fe speciation. The higher proportion of Fe species in the 6 MR of Fe-CHA zeolites in the presence of Na was confirmed by the NO adsorption FTIR spectrum. The activities of proximal and distant Fe sites in reactions including direct oxidation of methane to methanol, methanol to hydrocarbon, and N2O decomposition were compared at different temperatures to provide the corresponding active sites and reaction pathways. The distant, isolated Fe and isolated proton were more active in the direct oxidation of methane to methanol and tandem conversion of methanol to hydrocarbon reactions than the proximal, isolated Fe and paired protons, respectively. Additionally, proximal, isolated Fe sites afforded higher activity in N2O decomposition. These findings guide the design of highly active catalysts in methane oxidation, methanol to hydrocarbon, and N2O decomposition reactions, addressing energy and environmental concerns.
Collapse
Affiliation(s)
- Peipei Xiao
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hiroto Toyoda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yong Wang
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ryota Osuga
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Maiko Nishibori
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Hermann Gies
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- iPEACE223 Inc., Konwa Building, 1-12-22 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
2
|
Feng C, Zuo S, Hu M, Ren Y, Xia L, Luo J, Zou C, Wang S, Zhu Y, Rueping M, Han Y, Zhang H. Optimizing the reaction pathway of methane photo-oxidation over single copper sites. Nat Commun 2024; 15:9088. [PMID: 39433749 PMCID: PMC11494074 DOI: 10.1038/s41467-024-53483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Direct photocatalytic conversion of methane to value-added C1 oxygenate with O2 is of great interest but presents a significant challenge in achieving highly selective product formation. Herein, a general strategy for the construction of copper single-atom catalysts with a well-defined coordination microenvironment is developed on the basis of metal-organic framework for selective photo-oxidation of CH4 to HCHO. We propose the directional activation of O2 on the mono-copper site breaks the original equilibrium and tilts the balance of radical formation almost completely toward •OOH. The synchronously generated •OOH and •CH3 radicals rapidly combine to form HCHO while inhibiting competing reactions, thus resulting in ultra-highly selective HCHO production (nearly 100%) with a time yield of 2.75 mmol gcat-1 h-1. This work highlights the potential of rationally designing reaction sites to manipulate reaction pathways and achieve selective CH4 photo-oxidation, and could guide the further design of high-performance single-atom catalysts to meet future demand.
Collapse
Affiliation(s)
- Chengyang Feng
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Miao Hu
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jun Luo
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Chen Zou
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yu Han
- Electron Microscopy Center, South China University of Technology, Guangzhou, China
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Cheng Q, Yao X, Li G, Li G, Zheng L, Yang K, Emwas AH, Li X, Han Y, Gascon J. Atomically Dispersed Iron-Copper Dual-Metal Sites Synergistically Boost Carbonylation of Methane. Angew Chem Int Ed Engl 2024; 63:e202411048. [PMID: 38946177 DOI: 10.1002/anie.202411048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The direct liquid-phase oxidative carbonylation of methane, utilizing abundant natural gas, offers a mild and straightforward alternative. However, most catalysts proposed for this process suffer from low acetic acid yields due to few active sites and rapid C1 oxygenate generation, impeding their industrial feasibility. Herein, we report a highly efficient 0.1Cu/Fe-HZSM-5-TF (TF denotes template-free synthesis) catalyst featuring exclusively mononuclear Fe and Cu anchored in the ZSM-5 channels. Under optimized conditions, the catalyst achieved an unprecedented acetic acid yield of 40.5 mmol gcat -1 h-1 at 50 °C, tripling the previous records of 12.0 mmol gcat -1 h-1. Comprehensive characterization, isotope-labeled experiments and density functional theory (DFT) calculations reveal that the homogeneous mononuclear Fe sites are responsible for the activation and oxidation of methane, while the neighboring Cu sites play a key role in retarding the oxidation process, promoting C-C coupling for effective acetic acid synthesis. Furthermore, the methyl-group carbon in acetic acid originates solely from methane, while its carbonyl-group carbon is derived exclusively from CO, rather than the conversion of other C1 oxygenates. The proposed bimetallic catalyst design not only overcomes the limitations of current catalysts but also generalizes the oxidative carbonylation of other alkanes, demonstrating promising advancements in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Qingpeng Cheng
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xueli Yao
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708WG, The Netherlands
| | - Guanxing Li
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaijie Yang
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Xingang Li
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yu Han
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST, Thuwal, 23955-6900, Saudi Arabia
- Electron Microscopy Center, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Wu B, Yin H, Ma X, Liu R, He B, Li H, Zeng J. Highly Selective Synthesis of Acetic Acid from Hydroxyl-Mediated Oxidation of Methane at Low Temperatures. Angew Chem Int Ed Engl 2024:e202412995. [PMID: 39222321 DOI: 10.1002/anie.202412995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Direct methane conversion and, in particular, the aerobic oxidation to acetic acid, remain an eminent challenge. Here, we reported a zeolite-supported Au-Fe catalyst (Au-Fe/ZSM-5) that converted methane to acetic acid with molecular oxygen as an oxidant in the presence of CO. Specifically, Au nanoparticles catalyzed the formation of hydroxyl species from the reaction of CO, O2, and H2O, meanwhile ZSM-5-supported atomically dispersed Fe species were responsible for the hydroxyl-mediated coupling of CH4 and CO to generate acetic acid. The reaction over 50 mg of Au-Fe/ZSM-5 under 62 bar (CH4 : CO : O2=14 : 14 : 3) at 120 °C for 3.0 h yielded 5.7 millimoles of acetic acid per gram of the catalyst (mmol gcat -1) with the selectivity of 92 %, outperformed most of reported catalysts. Significantly, the catalyst remained active even at 60 °C. We anticipate that this hydroxyl-mediated route may guide the design of optimized catalysts for the direct methane functionalization at low temperatures.
Collapse
Affiliation(s)
- Bo Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haibin Yin
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinlong Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rongjia Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bingxuan He
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| |
Collapse
|
5
|
Oda A, Kimura Y, Ichino K, Yamamoto Y, Kumagai J, Lee G, Sawabe K, Satsuma A. Rutile TiO 2-Supported Pt Nanoparticle Catalysts for the Low-Temperature Oxidation of Ethane to Ethanol. J Am Chem Soc 2024; 146:20122-20132. [PMID: 38985988 DOI: 10.1021/jacs.4c04381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Structure-function relationships of supported metal nanoparticle catalysts in the CO-assisted oxidation of ethane to ethanol were investigated. A rutile TiO2-supported Pt nanoparticle catalyst exhibited the highest ethanol production rate and selectivity. During the reaction, sequential changes in the geometric/electronic states and the particle size of the Pt nanoparticles were observed. The comparison of the catalytic performances of model catalysts with controlled metal-support interactions revealed that Pt0 nanoparticles of 2-3 nm with a high fraction of the surface Ptδ+ species are highly active for the oxidation of ethane to ethanol. The coadded CO plays a pivotal role not only in tuning the oxidation state of the surface Pt but also in producing H2O2, which is the true oxidant for the reaction. The supported Pt nanoparticle uses in situ-generated H2O2 to activate ethane, where the C2H5OOH intermediate is formed through a nonradical mechanism and subsequently converted to C2H5OH. This reaction occurs even at 50 °C with an apparent activation energy of 32 kJ mol-1. The present study sheds light on the usefulness of surface-engineered Pt nanoparticles for the low-temperature oxidation of ethane to ethanol.
Collapse
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuya Kimura
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Koyo Ichino
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Jun Kumagai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Gunik Lee
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
6
|
Su HS, Liu Y, Tian H, Chen D, Shen Q, Chang X, Lu Q, Xu B. Selective C-H Bond Activation in Propane with Molecular Oxygen over Cu(I)-ZSM-5 at Ambient Conditions. J Am Chem Soc 2024; 146:17170-17179. [PMID: 38865584 DOI: 10.1021/jacs.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Selective activation of C-H bonds in light alkanes under mild conditions is challenging but holds the promise of efficient upgrading of abundant hydrocarbons. In this work, we report the conversion of propane to propylene with ∼95% selectivity on Cu(I)-ZSM-5 with O2 at room temperature and pressure. The intraporous Cu(I) species was oxidized to Cu(II) during the reaction but could be regenerated with H2 at 220 °C. Diffuse reflectance ultraviolet spectroscopy indicated the presence of both Cu+-O2 and Cu2(μ-O2)2+ species in the zeolite pores during the reaction, and electron paramagnetic resonance results showed that propane activation occurred via a radical-mediated pathway distinct from that with H2O2 as the oxidant. Correlation between spectroscopic and reactivity results on Cu(I)-ZSM-5 with different Cu loadings suggests that the isolated intraporous Cu(I) species is the main active species in propane activation.
Collapse
Affiliation(s)
- Hai-Sheng Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Yiwei Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Hao Tian
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Dinghui Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Qikai Shen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Inner Mongolia 017000, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- Ordos Laboratory, Inner Mongolia 017000, China
| |
Collapse
|
7
|
Bozkurt OD, Toraman HE. Conversion of Polypropylene into Light Hydrocarbons and Aromatics by Metal Exchanged Zeolite Catalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9636-9650. [PMID: 38654550 DOI: 10.1021/acs.langmuir.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Polyolefins can be converted into C2-C5 hydrocarbons and benzene-toluene-xylene (BTX) aromatics as high-demand petrochemical feedstocks via catalytic pyrolysis on acidic zeolites. Bro̷nsted and Lewis acid sites are responsible for cracking polyolefins into olefins and subsequent aromatic formation. In this study, we have subjected the parent HZSM-5 zeolite to postsynthetic partial metal exchange with Fe, Co, Ni, Cu, and Ce cations to perturb Bro̷nsted/Lewis acidity. We have investigated these metal-modified HZSM-5 on the catalytic pyrolysis of polypropylene (PP) in a micropyrolyzer connected to a two-dimensional gas chromatograph coupled to a time-of-flight mass spectrometer and flame ionization detector (Tandem Pyrolyzer-GC × GC-TOF-MS/FID setup). Whereas Fe-, Co-, Cu-, and Ce-exchanged zeolites (with 2.5, 2.3, 1.9, and 0.8 wt % metal, respectively) had comparable product yields with the parent zeolite, Ni-exchanged zeolites with Ni content of 0.5 to 2 wt % were associated with enhanced BTX formation (28-38 wt %) compared to that of the parent zeolite (22 wt %). Pyridine-FTIR indicated that the Bro̷nsted/Lewis acid ratio of the parent zeolite decreased upon metal ion exchange. According to Pyridine-TPD, the parent zeolite's medium-strength acid sites were redistributed into weak and strong acid sites in Ni-exchanged zeolites. The higher amount of carbon deposits on Ni-exchanged zeolites compared to the parent and other metal ion exchanged zeolites was attributed to the enhanced aromatization activity by the simultaneous decrease in the Bro̷nsted/Lewis acid ratio and emergence of strong acid sites.
Collapse
Affiliation(s)
- Ozge Deniz Bozkurt
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hilal Ezgi Toraman
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute of Energy and the Environment, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Ye J, Tang X, Cheng L, Zhang S, Zhan W, Guo Y, Wang L, Cao XM, Wang KW, Dai S, Guo Y. Solvent-Free Synthesis Enables Encapsulation of Subnanometric FeO x Clusters in Pure Siliceous Zeolites for Efficient Catalytic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693896 DOI: 10.1021/acsami.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metal/metal oxide clusters possess a higher count of unsaturated coordination sites than nanoparticles, providing multiatomic sites that single atoms do not. Encapsulating metal/metal oxide clusters within zeolites is a promising approach for synthesizing and stabilizing these clusters. The unique feature endows the metal clusters with an exceptional catalytic performance in a broad range of catalytic reactions. However, the encapsulation of stable FeOx clusters in zeolite is still challenging, which limits the application of zeolite-encapsulated FeOx clusters in catalysis. Herein, we design a modified solvent-free method to encapsulate FeOx clusters in pure siliceous MFI zeolites (Fe@MFI). It is revealed that the 0.3-0.4 nm subnanometric FeOx clusters are stably encapsulated in the 5/6-membered rings intersectional voids of the pure siliceous MFI zeolites. The encapsulated Fe@MFI catalyst with a Fe loading of 1.4 wt % demonstrates remarkable catalytic activity and recycle stability in the direct oxidation of methane, while also promoting the direct oxidation of cyclohexane, surpassing the performance of conventional zeolite-supported Fe catalysts.
Collapse
Affiliation(s)
- Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lu Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shoujie Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Ming Cao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Tan X, García-Aznar P, Sastre G, Hong SB. Hydrothermal Aging Enhances Nitrogen Oxide Reduction over Iron-Exchanged Zeolites at 150 °C. J Am Chem Soc 2024; 146:6352-6359. [PMID: 38386651 DOI: 10.1021/jacs.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ammonia selective catalytic reduction (NH3-SCR) over copper- and iron-exchanged zeolites is a state-of-the-art technology for removal of nitrogen oxides (NOx, NO, and NO2) from exhaust emissions but suffers from poor low-temperature (i.e., 150 °C) activity. Here we show that hydrothermal aging of Fe-beta, Fe-ZSM-5, and Fe-ferrierite at 650 °C or higher leads to a remarkable increase in NOx conversion from ∼30 to ∼80% under fast NH3-SCR conditions at 150 °C. The practical relevance of this finding becomes more evident as an aged Fe-beta/fresh Cu-SSZ-13 composite catalyst exhibits ∼90% conversion. We propose that a neutral heteronuclear bis-μ-oxo ironaluminum dimer might be created within iron zeolites during hydrothermal aging and catalyze ammonium nitrate reduction by NO at 150 °C. Density functional theory calculations reveal that the activation free energy (125 versus 147 kJ mol-1) for the reaction of NO with adsorbed NO3- species, the rate-determining step of ammonium nitrate reduction, is considerably lower on the bis-μ-oxo ironaluminum site than on the well-known mononuclear iron-oxo cation site, thus greatly enhancing the overall SCR activity.
Collapse
Affiliation(s)
- Xuechao Tan
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| | - Pablo García-Aznar
- Instituto de Tecnologia Quimica (UPV-CSIC), Universidad Politécnica de Valencia, Avenida Naranjos s/n, Valencia 46022, Spain
| | - German Sastre
- Instituto de Tecnologia Quimica (UPV-CSIC), Universidad Politécnica de Valencia, Avenida Naranjos s/n, Valencia 46022, Spain
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| |
Collapse
|
10
|
Khairova R, Komaty S, Dikhtiarenko A, Cerrillo JL, Veeranmaril SK, Telalović S, Tapia AA, Hazemann JL, Ruiz-Martinez J, Gascon J. Zeolite Synthesis in the Presence of Metallosiloxanes for the Quantitative Encapsulation of Metal Species for the Selective Catalytic Reduction (SCR) of NO x. Angew Chem Int Ed Engl 2023; 62:e202311048. [PMID: 37581296 DOI: 10.1002/anie.202311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
Metal encapsulation in zeolitic materials through one-pot hydrothermal synthesis (HTS) is an attractive technique to prepare zeolites with a high metal dispersion. Due to its simplicity and the excellent catalytic performance observed for several catalytic systems, this method has gained a great deal of attention over the last few years. While most studies apply synthetic methods involving different organic ligands to stabilize the metal under synthesis conditions, here we report the use of metallosiloxanes as an alternative metal precursor. Metallosiloxanes can be synthesized from simple and cost-affordable chemicals and, when used in combination with zeolite building blocks under standard synthesis conditions, lead to quantitative metal loading and high dispersion. Thanks to the structural analogy of siloxane with TEOS, the synthesis gel stabilizes by forming siloxane bridges that prevent metal precipitation and clustering. When focusing on Fe-encapsulation, we demonstrate that Fe-MFI zeolites obtained by this method exhibit high catalytic activity in the NH3 -mediated selective catalytic reduction (SCR) of NOx along with a good H2 O/SO2 tolerance. This synthetic approach opens a new synthetic route for the encapsulation of transition metals within zeolite structures.
Collapse
Affiliation(s)
- Rushana Khairova
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Sarah Komaty
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Alla Dikhtiarenko
- Imaging and Characterization Department, KAUST Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jose Luis Cerrillo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Sudheesh Kumar Veeranmaril
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Selvedin Telalović
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Antonio Aguilar Tapia
- Institut de Chimie Moléculaire de Grenoble, UAR2607 CNRS, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS, Université Grenoble Alpes, 38000, Grenoble, France
| | - Javier Ruiz-Martinez
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
11
|
Ren M, Li J, Huang M, Chen D, Li X, Yan X, An Q, Sun S. Solar-Driven Reforming of Methane and Nitrogen to Methanol and Ammonium on Iron-Modified Zeolite under Ambient Conditions in Water. Inorg Chem 2023; 62:14804-14814. [PMID: 37644618 DOI: 10.1021/acs.inorgchem.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Artificial photosynthesis from selective methane oxidation or nitrogen reduction to value-added chemicals provides a promising pathway for the sustainable chemical industry, while still remaining a great challenge due to the extreme difficulty in C-H and N≡N bond cleavage under ambient conditions. Catalysts that can cocatalyze these two reactions simultaneously are rarely reported. Here, Fe-ZSM-5 with highly dispersed extra-framework Fe-oxo species enables efficient and selective photocatalytic conversion of methane and nitrogen to coproduce methanol and ammonia using H2O as the redox reagent under ambient conditions. The optimized Fe-ZSM-5 photocatalyst achieves up to 0.88 mol/molFe·h of methanol products with 97% selectivity. Meanwhile, the productivity of ammonia is 0.61 mol/molFe·h. In situ EPR and DRIFT studies disclose that water serves as a redox reagent to provide hydroxyl radicals for methane oxidation and protons for nitrogen hydrogenation. Quantum chemical calculations revealed that Fe-oxo species play a significant role in the coactivation of methane and nitrogen molecules, which lowers the energy barriers of rate-determining steps for methanol and ammonia generation.
Collapse
Affiliation(s)
- Mei Ren
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Donghui Chen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoliang Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoliang Yan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qi An
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Songmei Sun
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|