1
|
Wang SD, Liu Y, Ma TM, Li XN, He SG. Factors Determining the Selectivity of NO Reduction Catalyzed by Copper-Vanadium Oxide Cluster Anions Cu 2VO 3-5. Chemphyschem 2025; 26:e202400888. [PMID: 39377742 DOI: 10.1002/cphc.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
Catalytic NO reduction by CO is imperative to satisfy the increasingly rigorous emission regulations. Identifying the structural characteristic of crucial intermediate that governs the selectivity of NO reduction is pivotal to having a fundamental understanding on real-life catalysis. Herein, benefiting from the state-of-the-art mass spectrometry, we demonstrated experimentally that the Cu2VO3-5 - clusters can mediate the catalysis of NO reduction by CO, and two competitive channels to generate N2O and N2 can co-exist. Quantum-chemical calculations were performed to rationalize this selectivity. The formation of the ONNO unit on the Cu2 dimer was demonstrated to be a precursor from which two pathways of NO reduction start to emerge. In the pathway of N2O generation, only the Cu2 dimer was oxidized and the VO3 moiety functions as a "support", while both moieties have to contribute to anchor oxygen atoms from the ONNO unit and then N2 can be generated. This finding displays a clear picture to elucidate how and why the involvement of VO3 "support" can regulate the selectivity of NO reduction.
Collapse
Affiliation(s)
- Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- China School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yi Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Yuan RN, Chen JJ, Chen Q, Zhang QW, Niu H, Wei R, Wei ZH, Li XN, Li SD. Observation of Aromatic B 13(CO) n+ ( n = 1-7) as Boron Carbonyl Analogs of Benzene. J Am Chem Soc 2024; 146:31464-31471. [PMID: 39508261 DOI: 10.1021/jacs.4c07680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
CO as a typical σ-donor is one of the most important ligands in chemistry, while planar B13+ is experimentally known as the most prominent magic-number boron cluster analogous to benzene. Joint gas-phase mass spectroscopy, collision-induced dissociation, and first-principles theory investigations performed herein indicate that B13+ reacts with CO successively under ambient conditions to form a series of boron carbonyl complexes B13(CO)n+ up to n = 7, presenting the largest boron carbonyl complexes observed to date with a quasi-planar B13+ core at the center coordinated by nCO ligands around it. Extensive theoretical analyses unveil both the chemisorption pathways and bonding patterns of these aromatic B13(CO)n+ monocations which, with three delocalized π bonds well-retained over the slightly wrinkled B13+ moiety, all prove to be boron carbonyl analogs of benzene tentatively named as boron carbonyl aromatics (BCAs). Their π-isovalent B12(CO)n (n = 1-6) complexes with a quasi-planar B12 coordination center are predicted to be stable neutral BCAs.
Collapse
Affiliation(s)
- Rui-Nan Yuan
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Jiao-Jiao Chen
- School of Mathematics and Physics, North China Electric Power University, Beijing 102206, P. R. China
| | - Qiang Chen
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Qin-Wei Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Hong Niu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Rui Wei
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhi-Hong Wei
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Si-Dian Li
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
3
|
Chen JY, Liu Y, Ma TM, Li ZY, Li XN. Selective Reduction of NO into N 2 Catalyzed by the RhM 2O 3- Clusters (M = Ta, V, and Al): Importance of the Triatomic Lewis Acid-Base-Acid M δ+-Rh δ--M δ+ Site. Inorg Chem 2024; 63:19179-19187. [PMID: 39362659 PMCID: PMC11483749 DOI: 10.1021/acs.inorgchem.4c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Catalytic NO reduction by CO into N2 and CO2 is imperative owing to the increasingly rigorous emission regulation. Identifying the nature of active sites that govern the reactivity and selectivity of NO reduction is pivotal to tailor catalysts, while it is extremely challenging because of the complexity of real-life systems. Guided by our newly discovered triatomic Lewis acid-base-acid (LABA, Ceδ+-Rhδ--Ceδ+) site that accounts for the selective reduction of NO into N2 catalyzed by the RhCe2O3- cluster in gas-phase experiments, the reactivity of the RhM2O3- (M = Ta, V, and Al) clusters in catalytic NO reduction by CO was explored. We determined theoretically that the LABA site still prevails to reduce NO to N2 mediated by RhTa2O3- and RhV2O3-, and the strong M-oxygen affinity was emphasized to construct the LABA site. An overall assessment highlights that RhV2O3- functions as a more promising catalyst because the well-fitting V-O bonding strength facilitates both elementary reactions of NO reduction and CO oxidation.
Collapse
Affiliation(s)
- Jin-You Chen
- China
School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Yi Liu
- Key
Laboratory of Cluster Science of Ministry of Education, School of
Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing 102488, P. R. China
| | - Tong-Mei Ma
- China
School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Zi-Yu Li
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiao-Na Li
- Key
Laboratory of Cluster Science of Ministry of Education, School of
Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
4
|
Sun XY, Wang SD, Chen JY, Ma TM, He SG, Li XN. Catalytic Conversion of NO and CO by Noble-Metal-Free Copper-Vanadium Oxide Cluster Anions CuVO 3,4. J Phys Chem Lett 2024; 15:9043-9050. [PMID: 39194150 DOI: 10.1021/acs.jpclett.4c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Herein, by using state-of-the-art mass spectrometry, we demonstrated experimentally that the bimetallic copper-vanadium oxide cluster anions CuVO3,4- can catalyze the reduction of NO by CO into N2O and CO2. Note that the catalysis of NO reduction by CO has been rarely established in the gas phase and noble-metal containing clusters were commonly emphasized. Benefiting from quantum-chemical calculations, the Cu-V synergistic effect that both metal atoms work energetically to favor NO adsorption, N-N coupling, and CO oxidation by facilitating electron transfer can be understood at a strictly molecular level. Theoretical results demonstrated that the precaptured NO molecule encourages the adsorption of the second NO by electron donation. This finding deepens our understanding on NO reduction that NO functions not only as a reactant but also as a promoter during the reactions. This discovery could be helpful to permeate the nature and mechanism of active sites on related copper-vanadium heterogeneous catalyst used in real-life NO reduction.
Collapse
Affiliation(s)
- Xin-Yue Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Jin-You Chen
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
5
|
Li R, Li YK, Xu J, Hou GL. Direct reduction of NO into N 2 catalyzed by fullerene-supported rhodium clusters. Phys Chem Chem Phys 2024; 26:15332-15337. [PMID: 38748511 DOI: 10.1039/d4cp01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Catalytic conversion of NO has long been a focus of atmospheric pollution control and diesel vehicle exhaust treatment. Rhodium is one of the most effective metals for catalyzing NO reduction, and understanding the nature of the active sites and underlying mechanisms can help improve the design of Rh-based catalysts towards NO reduction. In this work, we investigated the detailed catalytic mechanisms for the direct reduction of NO to N2 by fullerene-supported rhodium clusters, C60Rh4+, with density functional theory calculations. We found that the presence of C60 facilitates the smooth reduction of NO into N2 and O2, as well as their subsequent desorption, recovering the catalyst C60Rh4+. Such a process fails to be completed by free Rh4+, emphasizing the critical importance of C60 support. We attribute the novel performance of C60Rh4+ to the electron sponge effect of C60, providing useful guidance for designing efficient catalysts for the direct reduction of NO.
Collapse
Affiliation(s)
- Ruomeng Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Ya-Ke Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| |
Collapse
|
6
|
Wang SD, Ma TM, Li XN, He SG. CO Oxidation Promoted by NO Adsorption on RhMn 2O 3- Cluster Anions. J Phys Chem A 2024; 128:738-746. [PMID: 38236743 DOI: 10.1021/acs.jpca.3c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CO oxidation represents an important model reaction in the gas phase to provide a clear structure-reactivity relationship in related heterogeneous catalysis. Herein, in combination with mass spectrometry experiments and quantum-chemical calculations, we identified that the RhMn2O3- cluster cannot oxidize CO into gas-phase CO2 at room temperature, while the NO preadsorbed products RhMn2O3-[(NO)1,2] are highly reactive in CO oxidation. This discovery is helpful to get a fundamental understanding on the reaction behavior in real-world three-way catalytic conditions where different kinds of reactants coexist. Theoretical calculations were performed to rationalize the crucial roles of preadsorbed NO where the strongly attached NO on the Rh atom can greatly stabilize the products RhMn2O2-[(NO)1,2] during CO oxidation and at the same time works together with the Rh atom to store electrons that stay originally in the attached CO2- unit. The leading result is that the desorption of CO2, which is the rate-determining step of CO oxidation by RhMn2O3-, can be greatly facilitated on the reactions of RhMn2O3-[(NO)1,2] with CO.
Collapse
Affiliation(s)
- Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Xiao-Na Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|