1
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
2
|
Chen X, Chen G, Cao S, Ye R, Qiu R, Yang X, Peng Y, Sun H. Benzo-pyrrolidinyl substituted silicon phthalocyanines: A novel two-photon lysosomal nanoprobe for in vitro photodynamic therapy. Photodiagnosis Photodyn Ther 2024; 51:104431. [PMID: 39631637 DOI: 10.1016/j.pdpdt.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Lysosomes are pivotal in diverse physiological phenomena, encompassing autophagy, apoptosis, and cellular senescence. The demand for precise tumors treatment has led to the development of specific lysosome-targeting probes capable of elucidating lysosomal dynamics and facilitating targeted cell death. In this research, we report the synthesis and characterization of a novel benzopyrrolidinyl-substituted silicon phthalocyanine (Py-SiPc), designed for selective lysosome labeling and Fluorescence imaging-guided in vitro photodynamic therapy. Furthermore, we encapsulated Py-SiPc within a biocompatible nanocarrier, dipalmitoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE), to create water-soluble nanoparticles (DSPE@Py-SiPc). These nanoparticles exhibit exceptional lysosome labeling capabilities, as evidenced by bioimaging techniques. Upon exposure to laser irradiation, DSPE@Py-SiPc efficiently induces the production of reactive oxygen species, impairing lysosomal function and triggering lysosomal-mediated cell death. The DSPE@Py-SiPc system emerges as a promising photosensitizer.
Collapse
Affiliation(s)
- Xiuqin Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China; Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guizhi Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Sitong Cao
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Ruoxin Ye
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Ruoyi Qiu
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Xiangyu Yang
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China.
| | - Hong Sun
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University,Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
3
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Sarkar S, Chatterjee A, Kim D, Saritha C, Barman S, Jana B, Ryu JH, Das A. Host-Guest Adduct as a Stimuli-Responsive Prodrug: Enzyme-Triggered Self-Assembly Process of a Short Peptide Within Mitochondria to Induce Cell Apoptosis. Adv Healthc Mater 2024:e2403243. [PMID: 39506431 DOI: 10.1002/adhm.202403243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Indexed: 11/08/2024]
Abstract
To address the issue of nonspecific biodistribution of a chemotherapeutic drug, stable [2]pseudorotaxane complexes (PK@CAOPP and PR@CAOPP) are used to demonstrate a proof of concept. Cationic -PPh3 + moiety in CAOPP allows specific localization of the PK@CAOPP/ PR@CAOPP in the mitochondrial membrane (MM). Electrostatic interaction between the cationic LysinePK or ArgininePR moiety and the negatively charged phosphoesterCAOPP functionality in CAOPP favours strong adduct formation. The ALP-induced hydrolytic cleavage of the phosphoester moiety in cancer cells triggers dephosphorylation and releases PK/ PR moiety from PK@CAOPP/PR@CAOPP. PK or PR, derived from the Phe-Phe dipeptide, formed fibril-like molecular aggregates in the MM to induce dysfunction, depolarization, ROS generation and apoptotic MCF7 cell death. Such phenomena were not observed in ALP-negative HEK293 normal cells. These propositions were confirmed through control studies using NBDK and PE, other guest molecules. Smaller size and inclusion of the short peptides (PK or PR) within the hydrophobic interior of CAOPP, were attributed to their stability in blood serum. Thus, we have demonstrated the use of supramolecular adducts as a potential therapeutic option for treating cancer cells without affecting healthy cells. The efficacy was also established with an in-vivo MCF7 tumour xenograft model using Balb/c nude mice.
Collapse
Affiliation(s)
- Sandip Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Atin Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, 844102, India
| | - Surajit Barman
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Batakrishna Jana
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Amitava Das
- Department of Chemical Sciences and Center for Advanced Functional Material, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
5
|
Ma J, Yang H, Tian X, Meng F, Zhai X, Li A, Li C, Wang M, Wang G, Lu C, Bai J. Matrix metalloproteinase 2-responsive dual-drug-loaded self-assembling peptides suppress tumor growth and enhance breast cancer therapy. Bioeng Transl Med 2024; 9:e10702. [PMID: 39545088 PMCID: PMC11558207 DOI: 10.1002/btm2.10702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 11/17/2024] Open
Abstract
Conventional chemotherapeutic agents are limited by their lack of targeting and penetration and their short retention time, and chemotherapy might induce an immune suppressive environment. Peptide self-assembly can result in a specific morphology, and the resulting morphological changes are stimuli responsive to the external environment, which is important for drug permeation and retention of encapsulated chemotherapeutic agents. In this study, a polypeptide (Pep1) containing the peptide sequences PLGLAG and RGD that is responsive to matrix metalloproteinase 2 (MMP-2) was successfully developed. Pep1 underwent a morphological transformation from a spherical structure to aggregates with a high aspect ratio in response to MMP-2 induction. This drug delivery system (DI/Pep1) can transport doxorubicin (DOX) and indomethacin (IND) simultaneously to target tumor cells for subsequent drug release while extending drug retention within tumor cells, which increases immunogenic cell death and facilitates the immunotherapeutic effect of CD4+ T cells. Ultimately, DI/Pep1 attenuated tumor-associated inflammation, enhanced the body's immune response, and inhibited breast cancer growth by combining the actions of DOX and IND. Our research offers an approach to hopefully enhance the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Jihong Ma
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Haiyan Yang
- Emergency DepartmentYantaishan HospitalYantaiChina
| | - Xue Tian
- School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| | - Fanhu Meng
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Xiaoqing Zhai
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Aimei Li
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Chuntao Li
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Min Wang
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Guohui Wang
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Chunbo Lu
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Jingkun Bai
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| |
Collapse
|
6
|
Tang R, Zhang Z, Liu X, Zhu L, Xu Y, Chai R, Zhan W, Shen S, Liang G. Fibroblast Growth Factor Receptor 1-Specific Dehydrogelation to Release Its Inhibitor for Enhanced Lung Tumor Therapy. ACS NANO 2024; 18:29223-29232. [PMID: 39392940 DOI: 10.1021/acsnano.4c11548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is emerging as a promising molecular target of lung cancer, and various FGFR1 inhibitors have exhibited significant therapeutic effects on lung cancer in preclinical research. Due to their low targeting ability or bioavailability, direct administration of these inhibitors may cause side effects. Herein, a hydrogelator, Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr-OH (Nap-Y), was rationally designed to coassemble with an FGFR1 inhibitor nintedanib (Nin) to form a peptide hydrogel Gel Y/Nin for localized administration and FGFR1-triggered release of Nin. Upon specific phosphorylation by FGFR1 overexpressed on lung cancer cells, Nap-Y in Gel Y/Nin is converted to the hydrophilic product Nap-Phe-Phe-Phe-Glu-Thr-Glu-Leu-Tyr(H2PO3)-OH (Nap-Yp), leading to dehydrogelation of the gel and subsequent Nin release. In vitro experiments demonstrate that the release of Nin in a sustained manner from Gel Y/Nin significantly suppresses the survival, migration, and invasion of A549 cells by inhibiting FGFR1 expression and its phosphorylation function on downstream signaling molecules. Nude mouse studies show that Gel Y/Nin exhibits enhanced therapeutic efficacy on lung tumor than free Nin. We anticipate that Gel Y/Nin will be utilized for lung cancer treatment in clinical settings in the near future.
Collapse
Affiliation(s)
- Runqun Tang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Ziyi Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Liangxi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuting Xu
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Shurong Shen
- Breast Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Nie S, Zhao H, Sun J, Liu Q, Cui Y, Li W. Amino Acid-Derived Supramolecular Assembly and Soft Materials. Molecules 2024; 29:4705. [PMID: 39407633 PMCID: PMC11477530 DOI: 10.3390/molecules29194705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Amino acids (AAs), serving as the primary monomer of peptides and proteins, are widely present in nature. Benefiting from their inherent advantages, such as chemical diversity, low cost, ease of modification, chirality, biosafety, and bio-absorbability, AAs have been extensively exploited to create self-assembled nanostructures and supramolecular soft materials. In this review article, we systematically describe the recent progress regarding amino acid-derived assembly and functional soft materials. A brief background and several classified assemblies of AAs and their derivatives (chemically modified AAs) are summarized. The key non-covalent interactions to drive the assembly of AAs are emphasized based on the reported systems of self-assembled and co-assembled AAs. We discuss the molecular design of AAs and the general rules behind the hierarchical nanostructures. The resulting soft materials with interesting properties and potential applications are demonstrated. The conclusion and remarks on AA-based supramolecular assemblies are also presented from the viewpoint of chemistry, materials, and bio-applications.
Collapse
Affiliation(s)
- Shuaishuai Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - He Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - Jiayi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - Qingtao Liu
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China;
| | - Yongming Cui
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China;
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| |
Collapse
|
8
|
Mukherjee A, Kar S, Das S, Bera T, Mondal A, Sengupta A, Guha S. Design of an Acidic pH-Activated NIR Fluorescent Convertible Rhodamine-Hemicyanine Probe-Peptide Conjugate for Living Cancer Cell Active Targeted Selective Tracking of Lysosomes. Chemistry 2024; 30:e202402146. [PMID: 38923172 DOI: 10.1002/chem.202402146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
We have synthesized an acidic pH-activatable dual targeting ratiometric fluorescent probe-peptide conjugate using the SPPS protocol on Rink amide AM resin. Living carcinoma cell specific active targeting, successive cell penetration, and selective staining of lysosomes are accomplished. Real-time monitoring of lysosomes, 3D, and multicolor cancer cell imaging are also attained. The de novo design consists of the integration of multifunctionality into a single molecular scaffold, e. g., RGDS peptide residue to target cancer cell surface overexpressed receptor αVβ3 integrin, live-cell penetrating organic unsymmetrical rhodamine-hemicyanine chromophore comprising a lysosome targeting morpholine group, and an acidic pH openable spiro-lactam ring for a visible-to-NIR switchable ratiometric response. Water-soluble fluorescent probe-peptide conjugate exhibits intramolecular spirolactamization at basic pH through Arg amide N. The visible spirolactam state predominantly exists at physiological and basic pH and can be switched to the highly conjugated NIR open amide state (λem=735 nm) through spiro-lactam ring opening triggered by acidic pH with a huge bathochromic shift (Δλabs=336 nm, ΔλFL=265 nm). Moreover, pH-sensitive ratiometric optical switching is achieved. This in situ acidic cancer cell lysosome activatable multifunctional fluorophore-peptide conjugate shows augmented molar absorptivity, enhanced quantum yield, and improved fluorescence lifetime at acidic lysosomal pH; negligible cytotoxicity; and dual targeted ratiometric imaging capability of living cancer cell selective lysosomes with a pKa value of 5.1.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, 700032, Kolkata, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Aniruddha Mondal
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, 700032, Kolkata, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| |
Collapse
|
9
|
Song N, Tian F, Zou Y, Yu Z. Self-Assembly in Living Cells: Bottom-Up Syntheses in Natural Factory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45821-45829. [PMID: 39177358 DOI: 10.1021/acsami.4c10653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In situ self-assembly in living systems is referred to as the processes that regulate assembly by stimuli-responsive reactions at target sites under physiological conditions. Due to the advantages of precisely forming well-defined nanostructures at pathological lesions, in situ-formed assemblies with tailored bioactivity are promising for the development of next-generation biomedical agents. In this Perspective, we summarize the progress of in situ self-assembly of peptides in living cells with an emphasis on the state-of-the-art strategies regulating assembly processes, establishing complexity within assembly systems, and exploiting their applications in biomedicines. We also provide our forward conceiving perspectives on the challenges in the development of in situ assembly in living cells to demonstrate its great potential in creating biomaterials for healthcare in the future.
Collapse
Affiliation(s)
- Na Song
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, School of Pharmacy, Dezhou University, Dezhou 253000, China
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yixuan Zou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
10
|
Ok HW, Jin S, Park G, Jana B, Ryu JH. Folic Acid-Functionalized β-Cyclodextrin for Delivery of Organelle-Targeted Peptide Chemotherapeutics in Cancer. Mol Pharm 2024; 21:4498-4509. [PMID: 39069731 DOI: 10.1021/acs.molpharmaceut.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Recent emphasis on the design of drug delivery systems typically involves the effective transport of a pharmaceutical substance to the disease site with the desired therapeutic efficacy and minimal cytotoxicity. Organelle-targeted peptides have become an integral part of designing an important class of prodrug/prodrug assemblies for new supramolecular therapeutics owing to their favorable biocompatibility, synthetic ease, tunability of their aggregation behavior, and desired functionalization for site-specificity. However, it is still limited due to the low selectivity. We designed a folic acid-functionalized β-cyclodextrin (FA-CD) as a delivery platform for specific and selective delivery of organelle-targeted (such as microtubule, lysosome, and mitochondria) peptide chemotherapeutics to the folate receptor (FR) overexpressing cancer cell lines. Low toxicity was found for the FA-CD and organelle-targeted peptide inclusion complex in FR-negative normal cells, but superior inhibition of tumor growth with no in vivo toxicity was found for the inclusion complex in the xenograft tumor model.
Collapse
Affiliation(s)
- Hae Won Ok
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gaeun Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
12
|
Kim S, Lee Y, Seu MS, Sim Y, Ryu JH. Enzyme-instructed intramitochondrial polymerization for enhanced anticancer treatment without the development of drug-resistance. J Control Release 2024; 373:189-200. [PMID: 39002798 DOI: 10.1016/j.jconrel.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Intracellular polymerization in living cells motivated chemists to generate polymeric structures with a multitude of possibilities to interact with biomacromolecules. However, out-of-control of the intracellular chemical reactions would be an obstacle restricting its application, providing the toxicity of non-targeted cells. Here, we reported intracellular thioesterase-mediated polymerization for selectively occurring polymerization using disulfide bonds in cancer cells. The acetylated monomers did not form disulfide bonds even under an oxidative environment, but they could polymerize into the polymeric structure after cleavage of acetyl groups only when encountered activity of thioesterase enzyme. Furthermore, acetylated monomers could be self-assembled with doxorubicin, providing doxorubicin loaded micelles for efficient intracellular delivery of drug and monomers. Since thioesterase enzymes were overexpressed in cancer cells specifically, the micelles were disrupted under activity of the enzyme and the polymerization could occur selectively in the cancer mitochondria. The resulting polymeric structures disrupted the mitochondrial membrane, thus activating the cellular death of cancer cells with high selectivity. This strategy selectively targets diverse cancer cells involving drug-resistant cells over normal cells. Moreover, the mitochondria targeting strategy overcomes the development of drug resistance even with repeated treatment. This approach provides a way for selective intracellular polymerization with desirable anticancer treatment.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeji Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
13
|
Li Y, Hu L, Wang J, Wang H. Clustering of the Membrane Protein by Molecular Self-Assembly Downregulates the Signaling Pathway for Cancer Cell Inhibition. NANO LETTERS 2024; 24:10681-10690. [PMID: 39158180 DOI: 10.1021/acs.nanolett.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
This work reports a cyclic peptide appended self-assembled scaffold that recognizes the membrane protein EGFR and arrests the EGFR signaling through multivalent interactions by assembly-induced aggregation. When incubated with cells, the oligomers of PAD-1 first recognize the overexpressed EGFR on cancer cell membranes for arresting EGFR, which then initiates cellular uptake through endocytosis. The accumulation of PAD-1 and EGFR in the lysosome results in the formation of nanofibers, leading to the lysosomal membrane permeabilization (LMP). These processes disrupt the homeostasis of EGFR and inhibit the downstream signaling transduction of EGFR for cancer cell survival. Moreover, LMP induced the release of protein aggregates that could generate endoplasmic reticulum (ER) stress, resulting in cancer cell death selectively. In vivo studies indicate the efficient antitumor efficiency of PAD-1 in tumor-bearing mice. As a first example, this work provides an alternative strategy for controlling protein behavior for tuning cellular events in living cells.
Collapse
Affiliation(s)
- Ying Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Department of Chemistry, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Liangbo Hu
- Department of Chemistry, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Jing Wang
- Department of Chemistry, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
14
|
Liu X, Tian F, Zhang Z, Liu J, Wang S, Guo RC, Hu B, Wang H, Zhu H, Liu AA, Shi L, Yu Z. In Vivo Self-Sorting of Peptides via In Situ Assembly Evolution. J Am Chem Soc 2024; 146:24177-24187. [PMID: 39140408 DOI: 10.1021/jacs.4c10309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Despite significant progress achieved in artificial self-sorting in solution, operating self-sorting in the body remains a considerable challenge. Here, we report an in vivo self-sorting peptide system via an in situ assembly evolution for combined cancer therapy. The peptide E3C16-SS-EIY consists of two disulfide-connected segments, E3C16SH and SHEIY, capable of independent assembly into twisted or flat nanoribbons. While E3C16-SS-EIY assembles into nanorods, exposure to glutathione (GSH) leads to the conversion of the peptide into E3C16SH and SHEIY, thus promoting in situ evolution from the nanorods into self-sorted nanoribbons. Furthermore, incorporation of two ligand moieties targeting antiapoptotic protein XIAP and organellar endoplasmic reticulum (ER) into the self-sorted nanoribbons allows for simultaneous inhibition of XIAP and accumulation surrounding ER. This leads to the cytotoxicity toward the cancer cells with elevated GSH levels, through activating caspase-dependent apoptosis and inducing ER dysfunction. In vivo self-sorting of E3C16-SS-EIY decorated with ligand moieties is thoroughly validated by tissue studies. Tumor-bearing mouse experiments confirm the therapeutic efficacy of the self-sorted assemblies for inhibiting tumor growth, with excellent biosafety. Our findings demonstrate an efficient approach to develop in vivo self-sorting systems and thereby facilitating in situ formulation of biomedical agents.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Juanzu Liu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shuya Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Han Zhu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - An-An Liu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
15
|
Tian F, Guo RC, Wu C, Liu X, Zhang Z, Wang Y, Wang H, Li G, Yu Z. Assembly of Glycopeptides in Living Cells Resembling Viral Infection for Cargo Delivery. Angew Chem Int Ed Engl 2024; 63:e202404703. [PMID: 38655625 DOI: 10.1002/anie.202404703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a β-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via β-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing β-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chunxia Wu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yamei Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, China
| |
Collapse
|
16
|
Li S, Wang H. Lysosomal Peptide Self-Assembly to Control Cell Behavior. Chembiochem 2024; 25:e202400232. [PMID: 38660742 DOI: 10.1002/cbic.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Lysosomes are membrane-enclosed organelles that play key roles in degrading and recycling cellular debris, cellular signaling, and energy metabolism processes. Confinement of amphiphilic peptides in the lysosome to construct functional nanostructures through noncovalent interactions is an emerging approach to tune the homeostasis of lysosome. After briefly introducing the importance of lysosome and its functions, we discuss the advantages of lysosomal nanostructure formation for disease therapy. We next discuss the strategy for triggering the self-assembly of peptides in the lysosome, followed by a concise outlook of the future perspective about this emerging research direction.
Collapse
Affiliation(s)
- Sangshuang Li
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, 310030, Hangzhou, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, 310030, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Liu H, Wang H. From cells to subcellular organelles: Next-generation cancer therapy based on peptide self-assembly. Adv Drug Deliv Rev 2024; 209:115327. [PMID: 38703895 DOI: 10.1016/j.addr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Due to the editability, functionality, and excellent biocompatibility of peptides, in situ self-assembly of peptides in cells is a powerful strategy for biomedical applications. Subcellular organelle targeting of peptides assemblies enables more precise drug delivery, enhances selectivity to disease cells, and mitigates drug resistance, providing an effective strategy for disease diagnosis and therapy. This reviewer first introduces the triggering conditions, morphological changes, and intracellular locations of self-assembling peptides. Then, the functions of peptide assemblies are summarized, followed by a comprehensive understanding of the interactions between peptide assemblies and subcellular organelles. Finally, we provide a brief outlook and the remaining challenges in this field.
Collapse
Affiliation(s)
- Huayang Liu
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
18
|
Li J, Song J, Shao L, Zhang X, Wang Z, Li G, Wang J, Zhang J. Acid-assisted self-assembly of pyrene-capped tyrosine ruptures lysosomes to induce cancer cell apoptosis. RSC Adv 2024; 14:15840-15847. [PMID: 38756853 PMCID: PMC11095371 DOI: 10.1039/d4ra01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Induced lysosomal membrane permeabilization (LMP) by peptide self-assembly has emerged as an effective platform for lysosome-targeted cancer therapy. In this study, we shift this strategical paradigm and present an innovative approach to LMP induction through amino acid-based self-assembly. Pyrene-capped tyrosine (Py-Tyr), as a proof-of-concept molecule, is designed with acidity-responsive self-assembly. Under acidic conditions (pH 4), Py-Tyr is protonated with reduced charge repulsion, and self-assembles into micrometer-scaled aggregates, which exceed the biological size of lysosomes. Cell experiments showed that Py-Tyr specifically accumulates in lysosomes and induces lysosome rupture, leading to the release of cathepsin B into the cytoplasm for subsequent apoptosis activation in cancer cells. This study capitalizes on the concept of amino acid assembly for efficient LMP induction, providing a simple and versatile platform for precise and effective therapeutic interventions in cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Liang Shao
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xianpeng Zhang
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Ziyi Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jiansheng Wang
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine Xianyang Shaanxi China
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
19
|
Yin H, Hua Y, Feng S, Xu Y, Ding Y, Liu S, Chen D, Du F, Liang G, Zhan W, Shen Y. In Situ Nanofiber Formation Blocks AXL and GAS6 Binding to Suppress Ovarian Cancer Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308504. [PMID: 38546279 DOI: 10.1002/adma.202308504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Anexelekto (AXL) is an attractive molecular target for ovarian cancer therapy because of its important role in ovarian cancer initiation and progression. To date, several AXL inhibitors have entered clinical trials for the treatment of ovarian cancer. However, the disadvantages of low AXL affinity and severe off-target toxicity of these inhibitors limit their further clinical applications. Herein, by rational design of a nonapeptide derivative Nap-Phe-Phe-Glu-Ile-Arg-Leu-Arg-Phe-Lys (Nap-IR), a strategy of in situ nanofiber formation is proposed to suppress ovarian cancer growth. After administration, Nap-IR specifically targets overexpressed AXL on ovarian cancer cell membranes and undergoes a receptor-instructed nanoparticle-to-nanofiber transition. In vivo and in vitro experiments demonstrate that in situ formed Nap-IR nanofibers efficiently induce apoptosis of ovarian cancer cells by blocking AXL activation and disrupting subsequent downstream signaling events. Remarkably, Nap-IR can synergistically enhance the anticancer effect of cisplatin against HO8910 ovarian tumors. It is anticipated that the Nap-IR can be applied in clinical ovarian cancer therapy in the near future.
Collapse
Affiliation(s)
- Han Yin
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Songwei Feng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Yi Xu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Yue Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Sicong Liu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Dongsheng Chen
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., 699-18 Xuanwu Avenue, Nanjing, Jiangsu, 210042, China
| | - Furong Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., 699-18 Xuanwu Avenue, Nanjing, Jiangsu, 210042, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu, 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu, 210096, China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
20
|
Zhou Y, Xu L, Sun X, Zhan W, Liang G. In situ peptide assemblies for bacterial infection imaging and treatment. NANOSCALE 2024; 16:3211-3225. [PMID: 38288668 DOI: 10.1039/d3nr05557d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Bacterial infections, especially antibiotic-resistant ones, remain a major threat to human health. Advances in nanotechnology have led to the development of numerous antimicrobial nanomaterials. Among them, in situ peptide assemblies, formed by biomarker-triggered self-assembly of peptide-based building blocks, have received increasing attention due to their unique merits of good spatiotemporal controllability and excellent disease accumulation and retention. In recent years, a variety of "turn on" imaging probes and activatable antibacterial agents based on in situ peptide assemblies have been developed, providing promising alternatives for the treatment and diagnosis of bacterial infections. In this review, we introduce representative design strategies for in situ peptide assemblies and highlight the bacterial infection imaging and treatment applications of these supramolecular materials. Besides, current challenges in this field are proposed.
Collapse
Affiliation(s)
- Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lingling Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
21
|
Guo RC, Wang N, Wang W, Zhang Z, Luo W, Wang Y, Du H, Xu Y, Li G, Yu Z. Artificial Peptide-Protein Necrosomes Promote Cell Death. Angew Chem Int Ed Engl 2023; 62:e202314578. [PMID: 37870078 DOI: 10.1002/anie.202314578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The presence of disordered region or large interacting surface within proteins significantly challenges the development of targeted drugs, commonly known as the "undruggable" issue. Here, we report a heterogeneous peptide-protein assembling strategy to selectively phosphorylate proteins, thereby activating the necroptotic signaling pathway and promoting cell necroptosis. Inspired by the structures of natural necrosomes formed by receptor interacting protein kinases (RIPK) 1 and 3, the kinase-biomimetic peptides are rationally designed by incorporating natural or D -amino acids, or connecting D -amino acids in a retro-inverso (DRI) manner, leading to one RIPK3-biomimetic peptide PR3 and three RIPK1-biomimetic peptides. Individual peptides undergo self-assembly into nanofibrils, whereas mixing RIPK1-biomimetic peptides with PR3 accelerates and enhances assembly of PR3. In particular, RIPK1-biomimetic peptide DRI-PR1 exhibits reliable binding affinity with protein RIPK3, resulting in specific cytotoxicity to colon cancer cells that overexpress RIPK3. Mechanistic studies reveal the increased phosphorylation of RIPK3 induced by RIPK1-biomimetic peptides, elucidating the activation of the necroptotic signaling pathway responsible for cell death without an obvious increase in secretion of inflammatory cytokines. Our findings highlight the potential of peptide-protein hybrid aggregation as a promising approach to address the "undruggable" issue and provide alternative strategies for overcoming cancer resistance in the future.
Collapse
Affiliation(s)
- Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ning Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weishu Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wendi Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haiqin Du
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|