1
|
Chaudhri AA, Kakumu Y, Thiengmag S, Liu JCT, Lin GM, Durusu S, Biermann F, Boeck M, Voigt CA, Clardy J, Ueoka R, Walker AS, Helfrich EJN. Functional Redundancy and Dual Function of a Hypothetical Protein in the Biosynthesis of Eunicellane-Type Diterpenoids. ACS Chem Biol 2024. [PMID: 39485010 DOI: 10.1021/acschembio.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Many complex terpenoids, predominantly isolated from plants and fungi, show drug-like physicochemical properties. Recent advances in genome mining revealed actinobacteria as an almost untouched treasure trove of terpene biosynthetic gene clusters (BGCs). In this study, we characterized a terpene BGC with an unusual architecture. The selected BGC includes, among others, genes encoding a terpene cyclase fused to a truncated reductase domain and a cytochrome P450 monooxygenase (P450) that is split over three gene fragments. Functional characterization of the BGC in a heterologous host led to the identification of several new members of the trans-eunicellane family of diterpenoids, the euthailols, that feature unique oxidation patterns. A combination of bioinformatic analyses, structural modeling studies, and heterologous expression revealed a dual function of the pathway-encoded hypothetical protein that acts as an isomerase and an oxygenase. Moreover, in the absence of other tailoring enzymes, a P450 hydroxylates the eunicellane scaffold at a position that is not modified in other eunicellanes. Surprisingly, both the modifications installed by the hypothetical protein and one of the P450s exhibit partial redundancy. Bioactivity assays revealed that some of the euthailols show growth inhibitory properties against Gram-negative ESKAPE pathogens. The characterization of the euthailol BGC in this study provides unprecedented insights into the partial functional redundancy of tailoring enzymes in complex diterpenoid biosynthesis and highlights hypothetical proteins as an important and largely overlooked family of tailoring enzymes involved in the maturation of complex terpenoids.
Collapse
Affiliation(s)
- Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jack Chun-Ting Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Geng-Min Lin
- Synthetic Biology Center Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Suhan Durusu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Friederike Biermann
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Miriam Boeck
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Christopher A Voigt
- Synthetic Biology Center Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Reiko Ueoka
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee 37235, United States
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Shen L, Wang Y, Liu C, Alateng W, Wang Y, Zeeck A, Wang W, Zhang P, Wei Y, Cai X. Genome-Driven Discovery of Antiviral Atralabdans A-C from the Soil-Dwelling Streptomyces atratus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1735-1745. [PMID: 38976838 DOI: 10.1021/acs.jnatprod.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Heterologous expression of an atr terpenoid gene cluster derived from Streptomyces atratus Gö66 in S. albus J1074 led to the discovery of three novel labdane diterpenoids featuring an unprecedented 6/6/5-fused tricyclic skeleton, designated as atralabdans A-C (1-3), along with a known compound, labdanmycin A. Compounds 1-3 were identified through extensive spectroscopic analysis, including NMR calculations with DP4+ probability analysis, and a comparative assessment of experimental and theoretical electronic circular dichroism (ECD) spectra. A plausible biosynthetic pathway for these compounds was proposed. Compounds 1-3 exhibited inhibitory activity against the human neurotropic coxsackievirus B3 (CVB3); 1 was the most potent, surpassing the positive control ribavirin with a higher therapeutic index.
Collapse
Affiliation(s)
- Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanyan Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chengxin Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wula Alateng
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yuxin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Axel Zeeck
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37073, Germany
| | - Weiguang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, People's Republic of China
| | - Peng Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanhong Wei
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, People's Republic of China
| |
Collapse
|
3
|
Li J, Chen B, Fu Z, Mao J, Liu L, Chen X, Zheng M, Wang CY, Wang C, Guo YW, Xu B. Discovery of a terpene synthase synthesizing a nearly non-flexible eunicellane reveals the basis of flexibility. Nat Commun 2024; 15:5940. [PMID: 39009563 PMCID: PMC11250809 DOI: 10.1038/s41467-024-50209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Eunicellane diterpenoids, containing a typical 6,10-bicycle, are bioactive compounds widely present in marine corals, but rarely found in bacteria and plants. The intrinsic macrocycle exhibits innate structural flexibility resulting in dynamic conformational changes. However, the mechanisms controlling flexibility remain unknown. The discovery of a terpene synthase, MicA, that is responsible for the biosynthesis of a nearly non-flexible eunicellane skeleton, enable us to propose a feasible theory about the flexibility in eunicellane structures. Parallel studies of all eunicellane synthases in nature discovered to date, including 2Z-geranylgeranyl diphosphate incubations and density functional theory-based Boltzmann population computations, reveale that a trans-fused bicycle with a 2Z-configuration alkene restricts conformational flexibility resulting in a nearly non-flexible eunicellane skeleton. The catalytic route and the enzymatic mechanism of MicA are also elucidated by labeling experiments, density functional theory calculations, structural analysis of the artificial intelligence-based MicA model, and mutational studies.
Collapse
Affiliation(s)
- Jinfeng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Bao Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Zunyun Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jingjing Mao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Xiaochen Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chengyuan Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.
| |
Collapse
|
4
|
Li Z, Jindani S, Kojasoy V, Ortega T, Marshall EM, Abboud KA, Loesgen S, Tantillo DJ, Rudolf JD. Computation-guided scaffold exploration of 2 E,6 E-1,10- trans/cis-eunicellanes. Beilstein J Org Chem 2024; 20:1320-1326. [PMID: 38887579 PMCID: PMC11181210 DOI: 10.3762/bjoc.20.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Eunicellane diterpenoids are a unique family of natural products containing a foundational 6/10-bicyclic framework and can be divided into two main classes, cis and trans, based on the configurations of their ring fusion at C1 and C10. Previous studies on two bacterial diterpene synthases, Bnd4 and AlbS, revealed that these enzymes form cis- and trans-eunicellane skeletons, respectively. Although the structures of these diterpenes only differed in their configuration at a single position, C1, they displayed distinct chemical and thermal reactivities. Here, we used a combination of quantum chemical calculations and chemical transformations to probe their intrinsic properties, which result in protonation-initiated cyclization, Cope rearrangement, and atropisomerism. Finally, we exploited the reactivity of the trans-eunicellane skeleton to generate a series of 6/6/6 gersemiane-type diterpenes via electrophilic cyclization.
Collapse
Affiliation(s)
- Zining Li
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Sana Jindani
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Volga Kojasoy
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Teresa Ortega
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Erin M Marshall
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Sandra Loesgen
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Ohata J. Friedel-Crafts reactions for biomolecular chemistry. Org Biomol Chem 2024; 22:3544-3558. [PMID: 38624091 DOI: 10.1039/d4ob00406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.
Collapse
Affiliation(s)
- Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
6
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2023; 40:1816-1821. [PMID: 38047462 DOI: 10.1039/d3np90052e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as alscholarine A from Alstonia scholaris.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|