1
|
Zhang Y, Liu R, Li M, Guo Y, Kong J, Hou K. A dopant-assisted iodide-adduct chemical ionization time-of-flight mass spectrometer based on VUV lamp photoionization for atmospheric low-molecular-weight organic acids analysis. J Environ Sci (China) 2025; 149:500-511. [PMID: 39181662 DOI: 10.1016/j.jes.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 08/27/2024]
Abstract
Formic and acetic acids are the most abundant gaseous organic acids and play the key role in the atmospheric chemistry. In iodine-adduct chemical ionization mass spectrometry (CIMS), the low utilization efficiency of methyl iodide and humidity interference are two major issues of the vacuum ultraviolet (VUV) lamp initiated CIMS for on-line gaseous formic and acetic acids analysis. In this work, we present a new CIMS based on VUV lamp, and the ion-molecular reactor is separated into photoionization and chemical ionization zones by a reducer electrode. Acetone was added to the photoionization zone, and the VUV photoionization acetone provided low-energy electrons for methyl iodide to generate I-, and the addition of acetone reduced the amount of methyl iodide by 2/3. In the chemical ionization zone, a headspace vial containing ultrapure water was added for humidity calibration, and the vial changes the sensitivity as a function of humidity from ambiguity to well linear correlation (R2 > 0.95). With humidity calibration, the CIMS can quantitatively measure formic and acetic acids in the humidity range of 0%-88% RH. In this mode, limits of detection of 10 and 50 pptv are obtained for formic and acetic acids, respectively. And the relative standard deviation (RSD) of quantitation stability for 6 days were less than 10.5%. This CIMS was successfully used to determine the formic and acetic acids in the underground parking and ambient environment of the Shandong University campus (Qingdao, China). In addition, we developed a simple model based formic acid concentration to assess vehicular emissions.
Collapse
Affiliation(s)
- Yonglei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ruidong Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Yingzhe Guo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jichuang Kong
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Keyong Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Kim P, Reynolds RS, Deal AM, Vaida V, Ahmed M, Wilson KR. Accelerated Zymonic Acid Formation from Pyruvic Acid at the Interface of Aqueous Nanodroplets. J Phys Chem Lett 2024; 15:11131-11138. [PMID: 39480001 DOI: 10.1021/acs.jpclett.4c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
To explore the role of the liquid interface in mediating reactivity in small compartments, the formation kinetics of zymonic acid (ZA) is measured in submicron aerosols (average radius = 240 nm) using mass spectrometry. The formation of ZA, from a condensation reaction of two pyruvic acid (PA) molecules, proceeds over days in bulk solutions, while in submicron aerosols, it occurs in minutes. The experimental results are replicated in a kinetic model using an apparent interfacial reaction rate coefficient of krxn = (0.9 ± 0.2) × 10-3 M-1 s-1. The simulation reveals that surface activity of PA coupled with an enhanced interfacial reaction rate drives accelerated ZA formation in aerosols. Experimental and simulated results provide compelling evidence that the condensation reaction of PA occurs exclusively at the aerosol interface with a reaction rate coefficient that is enhanced by 4 orders of magnitude (∼104) relative to what is estimated for macroscale solutions.
Collapse
Affiliation(s)
- Pyeongeun Kim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ryan S Reynolds
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexandra M Deal
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Veronica Vaida
- Department of Chemistry and CIRES, University of Colorado, Boulder, Colorado 80309, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Xu Q, Ma F, Xia D, Li X, Chen J, Xie HB, Francisco JS. Two-Step Noncatalyzed Hydrolysis Mechanism of Imines at the Air-Water Interface. J Am Chem Soc 2024; 146:28866-28873. [PMID: 39378311 DOI: 10.1021/jacs.4c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The hydrolysis of imines has long been assumed to be their main atmospheric fate, based on early studies in the field of organic chemistry. However, the hydrolysis mechanism and kinetics of atmospheric imines remain unclear. Here, an advanced Born-Oppenheimer molecular dynamics method was employed to investigate the noncatalyzed hydrolysis mechanism and kinetics at the air-water interface by selecting CH2NH as a model molecule. The results indicate that CH2NH exhibits a pronounced surface preference. The noncatalyzed hydrolysis of CH2NH follows a unique two-step reaction mechanism involving first proton transfer and then OH- transfer through the water bridge at the air-water interface, in contrast to the traditional one-step mechanism. The calculated reaction rate for the rate-determining step is 3.32 × 105 s-1, which is 2 orders of magnitude greater than that of the bulk phase. In addition, the involvement of the interfacial electric field further enhances the reaction rate by approximately 3 orders of magnitude. The noncatalyzed hydrolysis rate at both the air-water interface and the bulk phase is higher than that of the possible acid-catalyzed one, clarifying noncatalyzed hydrolysis as the dominant mechanism for CH2NH. This study elucidates that the noncatalyzed hydrolysis of atmospheric imines is feasible at the air-water interface and that the revealed unique two-step hydrolysis mechanism has significant implications in atmospheric and water environmental chemistry.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiaojing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
4
|
Xie R, Guo K, Li Y, Zhang Y, Zhong H, Leung DYC, Huang H. Harnessing air-water interface to generate interfacial ROS for ultrafast environmental remediation. Nat Commun 2024; 15:8860. [PMID: 39402052 PMCID: PMC11473771 DOI: 10.1038/s41467-024-53289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/08/2024] [Indexed: 10/17/2024] Open
Abstract
The air-water interface of microbubbles represents a crucial microenvironment that can dramatically accelerate reactive oxidative species (ROS) reactions. However, the dynamic nature of microbubbles presents challenges in probing ROS behaviors at the air-water interface, limiting a comprehensive understanding of their chemistry and application. Here we develop an approach to investigate the interfacial ROS via coupling microbubbles with a Fenton-like reaction. Amphiphilic single-Co-atom catalyst (Co@SCN) is employed to efficiently transport the oxidant peroxymonosulfate (PMS) from the bulk solution to the microbubble interface. This triggers an accelerated generation of interfacial sulfate radicals (SO4•-), with 20-fold higher concentration (4.48 × 10-11 M) than the bulk SO4•-. Notably, the generated SO4•- is preferentially situated at the air-water interface due to its lowest free energy and the strong hydrogen bonding interactions with H3O+. Moreover, it exhibits the highest oxidation reactivity toward gaseous pollutants like toluene, with a rate constant of 1010 M-1 s-1-over 100 times greater than bulk reactions. This work demonstrates a promising strategy to harness the air-water interface for accelerating ROS-induced reactions, highlighting the importance of interfacial ROS and its potential application.
Collapse
Affiliation(s)
- Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kaiheng Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yong Li
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
- College of Ecology and Environment, School of Chemical Engineering and Technology, Xinjiang University, Urumchi, China.
| |
Collapse
|
5
|
Dong Z, Francisco JS, Long B. Ammonolysis of Glyoxal at the Air-Water Nanodroplet Interface. Angew Chem Int Ed Engl 2024; 63:e202316060. [PMID: 38084872 DOI: 10.1002/anie.202316060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 01/04/2024]
Abstract
The reactions of glyoxal (CHO)2 ) with amines in cloud processes contribute to the formation of brown carbon and oligomer particles in the atmosphere. However, their molecular mechanisms remain unknown. Herein, we investigate the ammonolysis mechanisms of glyoxal with amines at the air-water nanodroplet interface. We identified three and two distinct pathways for the ammonolysis of glyoxal with dimethylamine and methylamine by using metadynamics simulations at the air-water nanodroplet interface, respectively. Notably, the stepwise pathways mediated by the water dimer for the reactions of glyoxal with dimethylamine and methylamine display the lowest free energy barriers of 3.6 and 4.9 kcal ⋅ mol-1 , respectively. These results showed that the air-water nanodroplet ammonolysis reactions of glyoxal with dimethylamine and methylamine were more feasible and occurred at faster rates than the corresponding gas phase ammonolysis, the OH+(CHO)2 reaction, and the aqueous phase reaction of glyoxal, leading to the dominant removal of glyoxal. Our results provide new and important insight into the reactions between carbonyl compounds and amines, which are crucial in forming nitrogen-containing aerosol particles.
Collapse
Affiliation(s)
- Zegang Dong
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, PA-19104, USA
| | - Bo Long
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025, China
| |
Collapse
|