1
|
Tang JH, Luo M, Tsao W, Waters EA, Parigi G, Luchinat C, Meade TJ. MR Imaging Reveals Dynamic Aggregation of Multivalent Glycoconjugates in Aqueous Solution. Inorg Chem 2024. [PMID: 39680369 DOI: 10.1021/acs.inorgchem.4c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glycoconjugates forming from the conjugation of carbohydrates to other biomolecules, such as proteins, lipids, or other carbohydrates, are essential components of mammalian cells and are involved in numerous biological processes. Due to the capability of sugars to form multiple hydrogen bonds, many synthetic glycoconjugates are desirable biocompatible platforms for imaging, diagnostics, drugs, and supramolecular self-assemblies. Herein, we present a multimeric galactose functionalized paramagnetic gadolinium (Gd(III)) chelate that displays spontaneous dynamic aggregation in aqueous conditions. The dynamic aggregation of the Gd(III) complex was shown by the concentration-dependent magnetic resonance (MR) relaxation measurements, nuclear magnetic resonance dispersion (NMRD) analysis, and dynamic light scattering (DLS). Notably, these data showed a nonlinear relationship between magnetic resonance relaxation rate and concentrations (0.03-1.35 mM), and a large DLS hydrodynamic radius was observed in the high-concentration solutions. MR phantom images were acquired to visualize real-time dynamic aggregation behaviors in aqueous solutions. The in situ visualization of the dynamic self-assembling process of multivalent glycoconjugates has rarely been reported.
Collapse
Affiliation(s)
- Jian-Hong Tang
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Minrui Luo
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Wilhelmina Tsao
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily Alexandria Waters
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
3
|
Zhang C, Nan B, Xu J, Yang T, Xu L, Lu C, Zhang XB, Rao J, Song G. Magnetic-susceptibility-dependent ratiometric probes for enhancing quantitative MRI. Nat Biomed Eng 2024:10.1038/s41551-024-01286-4. [PMID: 39613926 DOI: 10.1038/s41551-024-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/15/2024] [Indexed: 12/01/2024]
Abstract
In magnetic resonance imaging (MRI), quantitative measurements of analytes are hindered by difficulties in distinguishing the MRI signals of activation of the probe by the analyte from those of the accumulation of the intact probe. Here we show that imaging sensitivity and quantitation can be enhanced by ratiometric MRI probes with a high relaxivity-ratio change (more than 2.5-fold at 7 T) via magnetic-susceptibility-dependent magnetic resonance tuning. Specifically, polymeric probes that incorporate paramagnetic Mn-porphyrin and superparamagnetic iron oxide nanoparticles inducing opposite changes in the longitudinal and transverse magnetic relaxivities responded to analyte concentration independently of probe concentration. In mice, the probes allowed for quantitative real-time dynamic imaging of H2O2, H2S or pH in subcutaneous tumours, in livers with drug-induced injury and in orthotropic gliomas. The ratiometric MRI probes may be advantageously used to obtain molecular insight into pathological processes and to circumvent interference from dynamic changes in probe concentration within the body while providing anatomical information.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Bin Nan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tengxiang Yang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
4
|
Brotherton AR, Mohamed SN, Meade TJ. Synthesis and relaxivity of gadolinium-based DOTAGA conjugated 3-phosphoglycerate. Dalton Trans 2024; 53:17777-17782. [PMID: 39474909 DOI: 10.1039/d4dt02766c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The synthesis and characterization of a gadolinium-based contrast agent conjugated to 3-phosphoglycerate (Gd-3PG) are reported. The synthetic steps are optimized to incorporate a selective deprotection strategy for a primary tert-butyl dimethyl silyl (TBS) hydroxyl over a secondary one. The relaxivity of Gd-3PG shows characteristic improvement, likely due to secondary sphere effects and/or an increase in molecular weight (5.39 ± 0.14 mM-1 s-1 at 1.4 T and 37 °C). Michaelis-Menten enzymatic kinetics was measured on the modified 3PG-arm and it showed similar activity to the native 3PG metabolite, Km = 240 ± 30 μM. This agent and future versions of this type of GBCA, which are conjugated to glycolytic metabolites, were designed to monitor in vivo allosteric regulatory events in glycolytic processes.
Collapse
Affiliation(s)
- Andrew R Brotherton
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Shifa Noor Mohamed
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| |
Collapse
|
5
|
Ning Y, Yuwen Zhou I, Caravan P. Quantitative in Vivo Molecular MRI. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407262. [PMID: 39279542 PMCID: PMC11530320 DOI: 10.1002/adma.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Molecular magnetic resonance imaging (MRI) combines chemistry, chemical biology, and imaging techniques to track molecular events non-invasively. Quantitative molecular MRI aims to provide meaningful, reproducible numerical measurements of molecular processes or biochemical targets within the body. In this review, the classifications of molecular MRI probes based on their signal-generating mechanism and functionality are first described. From there, the primary considerations for in vitro characterization and in vivo validation of molecular MRI probes, including how to avoid pitfalls and biases are discussed. Then, recommendations on imaging acquisition protocols and analysis methods to establish quantitative relationships between MRI signal change induced by the probes and the molecular processes of interest are provided. Finally, several representative case studies are highlighted that incorporate these features. Quantitative molecular MRI is a multidisciplinary research area incorporating expertise in chemical biology, inorganic chemistry, molecular probes, imaging physics, drug development, pathobiology, and medicine. The purpose of this review is to provide guidance to chemists developing MR imaging probes and methods in terms of in vitro and in vivo validation to accelerate the translation of these new quantitative tools for non-invasive imaging of biological processes.
Collapse
Affiliation(s)
- Yingying Ning
- Spin-X Institute, School of Chemistry and Chemical Engineering, School of Biomedical Sciences and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
6
|
Wang D, Yan S, Sun J, Xia X, Pan Z, Liu Z, Wang Q, Li Y, Zhao W. Fluoropolymer-Gadolinium(III) Hybrids for Photoactivatable Dual-Mode T1-Weighted 1H MRI and 19F MRI Contrast Agents. ACS Macro Lett 2024; 13:1286-1292. [PMID: 39284023 DOI: 10.1021/acsmacrolett.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Multimodal imaging probes play a crucial role in overcoming the limitations associated with single-mode imaging for clinical medical diagnosis. This study focuses on the development of a photoresponsive fluorine-containing water-soluble polymer (PF) through RAFT polymerization. Subsequently, a polymer-gadolinium(III) hybrid (PF-Gd) dual-modal probe capable of T1-weighted 1H MRI and 19F MRI was synthesized via postmodification of PF with a Gd-DOTA derivative. Under physiological conditions (pH = 7.4), the hybrids exhibit UV-activated 19F NMR/MRI and enhanced 1H MRI. The inclusion of Gd3+ facilitates the acceleration of water molecule T1 relaxation, leading to high-intensity 1H MRI contrast. Leveraging the paramagnetic relaxation enhancement (PRE) effect between fluorine atoms and Gd3+, the restoration of Gd3+-accelerated 19F T2 relaxation enables precise photoactivation of 19F MRI signals, transitioning from the "OFF" to the "ON" state. This study provides an important reference for the development of hybrid systems that function as real-time diagnostic tools and offers controlled activation for multimodal imaging probes.
Collapse
Affiliation(s)
- Deshuo Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Susu Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Xin Xia
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Zhiye Pan
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Zhihan Liu
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi China
| | - Wei Zhao
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| |
Collapse
|
7
|
Daldrup-Link HE, Suryadevara V, Tanyildizi Y, Nernekli K, Tang JH, Meade TJ. Musculoskeletal imaging of senescence. Skeletal Radiol 2024; 53:1879-1887. [PMID: 38329533 PMCID: PMC11303117 DOI: 10.1007/s00256-024-04585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel "senolytic" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA.
| | - Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Yasemin Tanyildizi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, USA
| | - Jian-Hong Tang
- Department of Chemistry, Northwestern University, Evanston, USA
| | - Thomas J Meade
- Department of Chemistry, Northwestern University, Evanston, USA
| |
Collapse
|
8
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
9
|
Jouclas R, Laine S, Eliseeva SV, Mandel J, Szeremeta F, Retailleau P, He J, Gallard JF, Pallier A, Bonnet CS, Petoud S, Durand P, Tóth É. Lanthanide-Based Probes for Imaging Detection of Enzyme Activities by NIR Luminescence, T1- and ParaCEST MRI. Angew Chem Int Ed Engl 2024; 63:e202317728. [PMID: 38376889 DOI: 10.1002/anie.202317728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Applying a single molecular probe to monitor enzymatic activities in multiple, complementary imaging modalities is highly desirable to ascertain detection and to avoid the complexity associated with the use of agents of different chemical entities. We demonstrate here the versatility of lanthanide (Ln3+) complexes with respect to their optical and magnetic properties and their potential for enzymatic detection in NIR luminescence, CEST and T1 MR imaging, controlled by the nature of the Ln3+ ion, while using a unique chelator. Based on X-ray structural, photophysical, and solution NMR investigations of a family of Ln3+ DO3A-pyridine model complexes, we could rationalize the luminescence (Eu3+, Yb3+), CEST (Yb3+) and relaxation (Gd3+) properties and their variations between carbamate and amine derivatives. This allowed the design ofL n L G a l 5 ${{{\bf L n L}}_{{\bf G a l}}^{5}}$ probes which undergo enzyme-mediated changes detectable in NIR luminescence, CEST and T1-weighted MRI, respectively governed by variations in their absorption energy, in their exchanging proton pool and in their size, thus relaxation efficacy. We demonstrate that these properties can be exploited for the visualization of β-galactosidase activity in phantom samples by different imaging modalities: NIR optical imaging, CEST and T1-weighted MRI.
Collapse
Affiliation(s)
- Rémy Jouclas
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Sophie Laine
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Jérémie Mandel
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Frédéric Szeremeta
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Jiefang He
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Jean-François Gallard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Philippe Durand
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| |
Collapse
|
10
|
Padula D. A Computational Perspective on the Reactivity of π-spacers in Self-Immolative Elimination Reactions. Chem Asian J 2024; 19:e202400010. [PMID: 38407472 DOI: 10.1002/asia.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
The controlled release of chemicals, especially in drug delivery, is crucial, often employing "self-immolative" spacers to enhance reliability. These spacers separate the payload from the protecting group, ensuring a more controlled release. Over the years, design rules have been proposed to improve the elimination process's reaction rate by modifying spacers with electron-donating groups or reducing their aromaticity. The spacer design is critical for determining the range of functional groups released during this process. This study explores various strategies from the literature aimed at improving release rates, focusing on the electronic nature of the spacer, its aromaticity, the electronic nature of its substituents, and the leaving groups involved in the elimination reaction. Through computational analysis, I investigate activation free energies by identifying transition states for model reactions. My calculations align qualitatively with experimental results, demonstrating the feasibility and reliability of computationally pre-screening model self-immolative eliminations. This approach allows proposing optimal combinations of spacer and leaving group for achieving the highest possible release rate.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| |
Collapse
|
11
|
Rojas-Vázquez S, Lozano-Torres B, García-Fernández A, Galiana I, Perez-Villalba A, Martí-Rodrigo P, Palop MJ, Domínguez M, Orzáez M, Sancenón F, Blandez JF, Fariñas I, Martínez-Máñez R. A renal clearable fluorogenic probe for in vivo β-galactosidase activity detection during aging and senolysis. Nat Commun 2024; 15:775. [PMID: 38278798 PMCID: PMC10817927 DOI: 10.1038/s41467-024-44903-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Accumulation of senescent cells with age leads to tissue dysfunction and related diseases. Their detection in vivo still constitutes a challenge in aging research. We describe the generation of a fluorogenic probe (sulfonic-Cy7Gal) based on a galactose derivative, to serve as substrate for β-galactosidase, conjugated to a Cy7 fluorophore modified with sulfonic groups to enhance its ability to diffuse. When administered to male or female mice, β-galactosidase cleaves the O-glycosidic bond, releasing the fluorophore that is ultimately excreted by the kidneys and can be measured in urine. The intensity of the recovered fluorophore reliably reflects an experimentally controlled load of cellular senescence and correlates with age-associated anxiety during aging and senolytic treatment. Interestingly, our findings with the probe indicate that the effects of senolysis are temporary if the treatment is discontinued. Our strategy may serve as a basis for developing fluorogenic platforms designed for easy longitudinal monitoring of enzymatic activities in biofluids.
Collapse
Affiliation(s)
- Sara Rojas-Vázquez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Ana Perez-Villalba
- Laboratory of Animal Behavior Phenotype (L.A.B.P.). Facultad de Psicología, Universidad Católica de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pablo Martí-Rodrigo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - M José Palop
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Marcia Domínguez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Juan F Blandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Isabel Fariñas
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.
| |
Collapse
|
12
|
Chen Y, Liang Z, Wang Q, Xiao L, Xie S, Yang S, Liu X, Ling D, Li F. Alpha-Synuclein Oligomers Driven T1-T2 Switchable Nanoprobes for Early and Accurate Diagnosis of Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310404. [PMID: 38149464 DOI: 10.1002/adma.202310404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The alpha-synuclein (α-syn) oligomers hold a central role in the pathology of Parkinson's disease (PD). Achieving accurate detection of α-syn oligomers in vivo presents a promising avenue for early and accurate diagnosis of PD. Magnetic resonance imaging (MRI), with non-invasion and exceptional tissue penetration, offers a potent tool for visualizing α-syn oligomers in vivo. Nonetheless, ensuring diagnostic specificity remains a formidable challenge. Herein, a novel MRI probe (ASOSN) is introduced, which encompasses highly sensitive antiferromagnetic nanoparticles functionalized with single-chain fragment variable antibodies, endowing it with the capacity for discerning recognition and binding to α-syn oligomers and triggering a switchable T1-T2 MRI signal. Significantly, ASOSN possesses the unique capability to accurately discriminate α-syn oligomers from neuroinflammation in vivo. Moreover, ASOSN facilitates the non-invasive and precise visualizing of endogenous α-syn oligomers in living systems. This innovative design heralds the development of a non-invasive visualization strategy for α-syn oligomers, marking a pivotal advancement for early and accurate diagnosis of PD.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zeyu Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
13
|
Yu Q, Zhang L, Jiang M, Xiao L, Xiang Y, Wang R, Liu Z, Zhou R, Yang M, Li C, Liu M, Zhou X, Chen S. An NIR Fluorescence Turn-on and MRl Bimodal Probe for Concurrent Real-time in vivo Sensing and Labeling of β-Galactosidase. Angew Chem Int Ed Engl 2023; 62:e202313137. [PMID: 37766426 DOI: 10.1002/anie.202313137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
To realize sensing and labeling biomarkers is quite challenging in terms of designing multimodal imaging probes. In this study, we developed a novel β-galactosidase (β-gal) activated bimodal imaging probe that combines near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) to enable real-time visualization of activity in living organisms. Upon β-gal activation, Gal-Cy-Gd-1 exhibits a remarkable 42-fold increase in NIR fluorescence intensity at 717 nm, allowing covalent labeling of adjacent target enzymes or proteins and avoiding molecular escape to promote probe accumulation at the tumor site. This fluorescence reaction enhances the longitudinal relaxivity by approximately 1.9 times, facilitating high-resolution MRI. The unique features of Gal-Cy-Gd-1 enable real-time and precise visualization of β-gal activity in live tumor cells and mice. The probe's utilization aids in identifying in situ ovarian tumors, offering valuable assistance in the precise removal of tumor tissue during surgical procedures in mice. The fusion of NIR fluorescence and MRI activation through self-immobilizing target enzymes or proteins provides a robust approach for visualizing β-gal activity. Moreover, this approach sets the groundwork for developing other activatable bimodal probes, allowing real-time in vivo imaging of enzyme activity and localization.
Collapse
Affiliation(s)
- Qiao Yu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
| | - Lei Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mou Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
| | - Long Xiao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunhui Xiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruifang Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoqing Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Welleman IM, Reeβing F, Boersma HH, Dierckx RAJO, Feringa BL, Szymanski W. The Development of a Smart Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer Contrast Agent for the Imaging of Sulfatase Activity. Pharmaceuticals (Basel) 2023; 16:1439. [PMID: 37895910 PMCID: PMC10610007 DOI: 10.3390/ph16101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular imaging of biomarkers plays an increasing role in medical diagnostics. In particular, the imaging of enzyme activity is a promising approach, as it enables the use of its inherent catalytic activity for the amplification of an imaging signal. The increased activity of a sulfatase enzyme has been observed in several types of cancers. We describe the development and in vitro evaluation of molecular imaging agents that allow for the detection of sulfatase activity using the whole-body, non-invasive MRI and CEST imaging methods. This approach relies on a responsive ligand that features a sulfate ester moiety, which upon sulfatase-catalyzed hydrolysis undergoes an elimination process that changes the functional group, coordinating with the metal ion. When Gd3+ is used as the metal, the complex can be used for MRI, showing a 25% decrease at 0.23T and a 42% decrease at 4.7T in magnetic relaxivity after enzymatic conversion, thus providing a "switch-off" contrast agent. Conversely, the use of Yb3+ as the metal leads to a "switch-on" effect in the CEST imaging of sulfatase activity. Altogether, the results presented here provide a molecular basis and a proof-of-principle for the magnetic imaging of the activity of a key cancer biomarker.
Collapse
Affiliation(s)
- Ilse M. Welleman
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Friederike Reeβing
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hendrikus H. Boersma
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Department of Clinical Pharmacy and Pharmacology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|