1
|
Ma Y, Tu Y, Chen Y, Chen X, Pan X, Sun M, Fu X, Zou J, Gao F. An Oral H 2S Responsive Cu 5.4O Nanozyme Platform with Strong ROS/H 2S Scavenging Capacity for the Treatment of Colitis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:617-631. [PMID: 39722133 DOI: 10.1021/acsami.4c17782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (H2S) at inflammatory sites. Nanozyme-mediated ROS and H2S scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging Cu5.4O nanoparticle and first explored its H2S scavenging capacity. Chitosan oligosaccharide modified with alpha-lipoic acid was coated on the nanoparticles to further enhance the H2S scavenging capacity. Furthermore, calcium alginate was coated on the surface to develop an oral nanoplatform (Cu5.4O@SAG) possessing dual-pH/H2S-responsive release characteristics. Importantly, Cu5.4O@SAG exhibited enrichment at the colonic inflammation site and relieved the inflammatory index, containing the recovery of colon length, spleen index, liver index, and body weight, as well as inflammatory cell infiltration. In vivo and in vitro experiments revealed the dual ROS and H2S scavenging capacities of the nanoplatform. Additionally, Cu5.4O@SAG regulated tight junctions, mucus layers, and gut microbiota, which was accompanied by the downregulation of inflammatory cytokines. Notably, Cu5.4O@SAG also had excellent biocompatibility. In conclusion, this oral multiple-scavenging nanozyme platform provides a new and safe paradigm for the development of nanozymes for colitis treatment.
Collapse
Affiliation(s)
- Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixing Tu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xier Pan
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyue Sun
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Kumar S, Mishra S, Das A, Mahiya K, Laha S, Maji M, Patra AK. Analogous copper nanoclusters (Cu 16/17) with two electron superatomic and mixed valence copper(II)/copper(I) and copper(I)/copper(0) characters. NANOSCALE 2025; 17:982-991. [PMID: 39588686 DOI: 10.1039/d4nr03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The reported copper nanoclusters (Cu NCs) of either CuII or CuI or mixed valence (MV) CuII/CuI or CuI/Cu0 characters are found to be stabilized with a discrete set of ligand donors; hence, analogous Cu NCs with a common architecture supported by the same or nearly the same donor set that exhibit different MV states of Cu, such as CuII/CuI and CuI/Cu0, are unknown. Such a series of highest nuclearity copper clusters supported by aromatic thiol-S donor ligands, namely [(L4)12CuI15CuII(μ4-S)](PF6)3 (1), [(MeL4)12CuI15Cu0(μ4-S)]ClO4·8C7H8 (2) and [(L4)12CuI15Cu02(DMF)](PF6)3·C2H5OH·2C7H8 (3), where XL4 = 2-((3-X-thiophen)-(2-yl-methylene)amino)-4-(trifluoromethyl)benzenethiol (X = H/Me), have been synthesized and their electronic structural properties have been examined and reported herein. The Cu16 NCs, 1 and 2, feature a central sulfido-S (Ss) bridged tetracopper SsCu4 core inside a sphere-shaped Cu12S12 truncated octahedron. As 1 and 2 have a non-metal (chalcogen or halogen) central atom (here Ss) instead of a metallic Cu core inside the Cu12S12 shell, they are of the inverse coordination complex (ICC) category, rather than superatomic with a core-shell (the core is a metal and the shell is a metal-ligand framework) structure. The NC 1, in the presence of polar solvents, converts to a two electron superatomic Cu17 NC, 3. The NC 3 features a trigonal pyramidal-shaped Cu4 core inside a modified Cu12S12, i.e. Cu13S12 shell. The transformation of 1 to 3 may be visualized as the replacement of the central sulfido-S by an extra Cu atom (generated from decomposed molecules of 1) and the shifting of a Cu atom of the SsCu4 unit to the Cu12S12 shell, resulting in a Cu13S12 shell. The present work offers the first example of (i) an ICC that has Cu0 character (i.e.2), (ii) a superatomic Cu NC (i.e.3) stabilized by an aromatic thiol-S donor ligand and (iii) spontaneous ICC (i.e.1) → superatomic NC (i.e.3) conversion that does not require any reducing agent, but rather occurs in the presence of a dioxygen oxidant. The probable mechanisms for the reversible 1 ↔ 3 conversions have been discussed. The presence of Ss in 1 and 2 unveils the first evidence of benzene thiol C-S bond cleavage, to the best of our knowledge. The spectroelectrochemical studies shed light on the choice of CuII/CuI and CuI/Cu0 character of 1 and 2, respectively, which is supported by high resolution XPS and Cu LMM Auger spectroscopy.
Collapse
Affiliation(s)
- Shibaditya Kumar
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Saikat Mishra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Aniruddha Das
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Kuldeep Mahiya
- Department of Chemistry, F. G. M. Government College, Adampur, Hisar-125052, Haryana, India
| | - Sourav Laha
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Milan Maji
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| | - Apurba K Patra
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, India.
| |
Collapse
|
3
|
Sun X, Jiang WY, Du P, Gong X, Li S, Guo Q, Wei J, Shen H. Atomically Precise Cu 12 Nanoclusters with Thermally Activated Delayed Fluorescence Properties. Inorg Chem 2024. [PMID: 39718354 DOI: 10.1021/acs.inorgchem.4c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Ligand-stabilized metal nanoclusters with atomic precision are considered to be promising materials in the field of light-emitting and harvesting. Among these, nanoclusters with thermally activated delayed fluorescence (TADF) properties are highly sought after. While several gold and silver nanoclusters with TADF properties have been reported in recent years, research on copper counterparts has significantly lagged behind. In this study, we present the synthesis, total structure determination, and photoluminescent properties of a copper cluster with TADF properties. The cluster, with the molecular formula (PPh4)[Cu12(NO3)6(AdmS)6] (PPh4 is tetraphenylphosphine tetraphenylboron, and AdmSH is adamantanethiol), was obtained in a single reaction in the presence of air and fully characterized using electrospray ionization mass spectroscopy (ESI-MS), X-ray photoelectron spectroscopy, nuclear magnetic resonance, and ultraviolet-visible spectroscopy (UV-vis). The molecular structure of the cluster, as determined by X-ray crystallographic analysis, reveals the stabilization of a Cu12 core (layer-by-layer growth mode of Cu3@Cu6@Cu3) with 6 NO3- and 6 AdmS- ligands acting as stabilizing ligands. Interestingly, the cluster exhibits photoluminescence in both crystalline and solution states and displays typical TADF characteristics within the temperature range of 163-243 K. This study not only presents a pioneering example of copper nanoclusters with TADF properties but also highlights the promising future of copper clusters in material science.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Wen-Ya Jiang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Peiling Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Jin Y, Zhang Z, Zheng H, Cheng X, Geng L, Zhou Z, Han H. Unveiling the Formation Mechanism for Binary Semiconductor Nanoclusters: a Two-Step Pathway to a Double-Shell Structured Copper Sulfide Nanocluster. ACS NANO 2024; 18:33681-33695. [PMID: 39585078 DOI: 10.1021/acsnano.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
This work represents an important step in the quest to unveil the formation mechanism of atomically precise binary semiconductor nanoclusters. In this study, we develop an acid-assisted C-S bond cleavage approach, wherein the C-S bonds in the metal thiolate precursor can be readily cleaved to release S2- with the assistance of a suitable acid in the presence of Cu2O as the catalyst. This process spontaneously fosters the formation of a [-Cu-S-Cu-] framework and promotes the structural growth into a high nuclearity assembly. Specifically, by employing Cu(I) tert-butyl thiolate ([CuStBu]∞) and carboxylate acid CH2═CHCOOH as the copper/sulfur precursor and C-S bond "scissor", a high-nuclearity nanocluster [S-Cu56] (Cu56S12(OOCCH═CH2)12(SC(CH3)3)20) featuring a double-shell configuration has been effectively prepared in high yield. Importantly, the [CuStBu]∞ precursor and the intermediate [S-Cu14] (Cu14(StBu)8(OOCCH═CH2)6) cluster have also been successfully isolated and structurally characterized, which ultimately enables the establishment of a two-step formation pathway for the [S-Cu56] nanocluster. Furthermore, in contrast to conventional reduction synthetic routes for metal nanoclusters containing Cu(0) or Cu(I), the acid-assisted C-S bond cleavage approach represents an oxidation process with respect to the constituent metals, yielding highly charged Cu(II) cations in the copper sulfide nanocluster.
Collapse
Affiliation(s)
- Yuhao Jin
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xianghan Cheng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
5
|
Zuo D, Guo H, Xu Q, He A, Li Z, Li S, Shen H. N-Heterocyclic carbene-stabilized gold-copper nanoclusters: synthesis, bonding and mechanochromism. NANOSCALE 2024; 16:20228-20234. [PMID: 39397709 DOI: 10.1039/d4nr03320e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
N-Heterocyclic carbene (NHC) ligands have emerged as highly effective surface ligands for the protection and functionalization of metal nanoclusters (NCs). However, research on NHC-stabilized metal NCs, including their synthesis, structure, properties, and applications, is still in its early stages. In this study, we present the first gold-copper alloy cluster protected by both NHC and alkyne ligands, denoted as Au3Cu(iPrNHCiPr)(PA)4 (abbreviated as Au3Cu, where iPrNHCiPr is a bidentate N-heterocyclic carbene ligand with isopropyl as the N-substituent, and PA is a phenylethynyl group). The precise composition of Au3Cu was confirmed through the utilization of electrospray ionization mass spectrometry (ESI-MS), and its structure was determined via X-ray single-crystal diffraction. It is worth noting that although the Au3Cu clusters do not display substantial light emission when exposed to UV lamps, they are capable of emitting green fluorescence subsequent to undergoing mechanical milling (λem = 500 nm). Powder X-ray diffraction (PXRD) analysis reveals that this transition is attributed to a crystalline-amorphous transformation of the cluster crystals. These atomically precise alloy clusters are expected to serve as a model for further investigation into the principles of mechanical milling of metal clusters for discolouration.
Collapse
Affiliation(s)
- Dongjie Zuo
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Huifang Guo
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qinghua Xu
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Ayisha He
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Zilin Li
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Hui Shen
- The College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Li S, Wu Q, You X, Ren X, Du P, Li F, Zheng N, Shen H. Anchoring Frustrated Lewis Pair Active Sites on Copper Nanoclusters for Regioselective Hydrogenation. J Am Chem Soc 2024; 146:27852-27860. [PMID: 39352212 DOI: 10.1021/jacs.4c10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, the concept of Frustrated Lewis Pairs (FLPs), which consist of a combination of Lewis acid (LA) and Lewis base (LB) active sites arranged in a suitable geometric configuration, has been widely utilized in homogeneous catalytic reactions. This concept has also been extended to solid supports such as zeolites, metal oxide surfaces, and metal/covalent organic frameworks, resulting in a diverse range of heterogeneous FLP catalysts that have demonstrated notable efficiency and recyclability in activating small molecules. This study presents the successful immobilization of FLP active sites onto the surface of ligand-stabilized copper nanoclusters with atomic precision, leading to the development of copper nanocluster FLP catalysts characterized by high reactivity, stability, and selectivity. Specifically, thiol ligands containing 2-methoxyl groups were strategically designed to stabilize the surface of [Cu34S7(RS)18(PPh3)4]2+ (where RSH = 2-methoxybenzenethiol), facilitating the formation of FLPs between the surface copper atoms (LA) and ligand oxygen atoms (LB). Experimental and theoretical investigations have demonstrated that these FLPs on the cluster surface can efficiently activate H2 through a heterolytic pathway, resulting in superior catalytic performance in the hydrogenation of alkenes under mild conditions. Notably, the intricate yet precise surface coordination structures of the cluster, reminiscent of enzyme catalysts, enable the hydrogenation process to proceed with nearly 100% selectivity. This research offers valuable insights into the design of FLP catalysts with enhanced activity and selectivity by leveraging surface/interface coordination chemistry of ligand-stabilized atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qingyuan Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Xuexin You
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Xiaofei Ren
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Peilin Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Liu M, Li N, Meng S, Yang S, Jing B, Zhang J, Jiang J, Qiu S, Deng F. Bio-inspired Cu 2O cathode for O 2 capturing and oxidation boosting in electro-Fenton for sulfathiazole decay. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135484. [PMID: 39173382 DOI: 10.1016/j.jhazmat.2024.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A hydrophobic Cu2O cathode (CuxO-L) was designed to solve the challenge of low oxidation ability in electro-Fenton (EF) for treating emerging pollutants. This fabrication process involved forming Cu(OH)2 nanorods by oxidizing copper foam (Cu-F) with (NH4)2S2O8, followed by coating them with glucose via hydrothermal treatment. Finally, a self-assembled monolayer of 1-octadecanethiol was introduced to create a low-surface-energy, functionalized CuxO-L cathode. Results exhibited an approximately 7.9-fold increase in hydroxyl radical (·OH) generation compared to the initial Cu-F. This enhancement was attributed to two key factors: (Ⅰ) the superior O2-capturing ability of CuxO-L cathode, which led to high H2O2 production due to a 2 nm thick hydrophobic gas layer facilitated O2-capturing; (Ⅱ) a relative high concentration of Cu+ at the CuxO-L cathode promoted the activation of H2O2 into·OH. In addition, the performance of EF with the CuxO-L cathode using sulfathiazole (STZ) as a model pollutant was evaluated. This study offers valuable insights into the design of O2-capturing cathodes in EF processes, particularly for treating emerging organic pollutants.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 China
| | - Shiyu Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shilin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baojian Jing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiayu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Sun J, Wu Q, Yan X, Li L, Tang X, Gong X, Yan B, Xu Q, Guo Q, He J, Shen H. Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis. JACS AU 2024; 4:3427-3435. [PMID: 39328750 PMCID: PMC11423317 DOI: 10.1021/jacsau.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
The utilization of structure distortion to modulate the electronic structure and alter catalytic properties of metallic nanomaterials is a well-established practice, but accurately identifying and comprehensively understanding these distortions present significant challenges. Ligand-stabilized metal nanoclusters with well-defined structures serve as exemplary model systems to illustrate the structure chemistry of nanomaterials, among which few studies have investigated nanocluster models that incorporate structural distortions. In this work, a novel copper hydride nanocluster, Cu42(PPh3)8(RS)4(CF3COO)10(CH3O)4H10 (Cu42; PPh3 is triphenylphosphine and RSH is 2,4-dichlorophenylthiol), with a highly twisted structure has been synthesized in a simple way. Structural analysis reveals Cu42 comprises two Cu25 units that are conjoined in a nearly orthogonal manner. The dramatic distortion in the metal framework, which is driven by multiple interactions from the surface ligands, endows the cluster with a rich array of uncoordinated metal sites on the surface. The resulting cluster, as envisioned, exhibits remarkable activity in catalyzing carbonylation of anilines. The findings from this study not only provides atomically precise insights into the structural distortions that are pertinent to nanoparticle catalysts but also underscores the potential of structurally distorted NCs as a burgeoning generation of catalysts with precise structures and outstanding performances that can be tailored for specific functions.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Lei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
9
|
Du P, Sachurilatu, Jiang W, Wei J, Li S, Shen H. Ligand effects in photoluminescence of copper nanoclusters. Dalton Trans 2024; 53:15190-15197. [PMID: 39221584 DOI: 10.1039/d4dt02060j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Copper nanoclusters have attracted significant interest in the field of materials science due to their high abundance, complex structure, and unique properties. However, there is a limited amount of research on the relationship between structure and properties. In this study, we synthesized and comprehensively characterized two new Cu9 nanoclusters, [Cu9(PhSe)6(PPh2O2)3] (Cu9-1) and [Cu9(CH3OPhS)6(PPh2O2)3] (Cu9-2), in order to investigate the effect of ligands on photoluminescence. Both clusters have the same metal skeleton and similar distribution of ligands, with the only difference being the surface ligands (PhSe vs. CH3OPhS). Interestingly, the photoluminescence lifetime of Cu9-2 was found to be 3.2 times longer than that of Cu9-1. Furthermore, a notable Stokes shift (ST) was observed in the emission spectra of the two clusters. Single-crystal X-ray analysis revealed the formation of hydrogen bonds between neighboring clusters of Cu9-2, which influenced intramolecular interactions. Additionally, the methoxy groups in Cu9-2, acting as conjugated electron donors, promoted intramolecular charge transfer and π-π interaction. This study is expected to inspire further research on surface ligand engineering for controlling the properties of copper nanoclusters beyond photoluminescence.
Collapse
Affiliation(s)
- Peiling Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Sachurilatu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Wenya Jiang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
10
|
Yang T, Jia J, Xiong L, Jin S, Zhu M. [Cu 58(SeC 6H 5) 24(Dppe) 6Se 16] 2+ assembled from tetrahedra and octahedra: synthesis, characterization, structure and catalytic properties. Chem Commun (Camb) 2024; 60:9614-9617. [PMID: 39150075 DOI: 10.1039/d4cc03288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Herein, we successfully synthesized a copper nanocluster, [Cu58(SeC6H5)24(Dppe)6Se16]2+. The Cu58 features a tetrahedral Cu4 core, surrounded by tetrahedral Se4 and octahedral Cu6 subunits, and further stabilized by Cu3Se3, Cu3(SeR)3, and DppeCu2 staples, which can be interpreted as an assembly of tetrahedral and octahedral units. Density functional theory (DFT) calculations were employed to investigate the electronic structure of Cu58. This nanocluster demonstrates excellent catalytic properties in copper-catalyzed [3+2] azide-alkyne cycloaddition (CuAAC) reactions. Additionally, Cu58 enriches the structural diversity of copper-based nanoclusters, providing valuable insights for future structural predictions.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| | - Jianmei Jia
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, P. R. China.
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| |
Collapse
|
11
|
Jana A, Duary S, Das A, Kini AR, Acharya S, Machacek J, Pathak B, Base T, Pradeep T. Multicolor photoluminescence of Cu 14 clusters modulated using surface ligands. Chem Sci 2024; 15:13741-13752. [PMID: 39211504 PMCID: PMC11352640 DOI: 10.1039/d4sc01566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Copper nanoclusters exhibit unique structural features and their molecular assembly results in diverse photoluminescence properties. In this study, we present ligand-dependent multicolor luminescence observed in a Cu14 cluster, primarily protected by ortho-carborane-9,12-dithiol (o-CBDT), featuring an octahedral Cu6 inner kernel enveloped by eight isolated copper atoms. The outer layer of the metal kernel consists of six bidentate o-CBDT ligands, in which carborane backbones are connected through μ3-sulphide linkages. The initially prepared Cu14 cluster, solely protected by six o-CBDT ligands, did not crystallize in its native form. However, in the presence of N,N-dimethylformamide (DMF), the cluster crystallized along with six DMF molecules. Single-crystal X-ray diffraction (SCXRD) revealed that the DMF molecules were directly coordinated to six of the eight capping Cu atoms, while oxygen atoms were bound to the two remaining Cu apices in antipodal positions. Efficient tailoring of the cluster surface with DMF shifted its luminescence from yellow to bright red. Luminescence decay profiles showed fluorescence emission for these clusters, originating from the singlet states. Additionally, we synthesized microcrystalline fibers with a one-dimensional assembly of DMF-appended Cu14 clusters and bidentate DPPE linkers. These fibers exhibited bright greenish-yellow phosphorescence emission, originating from the triplet state, indicating the drastic surface tailoring effect of secondary ligands. Theoretical calculations provided insights into the electronic energy levels and associated electronic transitions for these clusters. This work demonstrated dynamic tuning of the emissive excited states of copper nanoclusters through the efficient engineering of ligands.
Collapse
Affiliation(s)
- Arijit Jana
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Subrata Duary
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 India
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Swetashree Acharya
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Jan Machacek
- Department of Syntheses, Institute of Inorganic Chemistry, The Czech Academy of Sciences 1001 Husinec - Rez 25068 Czech Republic
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 India
| | - Tomas Base
- Department of Syntheses, Institute of Inorganic Chemistry, The Czech Academy of Sciences 1001 Husinec - Rez 25068 Czech Republic
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| |
Collapse
|
12
|
He Y, Liu Y, Zheng H, Xiang Z, Zhou Z, Geng F, Geng L, Dikarev EV, Han H. From cubane-assembled Mn-oxo clusters to monodispersed manganese oxide colloidal nanocrystals. Chem Sci 2024; 15:10381-10391. [PMID: 38994417 PMCID: PMC11234875 DOI: 10.1039/d4sc01451k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
The assemblies of [M4O4] (M = metal) cubanes represent a fascinating class of materials for a variety of application fields. Although such a structural characteristic is relatively common in small molecules and in extended bulk solids, high nuclearity clusters composed of multiple [M4O4] units as their backbones are rare. In this work, we report two new Mn-oxo clusters, MnII 8MnIII 10O10(OOCMe)12(OMe)14(py)2 ([Mn18-Ac]) and MnII 4MnIII 14O14(OOCCMe3)8(OMe)14(MeOH)5(py) ([Mn18-Piv]), whose core structures are assemblies of either 6- or 7-cubanes in different packing patterns, which have been unambiguously revealed by single crystal X-ray diffraction technique. The cubane-assembled structural features can be deemed as the embryonic structures of the bulk manganese oxide. Herein, this report demonstrates the first case study of utilizing Mn-oxo clusters as precursors for the preparation of manganese oxide nanocrystals, which has never been explored before. Through a simple colloidal synthetic approach, high-quality, monodisperse Mn3O4 nanocrystals can be readily prepared by employing both precursors, while their morphologies were found to be quite different. This work confirms that the structural similarity between precursors and nanomaterials is instrumental in affording more kinetically efficient pathways for materials formation, and the structure of the precursor has a significant impact on the morphology of final nanocrystal products.
Collapse
Affiliation(s)
- Yan He
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Yang Liu
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Zhen Xiang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Fengting Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University Dezhou 253023 China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University Dezhou 253023 China
| | - Evgeny V Dikarev
- Department of Chemistry, University at Albany, State University of New York Albany New York 12222 USA
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
13
|
Li H, Wang T, Han J, Xu Y, Kang X, Li X, Zhu M. Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement. Nat Commun 2024; 15:5351. [PMID: 38914548 PMCID: PMC11196639 DOI: 10.1038/s41467-024-49735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 230601, Hefei, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA
| | - Jiaojiao Han
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Ying Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| |
Collapse
|
14
|
Alam N, Das AK, Chandrashekar P, Baidya P, Mandal S. Recent progress in atomically precise silver nanocluster-assembled materials. NANOSCALE 2024; 16:10087-10107. [PMID: 38713237 DOI: 10.1039/d4nr01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the dynamic landscape of nanotechnology, atomically precise silver nanoclusters (Ag NCs) have emerged as a novel and promising category of materials with their fascinating properties and enormous potential. However, recent research endeavors have surged towards stabilizing Ag-based NCs, leading to innovative strategies like connecting cluster nodes with organic linkers to construct hierarchical structures, thus forming Ag-based cluster-assembled materials (CAMs). This approach not only enhances structural stability, but also unveils unprecedented opportunities for CAMs, overcoming the limitations of individual Ag NCs. In this context, this review delves into the captivating realm of atomically precise nitrogen-based ligand bonded Ag(I)-based CAMs, providing insights into synthetic strategies, structure-property relationships, and diverse applications. We navigate the challenges and advancements in integrating Ag(I) cluster nodes, bound by argentophilic interactions, into highly connected periodic frameworks with different dimensionalities using nitrogen-based linkers. Despite the inherent diversity among cluster nodes, Ag(I) CAMs demonstrate promising potential in sensing, catalysis, bio-imaging, and device fabrication, which all are discussed in this review. Therefore, gaining insight into the silver nanocluster assembly process will offer valuable information, which can enlighten the readers on the design and advancement of Ag(I) CAMs for state-of-the-art applications.
Collapse
Affiliation(s)
- Noohul Alam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyanka Chandrashekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyadarshini Baidya
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| |
Collapse
|
15
|
Sun X, Yan B, Gong X, Xu Q, Guo Q, Shen H. Eight-Electron Copper Nanoclusters for Photothermal Conversion. Chemistry 2024; 30:e202400527. [PMID: 38470123 DOI: 10.1002/chem.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Owing to distinct physicochemical properties in comparison to gold and silver counterparts, atomically precise copper nanoclusters are attracting embryonic interest in material science. The introduction of copper cluster nanomaterials in more interesting fields is currently urgent and desired. Reported in this work are novel copper nanoclusters of [XCu54Cl12(tBuS)20(NO3)12] (X=S or none, tBuSH=2-methyl-2-propanethiol), which exhibit high performance in photothermal conversion. The clusters have been prepared in one pot and characterized by combinatorial techniques including ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and X-ray photoelectron spectroscopy (XPS). The molecular structure of the clusters, as revealed by single crystal X-ray diffraction analysis (SCXRD), shows the concentric three-shell Russian doll arrangement of X@Cu14@Cl12@Cu40. Interestingly, the [SCu54Cl12(tBuS)20(NO3)12] cluster contains 8 free valence electrons in its structure, making it the first eight-electron copper nanocluster stabilized by thiolates. More impressively, the clusters possess an effective photothermal conversion (temperature increases by 71 °C within ~50 s, λex=445 nm, 0.5 W cm-2) in a wide wavelength range (either blue or near-infrared). The photothermal conversion can be even driven under irradiation of simulated sunlight (3 sun), endowing the clusters with great potency in solar energy utilization.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
16
|
Liu Z, Bao D, Jia S, Qiao J, Xiang D, Li H, Tian L, Zhang B, Zhang X, Zhang H, Guo J, Zhang S. The regulation of CuSNPs' interface for further enhancing mechanical and photothermal conversion properties of chitosan/@CuSNPs hybrid fibers. Int J Biol Macromol 2024; 265:130931. [PMID: 38508563 DOI: 10.1016/j.ijbiomac.2024.130931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Our previous study has demonstrated that the microstructure of copper sulfide nanoparticles (CuSNPs) can be controlled to enhance mechanical and photothermal conversion properties of chitosan (CS)/CuSNPs hybrid fibers. However, achieving optimal dispersion and compatibility of CuSNPs within a CS matrix remains a challenge, this study aims to improve dispersion and compatibility by modifying the CuSNPs' interface, thereby enhancing mechanical and photothermal conversion properties of hybrid fibers. The interfaces of @CuSNPs (CuS@Xylan NPs, CuS@SA NPs, and CuS@PEG NPs) contain hydroxyl groups, facilitating the hydrogen bonds formation with the CS matrix. The dispersibility is further enhanced by the synergistic effect of xylan and SA's anionic charges with cationic chitosan. Notably, the viscosity of the CS/@CuSNPs hybrid spinning solution is significantly enhanced, resulting in improved breaking strength for initial hybrid fibers. Specifically, the breaking strength of CS/CuS@Xylan NPs hybrid fibers reaches 1.4 cN/dtex, exhibiting a 42.86 % and 20.6 % increase over CS and CS/CuSNPs hybrid fibers. Simultaneously, the CS/CuS@Xylan NPs hybrid fibers exhibit exceptional photothermal conversion performance, surpassing that of CS fibers by 5.2 times and CS/CuSNPs hybrid fibers by 1.4 times. The regulation of interface modification is an efficient approach to enhance the tensile strength and photothermal conversion properties of CS/CuSNPs hybrid fibers.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Da Bao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Shangyin Jia
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Jin Qiao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Dongliang Xiang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Huirong Li
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Linna Tian
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Bing Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Xin Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Hong Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China
| | - Jing Guo
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China
| | - Sen Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
17
|
Xiang H, Cheng R, Ruan C, Meng C, Gan Y, Cheng W, Zhao Y, Xu CQ, Li J, Yao C. A homologous series of macrocyclic Ni clusters: synthesis, structures, and catalytic properties. NANOSCALE 2024; 16:4563-4570. [PMID: 38305474 DOI: 10.1039/d3nr06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Due to their intriguing ring structures and promising applications, nickel-thiolate clusters, such as [Nin(SR)2n] (n = 4-6), have attracted tremendous interest. However, investigation of the synthesis, structures, and properties of macrocyclic Nin clusters (n > 8) has been seriously impeded. In this work, a homologous series of macrocyclic nickel clusters, Nin(4MPT)2n (n = 9-12), was fabricated by using 4-methylphenthiophenol (4MPT) as the ligand. The structures and compositions of the clusters were determined by single-crystal X-ray diffraction (SXRD) in combination with electrospray ionization mass spectrometry (ESI-MS). Experimental results and theoretical calculations show that the electronic structures of the clusters do not change significantly with the increase of Ni atoms. The coordination interactions between Ni and S atoms in [NiS4] subunits are proved to play a crucial rule in the remarkable stability of Ni clusters. Finally, these clusters display excellent catalytic activity towards the reduction of p-nitrophenol, and a linear correlation between catalytic activity and ring size was revealed. The study provides a facile approach to macrocyclic homoleptic nickel clusters, and contributes to an in-depth understanding of the structure-property correlations of nickel clusters at the atomic level.
Collapse
Affiliation(s)
- Huixin Xiang
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Ranran Cheng
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenhao Ruan
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Changqing Meng
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuzheng Gan
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wanyu Cheng
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Chuanhao Yao
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|