1
|
Li H, Yang J, Li D, Li X, Li J, He C. Host-Guest Approach to Promoting Photocatalysis Based on Consecutive Photo-Induced Electron-Transfer Processes via Efficient Förster Resonance Energy Transfer. Angew Chem Int Ed Engl 2024; 63:e202409094. [PMID: 38806443 DOI: 10.1002/anie.202409094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Supramolecular artificial light-harvesting system with highly efficient host-guest energy transfer pathway provides an ideal platform for optimizing the photochemistry process. The consecutive photo-induced electron transfer (conPET) process overcomes the energy limitation of visible-light photocatalysis, but is often compromised by mismatching between the absorption of ground state dye and its radical, weakening the efficiency of photoredox reaction. By encapsulating a conPET photocatalyst rhodamine 6G into metal-organic cage, the supramolecular approach was undertaken to tackle the intrinsic difficulty of matching the light absorption of photoexcitation between rhodamine 6G and its radical. The highly efficient Förster resonance energy transfer from the photoexcited cage to rhodamine 6G forced by host-guest encapsulation facilitates the conPET process for the single-wavelength light-driven activation of aryl halides by stabilizing and accelerating the production and accumulation of the rhodamine 6G radical intermediate. The tunable and flexible nature of the supramolecular host-guest complex renders the cage-based encapsulation strategy promising for the development of ideal photocatalysts toward the better utilization of solar energy.
Collapse
Affiliation(s)
- Hechuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Danyang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jianxu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Mu C, Jian S, Zhang M. Metal-Organic Frameworks (MOFs) and Metal-Organic Cages (MOCs) for Photocatalytic Hydrogen Production. Chemistry 2024; 30:e202401264. [PMID: 38807569 DOI: 10.1002/chem.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Metal-organic frameworks (MOFs) and metal-organic cages (MOCs) have garnered significant attention as promising photocatalysts due to their tunable chemical structures and integrated multifunctionality. To increase the photocatalytic efficiency, strategies like ligand functionalization, introducing additional catalytic sites, and doping or encapsulating photosensitizers have been explored for both MOFs and MOCs. This concept review focuses on recent advancements in utilizing MOFs and MOCs for photocatalytic hydrogen production, highlighting their unique characteristics and introducing their respective mechanisms in this field. Moreover, it outlines the current challenges and prospects faced by MOFs and MOCs, offering an outlook on their future in this domain.
Collapse
Affiliation(s)
- Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Shijin Jian
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Li J, Wang J, Li H, Wen X, He C. Encapsulated Dye in Coordination-Assembled Octahedron for Visible-Light-Driven Proton Reduction and Nitroaromatic Hydrogenation. Inorg Chem 2024; 63:8237-8243. [PMID: 38639568 DOI: 10.1021/acs.inorgchem.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
To mimic the finely tuned natural photosynthetic systems, a large metal-organic octahedron was synthesized by one-pot self-assembly with modified triphenylamine ligands and redox-active cobalt ions. By encapsulating an organic dye, fluorescein (Fl), within the inner cavity of the octahedron, the host-guest supramolecular system was provided for light-driven hydrogen production. The intimate distance between the redox site and the photosensitizer in the supramolecular metal-organic cage allowed the photoinduced electrons to transfer from the excited state Fl* to the redox cobalt center in a pseudo-intramolecular pathway. The supramolecular system showed good performance in light-driven hydrogen production and the reduction of nitroaromatic compounds. Control experiments based on a mononuclear compound resembling a cobalt corner of the octahedron and inhibitor competition provided evidence of enzyme-like catalytic behavior. The supramolecular reaction pathways within confined spaces contribute to the superior activity of the host-guest system.
Collapse
Affiliation(s)
- Jianxu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Hechuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| | - Xiaoqiong Wen
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. China
| |
Collapse
|
4
|
Gao K, Cheng Y, Zhang Z, Huo X, Guo C, Fu W, Xu J, Hou GL, Shang X, Zhang M. Guest-Regulated Generation of Reactive Oxygen Species from Porphyrin-Based Multicomponent Metallacages for Selective Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202319488. [PMID: 38305830 DOI: 10.1002/anie.202319488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
The development of novel materials for highly efficient and selective photocatalysis is crucial for their practical applications. Herein, we employ the host-guest chemistry of porphyrin-based metallacages to regulate the generation of reactive oxygen species and further use them for the selective photocatalytic oxidation of benzyl alcohols. Upon irradiation, the sole metallacage (6) can generate singlet oxygen (1O2) effectively via excited energy transfer, while its complex with C70 (6⊃C70) opens a pathway for electron transfer to promote the formation of superoxide anion (O2⋅-), producing both 1O2 and O2⋅-. The addition of 4,4'-bipyridine (BPY) to complex 6⊃C70 forms a more stable complex (6⊃BPY) via the coordination of the Zn-porphyrin faces of 6 and BPY, which drives fullerenes out of the cavities and restores the ability of 1O2 generation. Therefore, benzyl alcohols are oxidized into benzyl aldehydes upon irradiation in the presence of 6 or 6⊃BPY, while they are oxidized into benzoic acids when 6⊃C70 is employed as the photosensitizing agent. This study demonstrates a highly efficient strategy that utilizes the host-guest chemistry of metallacages to regulate the generation of reactive oxygen species for selective photooxidation reactions, which could promote the utilization of metallacages and their related host-guest complexes for photocatalytic applications.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Ying Cheng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xingda Huo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, 518055, Shenzhen, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of, Physics, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| |
Collapse
|
5
|
Yang Y, Li H, Shi Y, Wu Y, Jing X, Duan C. Modifying the Oxidative Potentials of Imines in a Dye Loaded Capsule for Photocatalytic Cyclization with Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319605. [PMID: 38217331 DOI: 10.1002/anie.202319605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Modifying redox potential of substrates and intermediates to balance pairs of redox steps are important stages for multistep photosynthesis but faced marked challenges. Through co-clathration of iridium photosensitizer and imine substrate within one packet of a metal-organic capsule to shift the redox potentials of substrate, herein, we reported a multiphoton enzymatic strategy for the generation of heterocycles by intramolecular C-X hydrogen evolution cross-couplings. The cage facilitated a pre-equilibrium substrate-involving clathrate that cathodic shifts the oxidation potential of the substrate-dye-host ternary complex and configuration inversion of substrate via spatial constraints in the confined space. The new two photon excitation strategy enabled the precise control of the multistep electron transfer between each pair (photosensitizer, substrate and the capsule), endowing the catalytic system proceeding smoothly with an enzymatic fashion. Three kinds of 2-subsituted (-OH, -NH2 , and -SH) imines and N-aryl enamines all give the corresponding cyclization products efficiently under visible light irradiation, demonstrating the promising of the microenvironment driven thermodynamic activation in the host-dye-substrate ternary for synergistic combination of multistep photocatalytic transformations.
Collapse
Affiliation(s)
- Yang Yang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hanning Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Youpeng Shi
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yuchen Wu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
6
|
Spicer RL, O'Connor HM, Ben-Tal Y, Zhou H, Boaler PJ, Milne FC, Brechin EK, Lloyd-Jones GC, Lusby PJ. Exo-cage catalysis and initiation derived from photo-activating host-guest encapsulation. Chem Sci 2023; 14:14140-14145. [PMID: 38098714 PMCID: PMC10718074 DOI: 10.1039/d3sc04877b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Coordination cage catalysis has commonly relied on the endogenous binding of substrates, exploiting the cavity microenvironment and spatial constraints to engender increased reactivity or interesting selectivity. Nonetheless, there are issues with this approach, such as the frequent occurrence of product inhibition or the limited applicability to a wide range of substrates and reactions. Here we describe a strategy in which the cage acts as an exogenous catalyst, wherein reactants, intermediates and products remain unbound throughout the course of the catalytic cycle. Instead, the cage is used to alter the properties of a cofactor guest, which then transfers reactivity to the bulk-phase. We have exemplified this approach using photocatalysis, showing that a photoactivated host-guest complex can mediate [4 + 2] cycloadditions and the aza-Henry reaction. Detailed in situ photolysis experiments show that the cage can both act as a photo-initiator and as an on-cycle catalyst where the quantum yield is less than unity.
Collapse
Affiliation(s)
- Rebecca L Spicer
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Helen M O'Connor
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Yael Ben-Tal
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Hang Zhou
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Patrick J Boaler
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Fraser C Milne
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Guy C Lloyd-Jones
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| | - Paul J Lusby
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh Scotland EH9 3FJ UK
| |
Collapse
|
7
|
Yang L, Song N, Zhang D, Wang S, Zhou Z. Accurate Matching of a Secondary Amino-Functionality Metal-Organic Cage for Selective Recognition and Supramolecular Binding during Photoinduced Hydrogen Evolution. Inorg Chem 2023; 62:17705-17712. [PMID: 37844205 DOI: 10.1021/acs.inorgchem.3c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Accurate matching of the active sites between the host and guest molecules has a great effect on the selective recognition of different but similar guest molecules or different binding abilities toward the same molecule. Herein, a pseudotetrahedral metal-organic cage (MOC, Co-TAP) that contains secondary amino groups designed as guest-interacting sites was achieved. Co-TAP exhibits the selective recognition of uridine over other similar natural molecules via a fluorescent response. However, a reference structure (Co-TOP) with the same configuration was also synthesized by replacing the secondary amine group with an oxygen atom of the ligand, and it reveals the selective recognition of guanosine. In addition, the accurate matching also enables Co-TAP to strongly bind the organic dye as a guest molecule via host-guest interactions, thus facilitating photoinduced electron transfer between the redox catalytic sites in MOC and the excited guest via a pseudointramolecular pathway.
Collapse
Affiliation(s)
- Lu Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Nuan Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
8
|
Mu C, Zhang L, Li G, Hou Y, Liu H, Zhang Z, Zhang R, Gao T, Qian Y, Guo C, He G, Zhang M. Isoreticular Preparation of Tetraphenylethylene-based Multicomponent Metallacages towards Light-Driven Hydrogen Production. Angew Chem Int Ed Engl 2023; 62:e202311137. [PMID: 37594254 DOI: 10.1002/anie.202311137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Multicomponent metallacages can integrate the functions of their different building blocks to achieve synergetic effects for advanced applications. Herein, based on metal-coordination-driven self-assembly, we report the preparation of a series of isoreticular tetraphenylethylene-based metallacages, which are well characterized by multinuclear NMR, ESI-TOF-MS and single-crystal X-ray diffraction techniques. The suitable integration of photosensitizing tetraphenylethylene units as faces and Re catalytic complexes as the pillars into a single metallacage offers a high photocatalytic hydrogen production rate of 1707 μmol g-1 h-1 , which is one of the highest values among reported metallacages. Femtosecond transient absorption and DFT calculations reveal that the metallacage can serve as a platform for the precise and organized arrangement of the two building blocks, enabling efficient and directional electron transfer for highly efficient photocatalytic performance. This study provides a general strategy to integrate multifunctional ligands into a certain metallacage to improve the efficiency of photocatalytic hydrogen production, which will guide the future design of metallacages towards photocatalysis.
Collapse
Affiliation(s)
- Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710126, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ruoqian Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tingting Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuchen Qian
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710126, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
9
|
Zhou LP, Feng XS, Hu SJ, Sun QF. Controlled Self-Assembly, Isomerism, and Guest Uptake/Release of Charge-Reversible Lanthanide-Organic Octahedral Cages. J Am Chem Soc 2023; 145:17845-17855. [PMID: 37545096 DOI: 10.1021/jacs.3c04921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Charge plays a crucial role in the function of molecular and supramolecular systems, but coordination hosts capable of orthogonal charge regulation remain elusive so far. In this study, we report the condition-dependent self-assembly of charge-reversible lanthanide-organic tetra-capped octahedral cages, i.e., [Ln6(H3L)4]6+ and [Ln6L4]6-, from a series of lanthanide ions (Ln3+; Ln = Lu, Yb, Eu) and a tritopic tetradentate acylhydrazone ligand (H6L) featuring multiple deprotonation states and propeller conformations. While direct self-assembly under basic conditions produced a mixture of various ΔxΛ6-x-[Ln6L4]6- (x = 0-6) stereoisomers, racemic Δ6- and Λ6-[Ln6L4]6- could be exclusively obtained from the first self-assembly of Δ6- and Λ6-[Ln6(H3L)4]6+ under neutral conditions followed by post-assembly deprotonation. Rich isomerism on the tetra-capped octahedral cages arising from the coupling between the metal-centered Δ/Λ chirality and the ligand conformations has been discussed based on X-ray single-crystal structures of the C3-symmetric Δ3Λ3-Ln6L4 and T-symmetric Δ6/Λ6-Ln6L4 complexes. Host-guest studies confirmed that positively charged rac-Δ6/Λ6-[Ln6(H3L)4]6+ could bind anionic sulfonates, and negatively charged rac-Δ6/Λ6-[Ln6L4]6- exhibited strong encapsulation ability toward ammonium guests, where acid/base-triggered guest uptake/release could be realized taking advantage of the charge reversibility of the cage. Moreover, photophysical studies revealed visible-light-sensitized and guest-encapsulation-enhanced NIR emissions on the rac-Δ6/Λ6-Yb6L4 cage. This work not only enriches the library of functional lanthanide-organic cages but also provides a promising candidate with charge reversibility for the development of smart supramolecular materials.
Collapse
Affiliation(s)
- Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiao-Shan Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
10
|
Solea AB, Ward MD. A chemiluminescent lantern: a coordination cage catalysed oxidation of luminol followed by chemiluminescence resonance energy-transfer. Dalton Trans 2023; 52:4456-4461. [PMID: 36917490 PMCID: PMC10071490 DOI: 10.1039/d3dt00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A molecule of luminol bound as guest inside a Co8 coordination cage host undergoes oxidation by H2O2 to generate chemiluminescence by a process in which the Co(II) ions in the cage superstructure activate the H2O2: accordingly the cage not only co-locates the reactants but also acts as a redox partner in the catalysis. The luminescence from oxidation of the cavity-bound luminol can transfer its excitation energy to surface-bound fluorescein molecules in an unusual example of Chemiluminescence Resonance Energy Transfer (CRET).
Collapse
Affiliation(s)
- Atena B Solea
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
11
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
12
|
Su P, Wei B, Guo C, Hu Y, Tang R, Zhang S, He C, Lin J, Yu X, Chen Z, Li H, Wang H, Li X. Metallo-Supramolecular Hexagonal Wreath with Four Switchable States Based on a pH-Responsive Tridentate Ligand. J Am Chem Soc 2023; 145:3131-3145. [PMID: 36696285 DOI: 10.1021/jacs.2c12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In biological systems, many biomacromolecules (e.g., heme proteins) are capable of switching their states reversibly in response to external stimuli, endowing these natural architectures with a high level of diversity and functionality. Although tremendous efforts have been made to advance the complexity of artificial supramolecules, it remains a challenge to construct metallo-supramolecular systems that can carry out reversible interconversion among multiple states. Here, a pH-responsive tridentate ligand, 2,6-di(1H-imidazole-2-yl)pyridine (H2DAP), is incorporated into the multitopic building block for precise construction of giant metallo-supramolecular hexagonal wreaths with three metal ions, i.e., Fe(II), Co(II), and Ni(II), through coordination-driven self-assembly. In particular, a Co-linked wreath enables in situ reversible interconversion among four states in response to pH and oxidant/reductant with highly efficient conversion without losing structural integrity. During the state interconversion cycles, the physical properties of the assembled constructs are finely tuned, including the charge states of the backbone, valency of metal ions, and paramagnetic/diamagnetic features of complexes. Such discrete wreath structures with a charge-switchable backbone further facilitate layer-by-layer assembly of metallo-supramolecules on the substrate.
Collapse
Affiliation(s)
- Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Biaowen Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Runxu Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Jing Lin
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, Guangdong, China
| |
Collapse
|
13
|
Wang J, Li L, Jiang S, Young DJ, Ren ZG, Li HX. Covalent Grafting of a Nickel Thiolate Catalyst onto Covalent Organic Frameworks for Increased Photocatalytic Activity. CHEMSUSCHEM 2023; 16:e202201943. [PMID: 36478181 DOI: 10.1002/cssc.202201943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) have recently emerged as prospective photoactive materials with noble Pt as a cocatalyst for photocatalytic hydrogen evolution. In this work, a series of SH-group-functionalized covalent organic frameworks, TpPa-1-SH-X, is prepared by reaction of p-phenylenediamine (Pa) and 1,3,5-triformylphloroglucinol (Tp) with p-NH2 C6 H4 SH as a modulating agent. The reaction of TpPa-1-SH-X with NiII acetylacetonate Ni(acac)2 gave nickel thiolate-immobilized TpPa-1 (TpPa-1-SNi-X). The highest hydrogen evolution rate was 10.87 mmol h-1 g-1 , which was an enhancement of 16.47, 3.83, and 1.84 times than that of the parent TpPa-1, covalent-bond-free [(p-NH2 C6 H4 S)2 Ni]n /TpPa-1-SH-10, and 3 wt % Pt-deposited TpPa-1, respectively. This enhanced photocatalytic hydrogen evolution is ascribed to enhanced crystallinity, the use of NiII thiolate as a cocatalyst and covalent bonding between the cocatalyst and TpPa-1.
Collapse
Affiliation(s)
- Jixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (R. P., China
| | - Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (R. P., China
| | - Shan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (R. P., China
| | - David J Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT-0909, Australia
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (R. P., China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (R. P., China
| |
Collapse
|
14
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
15
|
Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules 2023; 28:molecules28030976. [PMID: 36770651 PMCID: PMC9921396 DOI: 10.3390/molecules28030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
A bowl-shaped molecule can be self-assembled by condensing a triscationic hexaaldehyde compound and three equiv. of a dihydrazide linkers in pure water. The molecular bowl is thus composed of a triscationic π-electron deficient platform, as well as a hexagonal rim that contains six acylhydrazone functions. When the counteranions are chloride, the solid-state structure reveals that this molecular bowl undergoes dimerization via N-H···Cl hydrogen bonds, forming a cage-like dimer with a huge inner cavity. This molecular bowl can employ its cavity to accommodate a hydrophobic guest, namely 1-adamantanecarboxylic acid in aqueous media.
Collapse
|
16
|
Heterogeneous Photoredox Catalysis Based on Silica Mesoporous Material and Eosin Y: Impact of Material Support on Selectivity of Radical Cyclization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020549. [PMID: 36677607 PMCID: PMC9865568 DOI: 10.3390/molecules28020549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Heterogenization of the photocatalyst appears to be a valuable solution to reach sustainable processes. Rapid and efficient synthesis of supported photocatalyst is still a remaining challenge and the choice of the support material is crucial. The present study aims at preparing a new generation of hybrid inorganic/organic photocatalysts based on silica mesoporous material and Eosin Y. These results highlight the influence of non-covalent interactions between the material support and the reagent impacting the selectivity of the reaction.
Collapse
|
17
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
18
|
Yim K, Yeung C, Wong MY, Probert MR, Law G. Differentiable Formation of Chiroptical Lanthanide Heterometallic Ln n Ln' 4-n (L 6 ) (n=0-4) Tetrahedra with C 2 -Symmetrical Bis(tridentate) Ligands. Chemistry 2022; 28:e202201655. [PMID: 35778773 PMCID: PMC9805037 DOI: 10.1002/chem.202201655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/09/2023]
Abstract
Construction of lanthanide heterometallic complex is important for engineering multifunction molecular containers. However, it remains a challenge because of the similar ionic radii of lanthanides. Herein we attempt to prepare chiral lanthanide heterometallic tetrahedra. Upon crystallization with a mixture of [Eu2 L3 ] and [Ln2 L3 ] (Ln=Gd, Tb and Dy) helicates, a mixture of heterometallic Eun Ln'4-n (L6 ) (n=0-4) tetrahedra was prepared. Selective formation of heterometallic tetrahedron was observed as MS deconvolution results deviated from statistical results. The formation of heterometallic tetrahedron was found to be sensitive to ionic radii as well as the ratio of the two helicates used in the crystallization.
Collapse
Affiliation(s)
- King‐Him Yim
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Chi‐Tung Yeung
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Melody Yee‐Man Wong
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
| | - Michael R. Probert
- ChemistrySchool of Natural and Environmental SciencesNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Ga‐Lai Law
- State Key Laboratory of Chemical Biology and Drug DiscoveryDepartment of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University Hung Hom, KowloonHong Kong)China
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhen518000P. R. China
| |
Collapse
|
19
|
Woods CZ, Wu HT, Ngai C, da Camara B, Julian RR, Hooley RJ. Modifying the internal substituents of self-assembled cages controls their molecular recognition and optical properties. Dalton Trans 2022; 51:10920-10929. [PMID: 35796048 DOI: 10.1039/d2dt01451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled Fe4L6 cage complexes with variable internal functions can be synthesized from a 2,7-dibromocarbazole ligand scaffold, which orients six functional groups to the cage interior. Both ethylthiomethylether and ethyldimethylamino groups can be incorporated. The cages show strong ligand-centered fluorescence emission and a broad range of guest binding properties. Coencapsulation of neutral organic guests is favored in the larger, unfunctionalized cage cavity, whereas the thioether cage has a more sterically hindered cavity that favors 1 : 1 guest binding. Binding affinities up to 106 M-1 in CH3CN are seen. The dimethylamino cage is more complex, as the internal amines display partial protonation and can be deprotonated by amine bases. This amine cage displays affinity for a broad range of neutral organic substrates, with affinities and stoichiometries comparable to that of the similarly sized thioether cage. These species show that simple variations in ligand backbone allow variations in the number and type of functions that can be displayed towards the cavity of self-assembled hosts, which will have applications in biomimetic sensing, catalysis and molecular recognition.
Collapse
Affiliation(s)
- Connor Z Woods
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Hoi-Ting Wu
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Courtney Ngai
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Bryce da Camara
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Ryan R Julian
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Richard J Hooley
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
Cai J, Zhao L, Li Y, He C, Wang C, Duan C. Binding of Dual-Function Hybridized Metal -Organic Capsules to Enzymes for Cascade Catalysis. JACS AU 2022; 2:1736-1746. [PMID: 35911460 PMCID: PMC9327082 DOI: 10.1021/jacsau.2c00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The combination of chemo- and biocatalysis for multistep syntheses provides attractive advantages in terms of evolvability, promiscuity, and sustainability striving for desirable catalytic performance. Through the encapsulation of flavin analogues by both NADH and heme mimics codecorated heteroleptic metal-organic capsules, herein, we report a progressive host-guest strategy to imitate cytochrome P450s catalysis for cascade oxidative coupling catalysis. Besides the construction of stable dual-function metal-organic capsules and the modification of cofactor-decorated capsules at the domain of enzymes, this supramolecular strategy involves multistage directional electron flow, affording reactive ferric peroxide species for inducing oxygenation. Under light irradiation, the metal-organic capsule selectively converts stilbene to oxidative coupling products (including 2-oxo-1,2-diphenylethyl formate, 2-alkoxy-1,2-diphenylethanone) in tandem with enzymatic reactions respectively, at the domain of natural enzymes. The ingenious combination of capsules and enzymes with the in situ-regenerated capsule-loaded NADH cofactor promises non-native coupling reactions by forming regional cooperation and division. This abiotic-biotic conjugated host-guest strategy is conducive to the de novo creation of multifunctional components approaching active enzymatic sites for reinforced matter and energy transporting, demonstrating a key role of multicomponent supramolecular catalysts for one-pot integrated catalytic conversions.
Collapse
Affiliation(s)
- Junkai Cai
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People’s Republic
of China
| | - Liang Zhao
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yanan Li
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Cheng He
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Chong Wang
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Chunying Duan
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People’s Republic
of China
| |
Collapse
|
21
|
Lu YL, Song JQ, Qin YH, Guo J, Huang YH, Zhang XD, Pan M, Su CY. A Redox-Active Supramolecular Fe 4L 6 Cage Based on Organic Vertices with Acid-Base-Dependent Charge Tunability for Dehydrogenation Catalysis. J Am Chem Soc 2022; 144:8778-8788. [PMID: 35507479 DOI: 10.1021/jacs.2c02692] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular cage chemistry is of lasting interest because, as artificial blueprints of natural enzymes, the self-assembled cage structures not only provide substrate-hosting biomimetic environments but also can integrate active sites in the confined nanospaces for function synergism. Herein, we demonstrate a vertex-directed organic-clip chelation assembly strategy to construct a metal-organic cage Fe4L68+ (MOC-63) incorporating 12 imidazole proton donor-acceptor motifs and four redox-active Fe centers in an octahedral coordination nanospace. Different from regular supramolecular cages assembled with coordination metal vertices, MOC-63 comprises six ditopic organic-clip ligands as vertices and four tris-chelating Fe(N∩N)3 moieties as faces, thus improving its acid, base, and redox robustness by virtue of cage-stabilized dynamics in solution. Improved dehydrogenation catalysis of 1,2,3,4-tetrahydroquinoline derivatives is accomplished by MOC-63 owing to a supramolecular cage effect that synergizes multiple Fe centers and radical species to expedite intermediate conversion of the multistep reactions in a cage-confined nanospace. The acid-base buffering imidazole motifs play a vital role in modulating the total charge state to resist pH variation and tune the solubility among varied solvents, thereby enhancing reaction acceleration in acidic conditions and rendering a facile recycling catalytic process.
Collapse
Affiliation(s)
- Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Qi Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Han Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Modifying electron injection kinetics for selective photoreduction of nitroarenes into cyclic and asymmetric azo compounds. Nat Commun 2022; 13:1940. [PMID: 35410425 PMCID: PMC9001638 DOI: 10.1038/s41467-022-29559-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractModifying the reactivity of substrates by encapsulation is essential for microenvironment catalysts. Herein, we report an alternative strategy that modifies the entry behaviour of reactants into the microenvironment and substrate inclusion thermodynamics related to the capsule to control the electron injection kinetics and the selectivity of products from the nitroarenes photoreduction. The strategy includes the orchestration of capsule openings to control the electron injection kinetics of electron donors, and the capsule’s pocket to encapsulate more than one nitroarene molecules, facilitating a condensation reaction between the in situ formed azanol and nitroso species to produce azo product. The conceptual microenvironment catalyst endows selective conversion of asymmetric azo products from different nitroarenes, wherein, the estimated diameter and inclusion Gibbs free energy of substrates are used to control and predict the selectivity of products. Inhibition experiments confirm a typical enzymatic conversion, paving a new avenue for rational design of photocatalysts toward green chemistry.
Collapse
|
23
|
Lv C, Qin S, Lei Y, Li X, Huang J, Liu J. Direct Z-Scheme Heterojunction Catalysts Constructed by Graphitic-C 3N 4 and Photosensitive Metal-Organic Cages for Efficient Photocatalytic Hydrogen Evolution. NANOMATERIALS 2022; 12:nano12050890. [PMID: 35269378 PMCID: PMC8912648 DOI: 10.3390/nano12050890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
The demand for improving the activity, durability, and recyclability of metal-organic cages (MOCs) that work as photocatalytic molecular devices in a homogeneous system has promoted research to combine them with other solid materials. An M2L4 type photosensitive metal-organic cage MOC-Q2 with light-harvesting ligands and catalytic Pd2+ centers has been synthesized and further heterogenized with graphitic carbon nitride to prepare a robust direct Z-scheme heterojunction photocatalyst for visible-light-driven hydrogen generation. The optimized g-C3N4/MOC-Q2 (0.7 wt%) sample exhibits a high H2 evolution activity of 6423 μmol g−1 h−1 in 5 h, and a total turnover number of 39,695 after 10 h, significantly superior to the bare MOC-Q2 used in the homogeneous solution and the comparison sample Pd/g-C3N4/L-4. The enhanced performances of g-C3N4/MOC-Q2 can be ascribed to its direct Z-scheme heterostructure, which effectively improves the charge separation and transfer efficiency. This work presents a rational approach of designing a binary photocatalytic system through combing micromolecular MOCs with heterogeneous semiconductors for water splitting.
Collapse
Affiliation(s)
- Chuying Lv
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
| | - Su Qin
- School of Chemical Engineering and New Energy Materials, Zhuhai College of Science and Technology, Zhuhai 519041, China;
| | - Yang Lei
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
| | - Xinao Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
| | - Jianfeng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
- Correspondence: (J.H.); (J.L.)
| | - Junmin Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
- Correspondence: (J.H.); (J.L.)
| |
Collapse
|
24
|
Liu ZY, Tong RM, Chen X, Zhang YT. Amino-functionalized zr-based metal-organic tetrahedron for adsorptive removal of sulfonamide antibiotic in aqueous phase. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Yuan J, Wei Z, Shen K, Yang Y, Liu M, Jing X, Duan C. Encapsulating electron-deficient dyes into Metal-Organic Capsules To Achieve High Reduction Potentials. Dalton Trans 2022; 51:10860-10865. [DOI: 10.1039/d2dt01166b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of artificial supramolecular systems that mimic the structure and functionality of natural enzymes to achieve efficient chemical conversions is a promising subject. In this work, we assembled a...
Collapse
|
26
|
Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Ganta S, Borter JH, Drechsler C, Holstein JJ, Schwarzer D, Clever GH. Photoinduced host-to-guest electron transfer in a self-assembled coordination cage. Org Chem Front 2022; 9:5485-5493. [DOI: 10.1039/d2qo01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Light–powered host–guest charge transfer (HGCT) is shown for a coordination cage based on electron-rich phenothiazines, containing an anthraquinone acceptor as guest. Transient absorption spectroscopy and spectroelectrochemistry data is presented.
Collapse
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Jan-Hendrik Borter
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J. Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Dirk Schwarzer
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Guido H. Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
28
|
Xu X, Li Z, Huang H, Jing X, Duan C. A Novel Copper Metal-Organic Framework Catalyst for the Highly Efficient Conversion of CO2 with Propargylic Amines. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid increase in atmospheric carbon dioxide has resulted in the greenhouse effect. Hence, carbon dioxide capture and further fixation into valuable chemical products are particularly important for reducing atmospheric...
Collapse
|
29
|
Yang Y, Li H, Jing X, Wu Y, Shi Y, Duan C. Dye-loaded metal-organic helical capsules applied to the combination of photocatalytic H 2S splitting and nitroaromatic hydrogenation. Chem Commun (Camb) 2021; 58:807-810. [PMID: 34928273 DOI: 10.1039/d1cc06166f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two dye-loaded metal-organic capsules constructed with different spatial sizes and functional groups simulated the enzymatic substrate activation for hydrogenation of nitroarenes with the kinetics obeying the Michaelis-Menten mechanism.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Hanning Li
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Yuchen Wu
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Youpeng Shi
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
30
|
Huang H, Jing X, Zhong B, Meng C, Duan C. Cuprous Cluster-Based Coordination Sheets as Photocatalytic Regulators to Activate Oxygen, Benzoquinone, and Thianthrenium Salts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58498-58507. [PMID: 34854670 DOI: 10.1021/acsami.1c16280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cuprous clusters are well known for their important fluorescent properties and tunable redox behavior, but the coordinated protecting groups restrict their application in photocatalysis, in particular, the inner-sphere activation of substrates. By modifying fluorescent cuprous clusters with terminal iodides into two-dimensional coordination sheets, we report a photocatalytic regulator to synergistically combine electron transfer and energy transfer for the oxidative coupling of benzoquinone and terminal alkynes. Under visible light irradiation, the well-modified excited state of the cuprous clusters in the coordination sheets reduces benzoquinones to generate aoxy radicals through electron transfer and activates oxygen through energy transfer. The aoxy radicals interact with copper-coordinated phenylacetylene to form an active intermediate, which is further oxidized by the in situ formed active oxygen species and aryl ketones are obtained. The warranted potential of the excited coordination sheets enables the reductive activation of thianthrenium salts as radical precursors, facilitating radical capture and further C-N coupling via an inner-sphere activation mechanism. The new catalytic approach optimizes the redox properties and excited-state lifetime, shortens the electron transfer steps, and promotes the potential collision of a low concentration of active species in tandem catalytic cycles, thus paving a new way to develop ecologically benign, cost-effective, multipurpose, and flexible catalytic systems.
Collapse
Affiliation(s)
- Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bingwen Zhong
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
31
|
Liu Y, Wang B, Bian L, Qin Y, Wang C, Zheng L, Cao Q. Morphology-Dependent Peroxidase Mimicking Enzyme Activity of Copper Metal-Organic Polyhedra Assemblies. Chemistry 2021; 27:15730-15736. [PMID: 34505733 DOI: 10.1002/chem.202102631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/11/2022]
Abstract
The morphology of nanomaterials (geometric shape and dimension) play a significant role in its various physical and chemical properties. Thus, it is essential to link morphology with performance in specific applications. For this purpose, the morphology of copper metal-organic polyhedra (Cu-MOP) can be modulated through distinct assembly process, which facilitates the exploration of the relationship between morphology and catalytic performance. In this work, the assemblies of Cu-MOP with three different morphologies (nanorods, nanofibers and nanosheets) were facilely prepared by the variation of solvent mixture of N, N-dimethylformamide (DMF) and methanol, revealed the important role of the interaction between the surface group and the solvent on the morphology of these assemblies. Cu-MOP nanofibers exhibited the highest mimetic peroxidase enzyme activity over the Cu-MOP nanosheets and nanorods, which have been utilized in the detection of glucose. Cu-MOPs assemblies with tunable morphology accompanied with adjustable mimic peroxidase activity, had great potential applications in the field of bioanalytical chemistry and biomedicals.
Collapse
Affiliation(s)
- Yanxiong Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Baoru Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Longchun Bian
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Yu Qin
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming, Yunnan, 650106, China
| | - Liyan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource of Yunnan University, Ministry of Education, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| |
Collapse
|
32
|
Du Y, Zhang K, Liu Z, Liu S, Huang G, Huang Y, Qin Q, Luo J, Xu B, Zhang G. Encapsulating NH 4Br in a metal organic framework: achieving remarkable proton conduction in a wide relative humidity range. Dalton Trans 2021; 50:15321-15326. [PMID: 34636376 DOI: 10.1039/d1dt02253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-conducting materials are key components for constructing high-energy-density electronic devices. In this work, by accumulating NH4Br into the nanospace of the classical metal organic framework MIL-101-Cr, a proton conductivity as high as 1.53 × 10-1 S cm-1 was achieved at 363 K and 100% RH. The proton conduction of NH4Br@MIL-101-Cr was also high even at lower relative humidity; for instance, it was ∼10-2 S cm-1 at 75% RH. The activation energy was calculated to be 0.11 eV for NH4Br@MIL-101-Cr, indicative of tight H-bond networks and a low barrier to proton transfer, and confirming the occurrence of pure proton conduction as well.
Collapse
Affiliation(s)
- Yihan Du
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Kun Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Ziya Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Shaoxian Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China
| | - Guoji Huang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qianqian Qin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Jiaxin Luo
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bingqing Xu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Gen Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
33
|
Dong J, Liu Y, Cui Y. Artificial Metal-Peptide Assemblies: Bioinspired Assembly of Peptides and Metals through Space and across Length Scales. J Am Chem Soc 2021; 143:17316-17336. [PMID: 34618443 DOI: 10.1021/jacs.1c08487] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The exploration of chiral crystalline porous materials, such as metal-organic complexes (MOCs) or metal-organic frameworks (MOFs), has been one of the most exciting recent developments in materials science owing to their widespread applications in enantiospecific processes. However, achieving specific tight-affinity binding and remarkable enantioselectivity toward important biomolecules is still challenging. Perhaps most critically, the lack of adaptability, compatibility, and processability in these materials severely impedes practical applications in chemical engineering and biological technology. In this Perspective, artificial metal-peptide assemblies (MPAs), which are achieved by the assembly of peptides and metals with nanometer-sized cavities or pores, is a new development that could address the current bottlenecks of chiral porous materials. Bioinspired assembly of pore-forming MPAs is not foreign to biological systems and has granted scientists an unprecedented level of control over the chiral recognition sites, conformational flexibility, cavity sizes, and hydrophilic segments through ultrafine-tuning of peptide-derived linkers. We will specifically discuss exemplary MPAs including structurally well-defined metal-peptide complexes and highly crystalline metal-peptide frameworks. With insights from these structures, the peptide assembly and folding by the closer cooperation of metal coordination and noncovalent interactions can create adaptable protein-like nanocavities undergoing a myriad of conformational variations that is reminiscent of enzymatic pockets. We also consider challenges to advancing the field, where the deployment of side-chain groups and manipulation of amino acid sequences are more likely to access the programmable, genetically encodable peptide-mediated porous materials, thus contributing to the enhanced enantioselective recognition as well as enabling key biochemical processes in next-generation versatile biomimetic materials.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Tang X, Jiang H, Si Y, Rampal N, Gong W, Cheng C, Kang X, Fairen-Jimenez D, Cui Y, Liu Y. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
A host-guest semibiological photosynthesis system coupling artificial and natural enzymes for solar alcohol splitting. Nat Commun 2021; 12:5092. [PMID: 34429430 PMCID: PMC8384870 DOI: 10.1038/s41467-021-25362-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023] Open
Abstract
Development of a versatile, sustainable and efficient photosynthesis system that integrates intricate catalytic networks and energy modules at the same location is of considerable future value to energy transformation. In the present study, we develop a coenzyme-mediated supramolecular host-guest semibiological system that combines artificial and enzymatic catalysis for photocatalytic hydrogen evolution from alcohol dehydrogenation. This approach involves modification of the microenvironment of a dithiolene-embedded metal-organic cage to trap an organic dye and NADH molecule simultaneously, serving as a hydrogenase analogue to induce effective proton reduction inside the artificial host. This abiotic photocatalytic system is further embedded into the pocket of the alcohol dehydrogenase to couple enzymatic alcohol dehydrogenation. This host-guest approach allows in situ regeneration of NAD+/NADH couple to transfer protons and electrons between the two catalytic cycles, thereby paving a unique avenue for a synergic combination of abiotic and biotic synthetic sequences for photocatalytic fuel and chemical transformation. Abiotic–biotic hybrid systems are promising to trap light for fuel and chemical transformation with high efficacy and selectivity. This study reports a coenzyme-mediated supramolecular host-guest semibiological system combining supramolecular catalyst and enzymes for solar alcohol splitting.
Collapse
|
36
|
Helicate-to-tetrahedron transformation of chiral lanthanide supramolecular complexes induced by ionic radii effect and linker length. Commun Chem 2021; 4:116. [PMID: 36697590 PMCID: PMC9814731 DOI: 10.1038/s42004-021-00553-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Controlled formation of desired lanthanide supramolecular complexes is challenging because of the difficulties in predicting coordination geometry, as well as a labile coordination number. Herein, we explore the effect of ionic radii and linker length on supramolecular species formation. A helicate-to-tetrahedron transformation occurred between [Ln2L13] and [Ln4L16] (Ln = La, Sm, Eu, Gd, Tb and Lu). For six lanthanide ions, the unfavored tetrahedron [La4L16] can only be observed in a concentrated mixture with the helicate [La2L13] where no pure [La4L16] species was isolated via crystallization. For Sm, Eu, Gd, Tb, the [Ln4L16] supramolecular tetrahedron can be isolated via crystallization from diisopropyl ether. A similar result was also observed for Lu, but the tetrahedral structure was found to be relatively stable and transformed back to [Lu2L13] much slower upon dissolution. No tetrahedron formation was observed with L3 giving rise to only [Ln2L33] species, in which L3 contains a longer and more flexible linker compared with that of L1. Results show that the supramolecular transformation in these systems is governed by both the ionic radii as well as the ligand design. Special focus is on both [Eu2L13] and [Eu4L16] which form chiral entities and exhibit interesting circular polarized luminescence.
Collapse
|
37
|
Chen ZY, Long ZH, Wang XZ, Zhou JY, Wang XS, Zhou XP, Li D. Cobalt-Based Metal-Organic Cages for Visible-Light-Driven Water Oxidation. Inorg Chem 2021; 60:10380-10386. [PMID: 34171190 DOI: 10.1021/acs.inorgchem.1c00907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water oxidation to molecular oxygen is indispensable but a challenge for splitting H2O. In this work, a series of Co-based metal-organic cages (MOCs) for photoinduced water oxidation were prepared. MOC-1 with both bis(μ-oxo) bridged dicobalt and Co-O (O from H2O) displays catalytic activity with an initial oxygen evolution rate of 80.4 mmol/g/h and a TOF of 7.49 × 10-3 s-1 in 10 min. In contrast, MOC-2 containing only Co-O (O from H2O) in the structure results in a lower oxygen evolution rate (40.8 mmol/g/h, 4.78 × 10-3 s-1), while the amount of oxygen evolved from the solution of MOC-4 without both active sites is undetectable. Isotope experiments with or without H218O as the reactant successfully demonstrate that the molecular oxygen was produced from water oxidation. Photophysical and electrochemical studies reveal that photoinduced water oxidation initializes via electron transfer from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, the cobalt active sites further donate electrons to the oxidized [Ru(bpy)3]3+ to drive water oxidation. This proof-of-concept study indicates that MOCs can work as potential efficient catalysts for photoinduced water oxidation.
Collapse
Affiliation(s)
- Zi-Ye Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zi-Hao Long
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jie-Yi Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xu-Sheng Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
38
|
Qin S, Lei Y, Guo J, Huang JF, Hou CP, Liu JM. Constructing Heterogeneous Direct Z-Scheme Photocatalysts Based on Metal-Organic Cages and Graphitic-C 3N 4 for High-Efficiency Photocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25960-25971. [PMID: 34036785 DOI: 10.1021/acsami.1c03617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of artificial devices that mimic the highly efficient and ingenious photosystems in nature is worthy of in-depth study. A metal-organic cage (MOC) Pd2(M-4)4(BF4)4, denoted as MOC-Q1, integrating four organic photosensitized ligands M-4 and two Pd2+ catalytic centers is designed for a photochemical molecular device (PMD). MOC-Q1 is successfully immobilized on graphitic carbon nitride (g-C3N4) by hydrogen bonds to obtain a robust heterogeneous direct Z-scheme g-C3N4/MOC-Q1 photocatalyst for H2 generation under visible light. The optimized g-C3N4/MOC-Q1 (2 wt %) system shows high hydrogen evolution activity (4495 μmol g-1 h-1 based on the catalyst mass) and exhibits stable performances for 25 h (a turnover number of 19,268 based on MOC-Q1), significantly outperforming pure MOC-Q1, g-C3N4, and comparsion materials Pd/g-C3N4/M-4, which is the highest one of all reported heterogeneous MOC-based photocatalysts under visible irradiation. This enhancement can be ascribed to the synergistic effects of high-efficient electron transfer, extended visible-light response region, and good protective environment for MOC-Q1 arising from an efficient direct Z-scheme heterostructure of g-C3N4/MOC-Q1. This rationally designed and synthesized MOC/g-C3N4-based heterogeneous PMD is expected to have great potential in photocatalytic water splitting.
Collapse
Affiliation(s)
- Su Qin
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Lei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao-Ping Hou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun-Min Liu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
39
|
Tang X, Chu D, Gong W, Cui Y, Liu Y. Metal‐Organic Cages with Missing Linker Defects. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Dandan Chu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Gong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
40
|
Solvent-directed assembly of Zr-based metal-organic cages for dye adsorption from aqueous solution. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Tang X, Chu D, Gong W, Cui Y, Liu Y. Metal‐Organic Cages with Missing Linker Defects. Angew Chem Int Ed Engl 2021; 60:9099-9105. [DOI: 10.1002/anie.202017244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Dandan Chu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Gong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
42
|
|
43
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Jiao Y, Zuo Y, Yang H, Gao X, Duan C. Photoresponse within dye-incorporated metal-organic architectures. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
45
|
Liu D, Li K, Chen M, Zhang T, Li Z, Yin JF, He L, Wang J, Yin P, Chan YT, Wang P. Russian-Doll-Like Molecular Cubes. J Am Chem Soc 2021; 143:2537-2544. [PMID: 33378184 DOI: 10.1021/jacs.0c11703] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanosized cage-within-cage compounds represent a synergistic molecular self-assembling form of three-dimensional architecture that has received particular research focus. Building multilayered ultralarge cages to simulate complicated virus capsids is believed to be a tough synthetic challenge. Here, we synthesize two large double-shell supramolecular cages by facile self-assembly of presynthesized metal-organic hexatopic terpyridine ligands with metal ions. Differing from the mixture of prisms formed from the inner tritopic ligand, the redesigned metal-organic hexatopic ligands bearing high geometric constraints that led to the exclusive formation of discrete double-shell structures. These two unique nested cages are composed of inner cubes (5.1 nm) and outer huge truncated cubes (12.0 and 13.2 nm) with six large bowl-shape subcages distributed on six faces. The results with molecular weights of 75 232 and 77 667 Da were among the largest synthetic cage-in-cage supramolecules reported to date. The composition, size and shape were unambiguously characterized by a combination of 1H NMR, DOSY, ESI-MS, TWIM-MS, TEM, AFM, and SAXS. This work provides an interesting model for functional recognition, delivery, and detection of various guest molecules in the field of supramolecular materials.
Collapse
Affiliation(s)
- Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Tingting Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lipeng He
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jun Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.,Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
46
|
Yim KH, Yeung CT, Wong HY, Law GL. Structural variation of self-assembled lanthanide supramolecular complexes induced by reaction conditions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00115a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structural variation of self-assembled lanthanide supramolecular complexes which can be induced by different factors such as concentration, anion and solvent, cationic radii, stoichiometric ratio and light.
Collapse
Affiliation(s)
- King-Him Yim
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Chi-Tung Yeung
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Ho-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Ga-Lai Law
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| |
Collapse
|
47
|
Chen GH, He YP, Liang FP, Zhang L, Zhang J. A green separation process of Ag via a Ti 4(embonate) 6 cage. Dalton Trans 2020; 49:17194-17199. [PMID: 33185230 DOI: 10.1039/d0dt03214j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
From an environmental perspective, silver recovery through a green process is imperative. In this work, a green supramolecular separation process of Ag has been developed by using a highly charged anionic Ti4L6 (L = embonate) cage as the extractant. Such a Ti4L6 cage has unique selectivity toward [Ag(NH3)2]+ ions, because only linear [Ag(NH3)2]+ ions can be trapped into the windows of the Ti4L6 cage, which is demonstrated by single-crystal X-ray diffraction analysis. To further illustrate the efficiency and mechanism of the herein constructed silver separation method, three co-crystals of the Ti4L6 cage with various [Ag(NH3)2]+ ions were prepared and structurally characterized, annotating the stepwise recognition of [Ag(NH3)2]+ ions by the Ti4L6 extractant. However, it failed to trap larger tetrahedral [Zn(NH3)4]2+ and quadrilateral [Pb(NH3)4]2+ ions under the same reaction conditions, indicating that configuration matching contributes to the high selectivity of the above-mentioned silver separation procedure. More interestingly, Ag nanoparticles with high yield could be obtained by the reduction of the [Ag(NH3)2]&Ti4L6 extracts with hydrazine hydrate (N2H4·H2O), and the Ti4L6 cages can be readily recycled through recrystallization. This discovery offers a green supramolecular procedure for silver recovery with coordination cages as efficient and recyclable extractants.
Collapse
Affiliation(s)
- Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
He Y, Chen G, Li D, Li Q, Zhang L, Zhang J. Combining a Titanium–Organic Cage and a Hydrogen‐Bonded Organic Cage for Highly Effective Third‐Order Nonlinear Optics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan‐Ping He
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guang‐Hui Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - De‐Jing Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Qiao‐Hong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
49
|
He Y, Chen G, Li D, Li Q, Zhang L, Zhang J. Combining a Titanium–Organic Cage and a Hydrogen‐Bonded Organic Cage for Highly Effective Third‐Order Nonlinear Optics. Angew Chem Int Ed Engl 2020; 60:2920-2923. [DOI: 10.1002/anie.202013977] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yan‐Ping He
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guang‐Hui Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - De‐Jing Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Qiao‐Hong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
50
|
Lai YL, Wang XZ, Zhou XC, Dai RR, Zhou XP, Li D. Self-assembly of a Mixed Valence Copper Triangular Prism and Transformation to Cage Triggered by an External Stimulus. Inorg Chem 2020; 59:17374-17378. [PMID: 33170005 DOI: 10.1021/acs.inorgchem.0c02682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A triangular prismatic metal-organic cage based on mixed valence copper ions has been designed and synthesized by using metallocycle panels and pillar ligands. The triangular prism will be quickly transformed to a 10-nuclear cage upon an external chemical stimulus, which features a bicapped square antiprism structure. This prismatic cage can act as a catalyst for oxidation of aromatic alcohols to their corresponding aromatic aldehydes with high yields at room temperature under O2 atmosphere.
Collapse
Affiliation(s)
- Ya-Liang Lai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Rui-Rong Dai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|