1
|
Yu KX, Liu SN, Xing YY, Huang F, Wang WJ, Wang Q, Chen DZ, Wang J. Mechanistic Investigation on the Regioselectivity of Electrochemical Co(II)-Catalyzed [2 + 2 + 2] Cycloaddition of Terminal Acetylenes. J Org Chem 2024. [PMID: 38779840 DOI: 10.1021/acs.joc.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this paper, the regioselectivity of electrochemical Co(II)-catalyzed [2 + 2 + 2] cycloaddition of terminal alkynes was investigated using density functional theory. We explored in detail the energy profiles for both 1,2,4- and 1,3,5-regioselectivity pathways and revealed the origin of the regioselectivity. Two kinds of conformational isomers derived from the different coordination modes of alkynes with cobaltacyclopentadiene have been found, which were formed through electrochemically mediated redox processes. The regioselectivity of the reaction depends on the two coordination modes. When the Co(II) center attacks α-C of the third alkyne, while β2-C in cyclopentadiene bonds to β-C of the alkyne, the reaction favors the formation of 1,2,4-products. In contrast, when the Co(II) center connects to β-C of the alkyne, it forms only the 1,3,5-products via [4 + 2] cycloaddition because of the steric repulsion between the bulky ligand on Co(II) and the phenyl group in the alkyne.
Collapse
Affiliation(s)
- Kai-Xin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Sheng-Nan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yang-Yang Xing
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
2
|
Charvet S, Médebielle M, Vantourout JC. Mn-Mediated α-Radical Addition of Carbonyls to Olefins: Systematic Study, Scope, and Electrocatalysis. J Org Chem 2022; 87:5690-5702. [DOI: 10.1021/acs.joc.2c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sylvain Charvet
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| |
Collapse
|
3
|
Tian YY, Hu XX, Liu SN, Liu JB, Chen DZ. Insights into the C–H activation mechanism in the Rh(I)-Catalyzed alkenylation of ketone with alkyne. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Shen X, Wang W, Wang Q, Liu J, Huang F, Sun C, Yang C, Chen D. Mechanism of iron complexes catalyzed in the N-formylation of amines with CO 2 and H 2: the superior performance of N-H ligand methylated complexes. Phys Chem Chem Phys 2021; 23:16675-16689. [PMID: 34337631 DOI: 10.1039/d1cp00608h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CO2 hydrogenation into value-added chemicals not only offer an economically beneficial outlet but also help reduce the emission of greenhouse gases. Herein, the density functional theory (DFT) studies have been carried out on CO2 hydrogenation reaction for formamide production catalyzed by two different N-H ligand types of PNP iron catalysts. The results suggest that the whole mechanistic pathway has three parts: (i) precatalyst activation, (ii) hydrogenation of CO2 to generate formic acid (HCOOH), and (iii) amine thermal condensation to formamide with HCOOH. The lower turnover number (TON) of a bifunctional catalyst system in hydrogenating CO2 may attribute to the facile side-reaction between CO2 and bifunctional catalyst, which inhibits the generation of active species. Regarding the bifunctional catalyst system addressed in this work, we proposed a ligand participated mechanism due to the low pKa of the ligand N-H functional in the associated stage in the catalytic cycle. Remarkably, catalysts without the N-H ligand exhibit the significant transfer hydrogenation through the metal centered mechanism. Due to the excellent catalytic nature of the N-H ligand methylated catalyst, the N-H bond was not necessary for stabilizing the intermediate. Therefore, we confirmed that N-H ligand methylated catalysts allow for an efficient CO2 hydrogenation reaction compared to the bifunctional catalysts. Furthermore, the influence of Lewis acid and strong base on catalytic N-formylation were considered. Both significantly impact the catalytic performance. Moreover, the catalytic activity of PNMeP-based Mn, Fe and Ru complexes for CO2 hydrogenation to formamides was explored as well. The energetic span of Fe and Mn catalysts are much closer to the precious metal Ru, which indicates that such non-precious metal catalysts have potentially valuable applications.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Deng Q, Mu F, Qiao Y, Wei D. N-Heterocyclic Carbene-Catalyzed Asymmetric C-O Bond Construction Between Benzoic Acid and o-Phthalaldehyde: Mechanism and Origin of Stereoselectivity. Chem Asian J 2021; 16:2346-2350. [PMID: 34224204 DOI: 10.1002/asia.202100351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/21/2021] [Indexed: 12/27/2022]
Abstract
A computational study was contributed to explore the origin of stereoselectivity of NHC-mediated cyclization reaction between benzoic acid and o-phthalaldehyde for asymmetric construction of phthalidyl ester. The most energetically favorable pathway mainly includes the following steps: (1) nucleophilic attack on carbonyl carbon of o-phthalaldehyde by catalyst NHC, (2) formation of Breslow intermediate, (3) oxidation by DQ, (4) asymmetric formation of dual C-O bonds, and (5) dissociation of catalyst with the product. The C-O bond formation was testified as the stereoselectivity-determining step, the R-configurational pathway is more energetically favorable than the S-configurational one. The non-covalent interaction (NCI) and atom-in-molecule (AIM) analyses were performed to reveal that the O-H ⋅⋅⋅ O and C-H ⋅⋅⋅ O hydrogen-bond interactions are the key factors for controlling the stereoselectivity. The detailed mechanism and origin of stereoselectivity give useful insights for understanding organocatalytic reactions for asymmetric construction of C-O bond.
Collapse
Affiliation(s)
- Qianqian Deng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Fangjing Mu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University of Light Industry, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
6
|
Bian JH, Tong WY, Pitsch CE, Wu YB, Wang X. Mechanism of nickel-catalyzed direct carbonyl-Heck coupling reaction: the crucial role of second-sphere interactions. Dalton Trans 2021; 50:2654-2662. [PMID: 33527940 DOI: 10.1039/d0dt04121a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present a detailed DFT mechanistic study on the first Ni-catalyzed direct carbonyl-Heck coupling of aryl triflates and aldehydes to afford ketones. The precatalyst Ni(COD)2 is activated with the phosphine (phos) ligand, followed by coordination of the substrate PhOTf, to form [Ni(phos)(PhOTf)] for intramolecular PhOTf to Ni(0) oxidative addition. The ensuing phenyl-Ni(ii) triflate complex substitutes benzaldehyde for triflate by an interchange mechanism, leaving the triflate anion in the second coordination sphere held by Coulomb attraction. The Ni(ii) complex cation undergoes benzaldehyde C[double bond, length as m-dash]O insertion into the Ni-Ph bond, followed by β-hydride elimination, to produce Ni(ii)-bound benzophenone, which is released by interchange with triflate. The resulting neutral Ni(ii) hydride complex leads to regeneration of the active catalyst following base-mediated deprotonation/reduction. The benzaldehyde C[double bond, length as m-dash]O insertion is the rate-determining step. The triflate anion, while remaining in the second sphere, engages in electrostatic interactions with the first sphere, thereby stabilizing the intermediate/transition state and enabling the desired reactivity. This is the first time that such second-sphere interaction and its impact on cross-coupling reactivity has been elucidated. The new insights gained from this study can help better understand and improve Heck-type reactions.
Collapse
Affiliation(s)
- Jian-Hong Bian
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Wen-Yan Tong
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Chloe E Pitsch
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado 80217-3364, USA.
| | - Yan-Bo Wu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China and Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado 80217-3364, USA.
| |
Collapse
|
7
|
Rhodium-catalyzed C–H olefination of aromatic acids with unactivated olefins to achieve branched vinylated or linear allylated product: A theoretical investigation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Fernández DF, Mascareñas JL, López F. Catalytic addition of C-H bonds across C-C unsaturated systems promoted by iridium(i) and its group IX congeners. Chem Soc Rev 2020; 49:7378-7405. [PMID: 32926061 DOI: 10.1039/d0cs00359j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition metal-catalyzed hydrocarbonations of unsaturated substrates have emerged as powerful synthetic tools for increasing molecular complexity in an atom-economical manner. Although this field was traditionally dominated by low valent rhodium and ruthenium catalysts, in recent years, there have been many reports based on the use of iridium complexes. In many cases, these reactions have a different course from those of their rhodium homologs, and even allow performing otherwise inviable transformations. In this review we aim to provide an informative journey, from the early pioneering examples in the field, most of them based on other metals than iridium, to the most recent transformations catalyzed by designed Ir(i) complexes. The review is organized by the type of C-H bond that is activated (with C sp2, sp or sp3), as well as by the C-C unsaturated partner that is used as a hydrocarbonation partner (alkyne, allene or alkene). Importantly, we discuss the mechanistic foundations of the methods highlighting the differences from those previously proposed for processes catalyzed by related metals, particularly those of the same group (Co and Rh).
Collapse
Affiliation(s)
- David F Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
9
|
Zhang J, Han L, Bi S, Liu T. Distinct Roles of Ag(I) and Cu(II) as Cocatalysts in Achieving Positional-Selective C-H Alkenylation of Isoxazoles: A Theoretical Investigation. J Org Chem 2020; 85:8387-8396. [PMID: 32490669 DOI: 10.1021/acs.joc.0c00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For C-H alkenylation of aryl-substituted diarylisoxazoles, one mode is N-directed C-H alkenylation and the other is C-H alkenylation in the isoxazole ring. In this study, selective C-H alkenylations of 3,5-diarylisoxazoles have been investigated theoretically with the aid of density functional theory (DFT) calculations. With Cp*RhIII as the catalyst, the N-directed C-H alkenylation is preferred as a result of the stronger interaction energy caused by the nitrogen-directing effect. With Pd(OAc)2 as the catalyst and Ag2CO3 as the cocatalyst, their combination switches the regioselectivity to the C-H alkenylation in the isoxazole ring. The strong structural distortion involved in the competing N-directed olefin insertion transition state was found to suppress N-directed C-H alkenylation. With Pd(OAc)2 as the catalyst and Cu(OTf)2 as the cocatalyst, the N-directed C-H alkenylation becomes preferred due to the strong coordination of the nitrogen atom to the copper center. In particular, the structural and mechanistic information involved in the above two heterodimetallic Pd/Ag and Pd/Cu catalytic systems will help toward understanding and designing novel relevant heterodimetallic-catalyzed reactions.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lingli Han
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Tao Liu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| |
Collapse
|
10
|
Chen T, Yang H, Yang Y, Dong G, Xing D. Water-Accelerated Nickel-Catalyzed α-Crotylation of Simple Ketones with 1,3-Butadiene under pH and Redox-Neutral Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tiantian Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| | - Haijian Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| | - Yang Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China 200062
| |
Collapse
|
11
|
Abstract
In this contribution, we provide a comprehensive overview of C-H activation methods promoted by NHC-transition metal complexes, covering the literature since 2002 (the year of the first report on metal-NHC-catalyzed C-H activation) through June 2019, focusing on both NHC ligands and C-H activation methods. This review covers C-H activation reactions catalyzed by group 8 to 11 NHC-metal complexes. Through discussing the role of NHC ligands in promoting challenging C-H activation methods, the reader is provided with an overview of this important area and its crucial role in forging carbon-carbon and carbon-heteroatom bonds by directly engaging ubiquitous C-H bonds.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangrong Meng
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
12
|
Jiang D, Fu M, Zhang Y, Li Q, Guo K, Yang Y, Zhao L. Mechanistic Study of Unprecedented Highly Regioselective Hydrocyanation of Terminal Alkynes: Insight into the Origins of the Regioselectivity and Ligand Effects. J Comput Chem 2020; 41:279-289. [PMID: 31713268 DOI: 10.1002/jcc.26099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/07/2022]
Abstract
Density functional theory (DFT) calculations were performed to gain insight into the mechanism of the nickel-catalyzed hydrocyanation of terminal alkynes with Zn(CN)2 and water to exclusively generate the branched nitrile with excellent Markovnikov selectivity. After precatalyst activation to give the LNi(0) active species, the transformation proceeds via the following steps: (1) oxidative addition of H2 O to the LNi(0) provides the intermediate LNi(II)H(OH); (2) ligand exchange of LNi(II)H(OH) with Zn(CN)2 gives the intermediate LNi(II)H(CN); (3) alkyne insertion to the LNi(II)H(CN) forms the alkenyl nickel complex, followed by the reductive elimination step reaching the final product. This mechanism is kinetically and thermodynamically more favorable than that of the experimental proposed ones. On the basis of the experimental observations, more water molecules cannot further improve the reaction as it has also been rationalized. Furthermore, the origin of the high regioselectivity of the product, the variable effectiveness of the metal mediator as function of ligands, as well as the high yield of the alkyl-substituted alkynes substrates, is analyzed in detail. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dandan Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Mingxing Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yajun Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qianqian Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
13
|
Zhang J, Sun J, Yu Z, Han L, Liu T. Nickel-catalyzed hydroalkenylation of styrene with phenylpropanal: theoretical studies on the mechanism, regioselectivity, and role of phenylboronic acid. Org Chem Front 2020. [DOI: 10.1039/d0qo00573h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The effects of different solvents, Brønsted acids, and ligands on reactivity are clarified through our calculations.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| | - Jiaying Sun
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhangyu Yu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| | - Lingli Han
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| | - Tao Liu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
14
|
Zhou C, Yang T, Fan G. Mechanism analysis of transient ligand-induced β-C–H arylation of α-methyl pentanone. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Computational study on the catalyst-controlled synthesis of C2-substituted quinolines through the annulation of 2-vinylanilines and alkynoates. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Azpíroz R, Di Giuseppe A, Urriolabeitia A, Passarelli V, Polo V, Pérez-Torrente JJ, Oro LA, Castarlenas R. Hydride–Rhodium(III)-N-Heterocyclic Carbene Catalyst for Tandem Alkylation/Alkenylation via C–H Activation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ramón Azpíroz
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza − CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Andrea Di Giuseppe
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza − CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Asier Urriolabeitia
- Departamento de Química Física, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza − CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro Universitario de la Defensa, Ctra Huesca S/N, 50090 Zaragoza, Spain
| | - Victor Polo
- Departamento de Química Física, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza − CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza − CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ricardo Castarlenas
- Departamento de Química Inorgánica − Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza − CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
17
|
Wang Q, Huang F, Liu J, Wang W, Sun C, Chen D. Ligands and Bases Mediate Switching between Aminocarbonylations and Alkoxycarbonylations in Coupling of Aminophenols with Iodoarenes. Inorg Chem 2019; 58:10217-10226. [PMID: 31335128 DOI: 10.1021/acs.inorgchem.9b01392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mechanisms of aminocarbonylations and alkoxycarbonylations in coupling of aminophenols with iodoarenes catalyzed by the bidentate phosphorus ligand Pd complexes were explored with theoretical calculations. The origins of chemoselective carbonylation mediated by ligands and bases were disclosed. According to our calculations, the bifurcation points of reaction pathways caused by different ligands and bases combinations are L1/L2Int5, a [DPPP/DIBPP]benzoylpalladium(II)iodide complex. The affinity of L1/L2Int5 and adducts (K2CO3 and DBU), as well as the substrate itself, are the predominant factors of switching from aminocarbonylation to alkoxycarbonylation. The results reveal that K2CO3 directly exchanges iodine with L1Int5 and assists in hydrogen transfer in the DPPP-K2CO3 combination, in which alkoxycarbonylation is more favorable than aminocarbonylation, while for the DIBPP-DBU combination, iodine exchange is achieved by means of the hydrogen bond formed between the carbonyl group on L2Int5 and the substrate amino H due to the influence of the ligand, and then iodine exchange occurs; subsequently DBU-assisted amino H transfers to complete the aminocarbonylation. The proton transfer is the step that determines the chemoselectivity in the DPPP-K2CO3 combination. The iodine exchange determines the chemoselectivity between aminocarbonylation and alkoxycarbonylation in the DIBPP-DBU one. These results would be helpful to deeply understand the roles of each component in a chemoselective reaction in a multicomponent complex system.
Collapse
Affiliation(s)
- Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
18
|
Feng W, Wang T, Liu D, Wang X, Dang Y. Mechanism of the Palladium-Catalyzed C(sp3)–H Arylation of Aliphatic Amines: Unraveling the Crucial Role of Silver(I) Additives. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01412] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenhui Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tianyang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Dongzhi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaotai Wang
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States
- Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Xing D, Qi X, Marchant D, Liu P, Dong G. Branched‐Selective Direct α‐Alkylation of Cyclic Ketones with Simple Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiaotian Qi
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Daniel Marchant
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
20
|
Xing D, Qi X, Marchant D, Liu P, Dong G. Branched-Selective Direct α-Alkylation of Cyclic Ketones with Simple Alkenes. Angew Chem Int Ed Engl 2019; 58:4366-4370. [PMID: 30707491 DOI: 10.1002/anie.201900301] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 01/29/2023]
Abstract
Herein, we describe an intermolecular direct branched-selective α-alkylation of cyclic ketones with simple alkenes as the alkylation agents. Through an enamine-transition metal cooperative catalysis mode, the α-alkylation is realized in an atom- and step-economic manner with excellent branched selectivity for preparing β-branched ketones. Employment of a pair of bulky Brønsted acid and base as additives is responsible for enhanced efficiency. Promising enantioselectivity (74 % ee) has been obtained. Experimental and computational mechanistic studies suggest that a pathway through alkene migratory insertion into the Ir-C bond followed by C-H reductive elimination is involved for the high branched selectivity.
Collapse
Affiliation(s)
- Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Daniel Marchant
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
21
|
Liu S, Qi X, Bai R, Lan Y. Theoretical Study of Ni-Catalyzed C–N Radical–Radical Cross-Coupling. J Org Chem 2019; 84:3321-3327. [DOI: 10.1021/acs.joc.8b03245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Song Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Hou C, Li Y, Zhao C, Ke Z. A DFT study of Co(i) and Ni(ii) pincer complex-catalyzed hydrogenation of ketones: intriguing mechanism dichotomy by ligand field variation. Catal Sci Technol 2019. [DOI: 10.1039/c8cy01862f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ligand field variation governs the mechanism dichotomy for isoelectronic catalysts.
Collapse
Affiliation(s)
- Cheng Hou
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Yinwu Li
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Cunyuan Zhao
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Zhuofeng Ke
- School of Materials Science and Engineering
- PCFM Lab
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
23
|
Mechanistic insight into the Rh-catalyzed mono- and double-decarbonylation of 1,4-diphenylbut-3-yne-1,2-dione: A computational study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Xiao P, Li CX, Fang WH, Cui G, Thiel W. Mechanism of the Visible-Light-Mediated Copper-Catalyzed Coupling Reaction of Phenols and Alkynes. J Am Chem Soc 2018; 140:15099-15113. [PMID: 30362731 DOI: 10.1021/jacs.8b10387] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A recent experimental study reported a visible-light-mediated aerobic oxidative coupling reaction of phenol with alkynes that produces hydroxyl-functionalized aryl ketones using inexpensive CuCl as catalyst under mild conditions. Here we apply the complete active space self-consistent field (CASSCF) method and multistate second-order perturbation (MS-CASPT2) theory in combination with density functional theory (DFT) to systematically explore the entire photocatalytic reaction between phenol and phenylacetylene in acetonitrile solution in the presence of molecular oxygen and CuCl. Our main findings are as follows: (1) The visible-light-driven conversion of phenylacetylene to PhCCCu(I) occurs thermally because of efficient excited-state deactivation to the S0 state. (2) The single electron transfer from PhCCCu(I) to molecular oxygen that leads to the PhCCCu(II) cation takes place in the T1 state after an efficient S1 → T1 intersystem crossing. (3) During the initial oxidation of phenol, molecular oxygen prefers to attack the para position of the phenol radical intermediate to produce 1,4-benzoquinone, which further reacts with PhCCCu(II) to generate para-hydroxyl-substituted aryl ketones; this is the origin of the experimentally observed regioselectivity. (4) The C≡C bond of the phenylacetylene moiety is not activated by the triplet-state single electron transfer from PhCCCu(I) to molecular oxygen but is cleaved at a later stage, in the [2+2] cycloaddition between PhCCCu(II) and 1,4-benzoquinone. (5) The substrate phenol plays an active role in several hydrogen transfer and decarboxylation reactions; the barriers to these phenol-assisted reactions are lower than those for the corresponding direct or water-assisted reactions, which explains the experimental finding that adding water does not enhance the photocatalytic reaction yield. In summary, while supporting the general features of the experimentally proposed mechanism, our computational study provides detailed mechanistic insights that should be useful for understanding and further improving visible-light-induced copper-catalyzed coupling reactions.
Collapse
Affiliation(s)
- Pin Xiao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Chun-Xiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
25
|
Zhang LL, Wang XY, Jiang KY, Zhao BY, Yan HM, Zhang XY, Zhang ZX, Guo Z, Che CM. A theoretical study on the oxidation of alkenes to aldehydes catalyzed by ruthenium porphyrins using O 2 as the sole oxidant. Dalton Trans 2018; 47:5286-5297. [PMID: 29569676 DOI: 10.1039/c8dt00614h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Density functional theory (DFT) calculations were used to study the ruthenium porphyrin-catalyzed oxidation of styrene to generate an aldehyde. The results indicate that two reactive oxidants, dioxoruthenium and monooxoruthenium-superoxo porphyrins, participate in the catalytic oxidation. In the mechanism, the resultant monooxoruthenium porphyrin acts in the tandem epoxide isomerization (E-I) to selectively yield an aldehyde and generate a dioxoruthenium porphyrin, thereby triggering new oxidation reaction cycles. In this calculation, several key elements responsible for the observed oxidative ability have been established by using Frontier molecular orbital (FMO) theory, natural bond orbital (NBO) analysis, etc., which include the reaction energy, the spin exchange effect, the spin-state conversion process, and the energy level of the lowest unoccupied molecular orbitals (LUMOs) of the reactive oxidants. The comparative oxidative abilities of the ruthenium-oxo/superoxo compounds with different axial ligands are also investigated. The results suggest that the ruthenium-oxo/superoxo species featuring a chlorine axial ligand is more reactive than that substituted with oxygen. This tuneable reactivity can be understood when considering the different electronic characters of the two ligands and the effective atomic number rule (EAN).
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiang-Yun Wang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Kun-Yao Jiang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Bing-Yuan Zhao
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Hui-Min Yan
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiao-Yun Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhu-Xia Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhen Guo
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Chi-Ming Che
- Department of Chemistry, the University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
26
|
Yu SY, Ren P, Zheng HM, Zhang CG. Copolymerization Mechanisms of Propylene and Norbornadiene Catalyzed by Zirconocene Complexes: A Density Functional Theory Study. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shu-Yuan Yu
- Department of Chemistry and Material Science; Langfang Teachers University; Langfang 065000 China
| | - Ping Ren
- Department of Chemistry and Material Science; Langfang Teachers University; Langfang 065000 China
| | - Hui-Min Zheng
- Department of Chemistry and Material Science; Langfang Teachers University; Langfang 065000 China
| | - Cheng-Gen Zhang
- Department of Chemistry and Material Science; Langfang Teachers University; Langfang 065000 China
- College of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
27
|
Xie P, Jia M, Xu XH, Chen F, Xia Y. Mechanistic DFT Study on Rhodium(III)-Catalyzed Double C−H Activation for Oxidative Annulations of 2-Substituted Imidazoles and Alkynes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peipei Xie
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou 325035 China
| | - Mengmeng Jia
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou 325035 China
| | - Xiao-Hua Xu
- College of Mathematics, Physics and Electronic Information Engineering; Wenzhou University; Wenzhou 325035 China
| | - Fan Chen
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou 325035 China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou 325035 China
| |
Collapse
|
28
|
Wang Q, Huang F, Jiang L, Zhang C, Sun C, Liu J, Chen D. Comprehensive Mechanistic Insight into Cooperative Lewis Acid/Cp*CoIII-Catalyzed C–H/N–H Activation for the Synthesis of Isoquinolin-3-ones. Inorg Chem 2018; 57:2804-2814. [DOI: 10.1021/acs.inorgchem.7b03216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Langhuan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Chuanxue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
29
|
Xie P, Guo W, Chen D, Xia Y. Multiple pathways for C–H cleavage in cationic Cp*Rh(iii)-catalyzed C–H activation without carboxylate assistance: a computational study. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00870a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multiple pathways for C–H cleavage was uncovered in cationic Cp*Rh(iii)-catalyzed C–H functionalization with different heteroatom-containing species as possible proton acceptors.
Collapse
Affiliation(s)
- Peipei Xie
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Wei Guo
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Dimei Chen
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|
30
|
Wang H, Liu C, Zhang D. Mechanistic study on the Rh(III)-catalyzed synthesis of indolines via selective O-atom transfer of arylnitrones: Origins of the regioselectivity and the improved yield with pivalic acid additive. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Han L, Li Y, Liu T. Theoretical investigation of the impact of ligands on the regiodivergent Rh-catalyzed hydrothiolation of allyl amines. Dalton Trans 2018; 47:150-158. [DOI: 10.1039/c7dt02909h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The impacts of ligands on regioselectivity were rationalized by using density functional theory calculations.
Collapse
Affiliation(s)
- Lingli Han
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Yaping Li
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Tao Liu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
32
|
Li X, Wu H, Lang Y, Huang G. Mechanism, selectivity, and reactivity of iridium- and rhodium-catalyzed intermolecular ketone α-alkylation with unactivated olefinsviaan enamide directing strategy. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00290h] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations were performed to investigate the title reaction, focusing on detailed reaction mechanism and origins of selectivity and reactivity.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yanmin Lang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
33
|
Lang Y, Zhang M, Cao Y, Huang G. Mechanism and origins of the directing group-controlled endo- versus exo-selectivity of iridium-catalysed intramolecular hydroalkenylation of 1,1-disubstituted alkenes. Chem Commun (Camb) 2018; 54:2678-2681. [DOI: 10.1039/c8cc00074c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism and the important role of directing groups in determining selectivity have been investigated by means of DFT calculations.
Collapse
Affiliation(s)
- Yanmin Lang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University
- Tianjin 300072
- P. R. China
| | - Mei Zhang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University
- Tianjin 300072
- P. R. China
| | - Yang Cao
- Institute of New Energy, Shenzhen
- Guangdong 518031
- P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
34
|
Han L, Ma X, Liu Y, Yu Z, Liu T. Mechanistic insight into the C7-selective C–H functionalization of N-acyl indole catalyzed by a rhodium complex: a theoretical study. Org Chem Front 2018. [DOI: 10.1039/c7qo00911a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The role of the additive AgNTf2 and the origins of the reaction are clarified through our calculations.
Collapse
Affiliation(s)
- Lingli Han
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Xiaoying Ma
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhangyu Yu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| | - Tao Liu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
35
|
Wang H, Dong M, Liu C, Zhang D. Theoretical insight into the zinc( ii)-catalyzed synthesis of 2-indolyltetrahydroquinolines from N-propargylanilines and indoles: cross-dehydrogenative coupling with temporally separated catalytic activity. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00181b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An abnormal catalytic cascade reaction with temporally separated catalytic activity.
Collapse
Affiliation(s)
- Hongliang Wang
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Mengmeng Dong
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| |
Collapse
|
36
|
Gao W, Gong C, Yang Q, Yuan J, Xu L, Peng Y. Rh(III)-catalyzed oxidative ortho-C–H alkylation of 2,4-diarylquinazoline with potassium alkyltrifluoroborates. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alkyltrifluoroborates were used for Rh(III)-catalyzed ortho-alkylation of 2,4-disubstituted quinazoline via C–H bond activation. The reaction proceeded well with a broad substrate scope, providing a direct way to access high functional quinazoline core structure derivatives in yields up to 95%.
Collapse
Affiliation(s)
- Wei Gao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education; Jiangxi Province’s Key Laboratory of Green Chemistry and Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Jiangxi Academy of Forestry, Nanchang, Jiangxi 330013, China
| | - Chun Gong
- Jiangxi Academy of Forestry, Nanchang, Jiangxi 330013, China
| | - Qin Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education; Jiangxi Province’s Key Laboratory of Green Chemistry and Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jianjun Yuan
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education; Jiangxi Province’s Key Laboratory of Green Chemistry and Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Linchu Xu
- Jiangxi Academy of Forestry, Nanchang, Jiangxi 330013, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education; Jiangxi Province’s Key Laboratory of Green Chemistry and Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
37
|
Xing D, Dong G. Branched-Selective Intermolecular Ketone α-Alkylation with Unactivated Alkenes via an Enamide Directing Strategy. J Am Chem Soc 2017; 139:13664-13667. [DOI: 10.1021/jacs.7b08581] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dong Xing
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
38
|
Mechanistic Insight into the 2° Alcohol Oxidation Mediated by an Efficient CuI/L-Proline-TEMPO Catalyst—A Density Functional Theory Study. Catalysts 2017. [DOI: 10.3390/catal7090264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Wang QQ, Wang ZX, Zhang XY, Fan XS. Microwave-Promoted Metal-Free α-Alkylation of Ketones with Cycloalkanes through Cross-Coupling of C(sp3
)−H Bonds. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian-Qian Wang
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Henan Normal University; Xinxiang Henan 453007 China
- School of Pharmacy; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Zhang-Xin Wang
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Henan Normal University; Xinxiang Henan 453007 China
| | - Xin-Ying Zhang
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Henan Normal University; Xinxiang Henan 453007 China
| | - Xue-Sen Fan
- School of Chemistry and Chemical Engineering; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, Henan Normal University; Xinxiang Henan 453007 China
| |
Collapse
|
40
|
Qi X, Zhu L, Bai R, Lan Y. Stabilization of Two Radicals with One Metal: A Stepwise Coupling Model for Copper-Catalyzed Radical-Radical Cross-Coupling. Sci Rep 2017; 7:43579. [PMID: 28272407 PMCID: PMC5341085 DOI: 10.1038/srep43579] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 01/24/2023] Open
Abstract
Transition metal-catalyzed radical-radical cross-coupling reactions provide innovative methods for C-C and C-heteroatom bond construction. A theoretical study was performed to reveal the mechanism and selectivity of the copper-catalyzed C-N radical-radical cross-coupling reaction. The concerted coupling pathway, in which a C-N bond is formed through the direct nucleophilic addition of a carbon radical to the nitrogen atom of the Cu(II)-N species, is demonstrated to be kinetically unfavorable. The stepwise coupling pathway, which involves the combination of a carbon radical with a Cu(II)-N species before C-N bond formation, is shown to be probable. Both the Mulliken atomic spin density distribution and frontier molecular orbital analysis on the Cu(II)-N intermediate show that the Cu site is more reactive than that of N; thus, the carbon radical preferentially react with the metal center. The chemoselectivity of the cross-coupling is also explained by the differences in electron compatibility of the carbon radical, the nitrogen radical and the Cu(II)-N intermediate. The higher activation free energy for N-N radical-radical homo-coupling is attributed to the mismatch of Cu(II)-N species with the nitrogen radical because the electrophilicity for both is strong.
Collapse
Affiliation(s)
- Xiaotian Qi
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
41
|
Affiliation(s)
- Yan Qin
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhu
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanzhong Luo
- Key
Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Transition-Metal-Catalyzed C–H Alkylation Using Alkenes. Chem Rev 2017; 117:9333-9403. [DOI: 10.1021/acs.chemrev.6b00574] [Citation(s) in RCA: 725] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhe Dong
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhi Ren
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel J. Thompson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yan Xu
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Guangbin Dong
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Han L, Zhang X, Wang X, Zhao F, Liu S, Liu T. Mechanistic insights into the selective cyclization of indolines with alkynes and alkenes to produce six- and seven-membered 1,7-fused indolines via Rh(iii) catalysis: a theoretical study. Org Biomol Chem 2017; 15:3938-3946. [DOI: 10.1039/c7ob00261k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The origin of different partners for the coupling reaction determining the different products was rationalized.
Collapse
Affiliation(s)
- Lingli Han
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Xinyu Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Xingdong Wang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Fengyue Zhao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Shaojing Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Tao Liu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
44
|
Lv X, Zhang L, Sun B, Li Z, Wu YB, Lu G. Computational studies on the Rh-catalyzed carboxylation of a C(sp2)–H bond using CO2. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01163f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CO2 insertion is facilitated by the critical effects of a Lewis acid and an agostic interaction.
Collapse
Affiliation(s)
- Xiangying Lv
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Linhui Zhang
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Beibei Sun
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Zhi Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
- School of Environment
- Henan Normal University
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Gang Lu
- Department of Chemistry
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
45
|
Guo J, Deng X, Song C, Lu Y, Qu S, Dang Y, Wang ZX. Differences between the elimination of early and late transition metals: DFT mechanistic insights into the titanium-catalyzed synthesis of pyrroles from alkynes and diazenes. Chem Sci 2016; 8:2413-2425. [PMID: 28451348 PMCID: PMC5369339 DOI: 10.1039/c6sc04456e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/22/2016] [Indexed: 01/05/2023] Open
Abstract
Early transition metals (TMs), such as titanium, generally resist undergoing reductive elimination to form C-X bonds due to their weak electronegativity. By analyzing the mechanism of the titanium-catalyzed synthesis of pyrroles from alkynes and diazenes, the present study revealed that titanium is able to promote C-N bond formation via an unconventional elimination pathway, passing through a comparatively stable masked TiII complex (i.e., IM4) rather than pyrrole directly. The formation of IM4 originates from the bilateral donation and back-donation between Ti and the pyrrole ligand. Formally, it could be considered that the two electrons resulting from the unconventional reductive elimination are temporarily buffered by back-donation to a symmetry-allowed unoccupied π-orbital of the pyrrole ring in IM4 rather than becoming a lone pair on a Ti center as adopted in the catalysis of late TMs. Because of its stability, IM4 requires additional oxidation by diazene to liberate pyrrole. The triplet counterpart (IM4T ) of IM4 is more stable than IM4, but the elimination is unlikely to reach IM4T , because the process is spin-forbidden and the spin-orbit coupling is weak. Alternatively, one may consider the forming pyrrole in IM4 as a redox-active ligand, reserving the two electrons resulting from the formal reductive elimination and then releasing the electrons when IM4 is oxidized by diazene. These insights allow us to propose the conditions for early TMs to undergo a similar elimination, whereby the forming product will have symmetry-allowed frontier molecular orbitals to form donation and back-donation bonding with a TM center and a substrate possessing a comparatively strong oxidizing ability to oxidize an IM4-like intermediate for product release. These insights may provide another way of constructing C-X bonds through a similar reductive elimination pathway, using early TM catalysts.
Collapse
Affiliation(s)
- Jiandong Guo
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Xi Deng
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Chunyu Song
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Yu Lu
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Shuanglin Qu
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Yanfeng Dang
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China . .,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| | - Zhi-Xiang Wang
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China . .,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| |
Collapse
|
46
|
Afewerki S, Córdova A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem Rev 2016; 116:13512-13570. [PMID: 27723291 DOI: 10.1021/acs.chemrev.6b00226] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cooperation and interplay between organic and metal catalyst systems is of utmost importance in nature and chemical synthesis. Here innovative and selective cooperative catalyst systems can be designed by combining two catalysts that complement rather than inhibit one another. This refined strategy can permit chemical transformations unmanageable by either of the catalysts alone. This review summarizes innovations and developments in selective organic synthesis that have used cooperative dual catalysis by combining simple aminocatalysts with metal catalysts. Considerable efforts have been devoted to this fruitful field. This emerging area employs the different activation modes of amine and metal catalysts as a platform to address challenging reactions. Here, aminocatalysis (e.g., enamine activation catalysis, iminium activation catalysis, single occupied molecular orbital (SOMO) activation catalysis, and photoredox activation catalysis) is employed to activate unreactive carbonyl substrates. The transition metal catalyst complements by activating a variety of substrates through a range of interactions (e.g., electrophilic π-allyl complex formation, Lewis acid activation, allenylidene complex formation, photoredox activation, C-H activation, etc.), and thereby novel concepts within catalysis are created. The inclusion of heterogeneous catalysis strategies allows for "green" chemistry development, catalyst recyclability, and the more eco-friendly synthesis of valuable compounds.
Collapse
Affiliation(s)
- Samson Afewerki
- Department of Natural Sciences, Mid Sweden University , SE-851 70 Sundsvall, Sweden.,Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University , SE-851 70 Sundsvall, Sweden.,Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
47
|
Duan Y, Liu Y, Bi S, Ling B, Jiang YY, Liu P. Theoretical Study of Gold-Catalyzed Cyclization of 2-Alkynyl-N-propargylanilines and Rationalization of Kinetic Experimental Phenomena. J Org Chem 2016; 81:9381-9388. [DOI: 10.1021/acs.joc.6b02092] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yeqing Duan
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuxia Liu
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Baoping Ling
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Peng Liu
- School of Chemistry and Chemical
Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
48
|
Hou C, Zhang Z, Zhao C, Ke Z. DFT Study of Acceptorless Alcohol Dehydrogenation Mediated by Ruthenium Pincer Complexes: Ligand Tautomerization Governing Metal Ligand Cooperation. Inorg Chem 2016; 55:6539-51. [DOI: 10.1021/acs.inorgchem.6b00723] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cheng Hou
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry and Chemical Engineering,
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhihan Zhang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry and Chemical Engineering,
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry and Chemical Engineering,
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry and Chemical Engineering,
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
49
|
Deng X, Dang Y, Wang ZX, Wang X. How Does an Earth-Abundant Copper-Based Catalyst Achieve Anti-Markovnikov Hydrobromination of Alkynes? A DFT Mechanistic Study. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xi Deng
- School
of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yanfeng Dang
- School
of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhi-Xiang Wang
- School
of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Xiaotai Wang
- Department
of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States
| |
Collapse
|
50
|
Chen J, Guo W, Xia Y. Computational Revisit to the β-Carbon Elimination Step in Rh(III)-Catalyzed C–H Activation/Cycloaddition Reactions of N-Phenoxyacetamide and Cyclopropenes. J Org Chem 2016; 81:2635-8. [DOI: 10.1021/acs.joc.6b00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiajia Chen
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wei Guo
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and
Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|