1
|
Andersen HL, Granados-Miralles C, Jensen KMØ, Saura-Múzquiz M, Christensen M. The Chemistry of Spinel Ferrite Nanoparticle Nucleation, Crystallization, and Growth. ACS NANO 2024; 18:9852-9870. [PMID: 38526912 PMCID: PMC11008356 DOI: 10.1021/acsnano.3c08772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The nucleation, crystallization, and growth mechanisms of MnFe2O4, CoFe2O4, NiFe2O4, and ZnFe2O4 nanocrystallites prepared from coprecipitated transition metal (TM) hydroxide precursors treated at sub-, near-, and supercritical hydrothermal conditions have been studied by in situ X-ray total scattering (TS) with pair distribution function (PDF) analysis, and in situ synchrotron powder X-ray diffraction (PXRD) with Rietveld analysis. The in situ TS experiments were carried out on 0.6 M TM hydroxide precursors prepared from aqueous metal chloride solutions using 24.5% NH4OH as the precipitating base. The PDF analysis reveals equivalent nucleation processes for the four spinel ferrite compounds under the studied hydrothermal conditions, where the TMs form edge-sharing octahedrally coordinated hydroxide units (monomers/dimers and in some cases trimers) in the aqueous precursor, which upon hydrothermal treatment nucleate through linking by tetrahedrally coordinated TMs. The in situ PXRD experiments were carried out on 1.2 M TM hydroxide precursors prepared from aqueous metal nitrate solutions using 16 M NaOH as the precipitating base. The crystallization and growth of the nanocrystallites were found to progress via different processes depending on the specific TMs and synthesis temperatures. The PXRD data show that MnFe2O4 and CoFe2O4 nanocrystallites rapidly grow (typically <1 min) to equilibrium sizes of 20-25 nm and 10-12 nm, respectively, regardless of applied temperature in the 170-420 °C range, indicating limited possibility of targeted size control. However, varying the reaction time (0-30 min) and temperature (150-400 °C) allows different sizes to be obtained for NiFe2O4 (3-30 nm) and ZnFe2O4 (3-12 nm) nanocrystallites. The mechanisms controlling the crystallization and growth (nucleation, growth by diffusion, Ostwald ripening, etc.) were examined by qualitative analysis of the evolution in refined scale factor (proportional to extent of crystallization) and mean crystallite volume (proportional to extent of growth). Interestingly, lower kinetic barriers are observed for the formation of the mixed spinels (MnFe2O4 and CoFe2O4) compared to the inverse (NiFe2O4) and normal (ZnFe2O4) spinel structured compounds, suggesting that the energy barrier for formation may be lowered when the TMs have no site preference.
Collapse
Affiliation(s)
- Henrik L. Andersen
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
- Facultad
de Ciencias Físicas, Universidad
Complutense de Madrid, Madrid 28040, Spain
| | | | - Kirsten M. Ø. Jensen
- Department
of Chemistry and Nanoscience Center, University
of Copenhagen, København Ø, 2100, Denmark
| | - Matilde Saura-Múzquiz
- Facultad
de Ciencias Físicas, Universidad
Complutense de Madrid, Madrid 28040, Spain
| | - Mogens Christensen
- Department
of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
2
|
Song L, Roelsgaard M, Blichfeld AB, Dippel AC, Jensen KMØ, Zhang J, Iversen BB. Structural evolution in thermoelectric zinc antimonide thin films studied by in situ X-ray scattering techniques. IUCRJ 2021; 8:444-454. [PMID: 33953930 PMCID: PMC8086166 DOI: 10.1107/s2052252521002852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/17/2021] [Indexed: 05/31/2023]
Abstract
Zinc antimonides have been widely studied owing to their outstanding thermoelectric properties. Unlike in the bulk state, where various structurally unknown phases have been identified through their specific physical properties, a number of intermediate phases in the thin-film state remain largely unexplored. Here, in situ X-ray diffraction and X-ray total scattering are combined with in situ measurement of electrical resistivity to monitor the crystallization process of as-deposited amorphous Zn-Sb films during post-deposition annealing. The as-deposited Zn-Sb films undergo a structural evolution from an amorphous phase to an intermediate crystalline phase and finally the ZnSb phase during heat treatment up to 573 K. An intermediate phase (phase B) is identified to be a modified β-Zn8Sb7 phase by refinement of the X-ray diffraction data. Within a certain range of Sb content (∼42-55 at%) in the films, phase B is accompanied by an emerging Sb impurity phase. Lower Sb content leads to smaller amounts of Sb impurity and the formation of phase B at lower temperatures, and phase B is stable at room temperature if the annealing temperature is controlled. Pair distribution function analysis of the amorphous phase shows local ordered units of distorted ZnSb4 tetrahedra, and annealing leads to long-range ordering of these units to form the intermediate phase. A higher formation energy is required when the intermediate phase evolves into the ZnSb phase with a significantly more regular arrangement of ZnSb4 tetrahedra.
Collapse
Affiliation(s)
- Lirong Song
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Martin Roelsgaard
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus C, DK-8000, Denmark
- Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
| | - Anders B. Blichfeld
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus C, DK-8000, Denmark
| | | | | | - Jiawei Zhang
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus C, DK-8000, Denmark
| | - Bo B. Iversen
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus C, DK-8000, Denmark
| |
Collapse
|
3
|
Mesoza Cordova DL, Kam TM, Gannon RN, Lu P, Johnson DC. Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors. J Am Chem Soc 2020; 142:13145-13154. [PMID: 32602716 DOI: 10.1021/jacs.0c05505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture of layered elemental precursors enabled the selective synthesis of two closely related metastable tin vanadium selenides via near-diffusionless reactions at low temperatures. Although the nanoarchitectures of the precursors required to form [(SnSe2)0.80]1(VSe2)1 and [(SnSe)1.15]1(VSe2)1 are very similar, controlling the local composition of the Sn|Se layers in the precursors enables the selective synthesis of either compound. The metastable alloy SnxV1-xSe2 was preferentially formed over [(SnSe2)0.80]1(VSe2)1, which has the identical composition, by modifying the nanoarchitecture of the precursor. Ex situ in-plane X-ray diffraction and X-ray reflectivity collected as a function of annealing temperature provided information on lateral and perpendicular growth of [(SnSe2)0.80]1(VSe2)1. The presence of Laue oscillations throughout the self-assembly provided atomic-scale information on the thickness of the [(SnSe2)0.80]1(VSe2)1 domains, giving insights into the self-assembly process. A reaction mechanism is proposed and used to rationalize how composition and nanoarchitecture control the reaction pathway through the free energy landscape.
Collapse
Affiliation(s)
- Dmitri Leo Mesoza Cordova
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Taryn Mieko Kam
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Renae N Gannon
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David C Johnson
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
4
|
Dippel AC, Gutowski O, Klemeyer L, Boettger U, Berg F, Schneller T, Hardtdegen A, Aussen S, Hoffmann-Eifert S, Zimmermann MV. Evolution of short-range order in chemically and physically grown thin film bilayer structures for electronic applications. NANOSCALE 2020; 12:13103-13112. [PMID: 32543637 DOI: 10.1039/d0nr01847c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional thin films are commonly integrated in electronic devices as part of a multi-layer architecture. Metal/oxide/metal structures e.g. in resistive switching memory and piezoelectric microelectrochemical devices are relevant applications. The films are mostly fabricated from the vapour phase or by solution deposition. Processing conditions with a limited thermal budget typically yield nanocrystalline or amorphous layers. For these aperiodic materials, the structure is described in terms of the local atomic order on the length scale of a few chemical bonds up to several nanometres. Previous structural studies of the short-range order in thin films have addressed the simple case of single coatings on amorphous substrates. By contrast, this work demonstrates how to probe the local structure of two stacked functional layers by means of grazing incidence total X-ray scattering and pair distribution function (PDF) analysis. The key to separating the contributions of the individual thin films is the variation of the incidence angle below the critical angle of total external reflection, In this way, structural information was obtained for functional oxides on textured electrodes, i.e. PbZr0.53O0.47O3 on Pt[111] and HfO2 on TiN, as well as HfO2-TiOx bilayers. For these systems, the transformations from disordered phases into periodic structures via thermal teatment are described. These examples highlight the opportunity to develop a detailed understanding of structural evolution during the fabrication of real thin film devices using the PDF technique.
Collapse
Affiliation(s)
- Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cordova DLM, Johnson DC. Synthesis of Metastable Inorganic Solids with Extended Structures. Chemphyschem 2020; 21:1345-1368. [PMID: 32346904 DOI: 10.1002/cphc.202000199] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Indexed: 11/11/2022]
Abstract
The number of known inorganic compounds is dramatically less than predicted due to synthetic challenges, which often constrains products to only the thermodynamically most stable compounds. Consequently, a mechanism-based approach to inorganic solids with designed structures is the holy grail of solid state synthesis. This article discusses a number of synthetic approaches using the concept of an energy landscape, which describes the complex relationship between the energy of different atomic configurations as a function of a variety of parameters such as initial structure, temperature, pressure, and composition. Nucleation limited synthesis approaches with high diffusion rates are contrasted with diffusion limited synthesis approaches. One challenge to the synthesis of new compounds is the inability to accurately predict what structures might be local free energy minima in the free energy landscape. Approaches to this challenge include predicting potentially stable compounds thorough the use of structural homologies and/or theoretical calculations. A second challenge to the synthesis of metastable inorganic solids is developing approaches to move across the energy landscape to a desired local free energy minimum while avoiding deeper free energy minima, such as stable binary compounds, as reaction intermediates. An approach using amorphous intermediates is presented, where local composition can be used to prepare metastable compounds. Designed nanoarchitecture built into a precursor can be preserved at low reaction temperatures and used to direct the reaction to specific structural homologs.
Collapse
Affiliation(s)
- Dmitri Leo M Cordova
- Department of Chemistry, University of Oregon, 1253 University of Oregon Eugene, Oregon, 97403, USA
| | - David C Johnson
- Department of Chemistry, University of Oregon, 1253 University of Oregon Eugene, Oregon, 97403, USA
| |
Collapse
|
6
|
Dippel AC, Roelsgaard M, Boettger U, Schneller T, Gutowski O, Ruett U. Local atomic structure of thin and ultrathin films via rapid high-energy X-ray total scattering at grazing incidence. IUCRJ 2019; 6:290-298. [PMID: 30867926 PMCID: PMC6400183 DOI: 10.1107/s2052252519000514] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 05/08/2023]
Abstract
Atomic pair distribution function (PDF) analysis is the most powerful technique to study the structure of condensed matter on the length scale from short- to long-range order. Today, the PDF approach is an integral part of research on amorphous, nanocrystalline and disordered materials from bulk to nanoparticle size. Thin films, however, demand specific experimental strategies for enhanced surface sensitivity and sophisticated data treatment to obtain high-quality PDF data. The approach described here is based on the surface high-energy X-ray diffraction technique applying photon energies above 60 keV at grazing incidence. In this way, reliable PDFs were extracted from films of thicknesses down to a few nanometres. Compared with recently published reports on thin-film PDF analysis from both transmission and grazing-incidence geometries, this work brought the minimum detectable film thickness down by about a factor of ten. Depending on the scattering power of the sample, the data acquisition on such ultrathin films can be completed within fractions of a second. Hence, the rapid-acquisition grazing-incidence PDF method is a major advancement in thin-film technology that opens unprecedented possibilities for in situ and operando PDF studies in complex sample environments. By uncovering how the structure of a layered material on a substrate evolves and transforms in terms of local and average ordering, this technique offers new opportunities for understanding processes such as nucleation, growth, morphology evolution, crystallization and the related kinetics on the atomic level and in real time.
Collapse
Affiliation(s)
- Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Martin Roelsgaard
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Ulrich Boettger
- Institute for Materials in Electrical Engineering (IWE-2), RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
| | - Theodor Schneller
- Institute for Materials in Electrical Engineering (IWE-2), RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Uta Ruett
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
7
|
Shi C, Teerakapibal R, Yu L, Zhang GGZ. Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode. IUCRJ 2017; 4:555-559. [PMID: 28989712 PMCID: PMC5619848 DOI: 10.1107/s2052252517009344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 05/08/2023]
Abstract
Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.
Collapse
Affiliation(s)
- Chenyang Shi
- Drug Product Development, Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| | | | - Lian Yu
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, USA
- Correspondence e-mail: ,
| | - Geoff G. Z. Zhang
- Drug Product Development, Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
- Correspondence e-mail: ,
| |
Collapse
|
8
|
Regus M, Polesya S, Kuhn G, Mankovsky S, Bauers SR, Johnson DC, Ebert H, Bensch W. Experimental and theoretical investigation of the chromium–vanadium–antimony system. Z KRIST-CRYST MATER 2016. [DOI: 10.1515/zkri-2016-1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The binary compound V3Sb (V2.64Sb, V3Sb and V3.24Sb) was synthesized as thin multilayered films with varying V:Sb ratios. The V-content determines the crystallization temperature and it is highest for the film with the lowest amount of V. Ternary chromium–vanadium–antimony (Cr–V–Sb) films were prepared containing Cr from 10 to 51 at-% with the Sb content fixed to yield M3Sb (M=Cr, V). In the as-deposited state the layers are already interdiffused which is most likely caused by the very low repeating unit thickness between 0.29 and 0.68 nm investigated by X-ray diffraction experiments. All ternary compounds crystallized from the amorphous state with crystallization temperatures depending more on the repeating unit thickness than on chemical composition. For most samples the simultaneous crystallization of the two phases M3Sb (A15 structure type) and MSb is observed. The crystalline A15 compounds are only stable in a limited temperature range and decompose at elevated temperatures. Compared to the binary Cr–Sb system crystallization of the hexagonal phase MSb (M=Cr, V) occurs at remarkably higher temperatures, i.e. in the ternary system nucleation and crystallization of this phase is hindered. The chemical composition requires short-range composition fluctuations to nucleate the binary phase. The first principles total energy calculations using the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR-KKR) method confirm the experimental observations concerning the concentration-dependent stability of different phases of the Cr–V–Sb system. For the ratio M:Sb=3:1 the system is preferably stabilized in the A15 crystal structure for all possible Cr and V concentrations, while an increase of Sb content up to M:Sb=2:1 results in the stabilization of the Ni2In structure for almost all Cr concentrations. Only in the V-rich regime of the system the Heusler Ni2MnAl-type structure was found to be energetically more preferable.
Collapse
Affiliation(s)
- Matthias Regus
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
| | - Svitlana Polesya
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Gerhard Kuhn
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Sergiy Mankovsky
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Sage R. Bauers
- Department of Chemistry and Material Science Institute, University of Oregon, Eugene, OR 97043, USA
| | - David C. Johnson
- Department of Chemistry and Material Science Institute, University of Oregon, Eugene, OR 97043, USA
| | - Hubert Ebert
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
| |
Collapse
|
9
|
Candelaria SL, Bedford NM, Woehl TJ, Rentz NS, Showalter AR, Pylypenko S, Bunker BA, Lee S, Reinhart B, Ren Y, Ertem SP, Coughlin EB, Sather NA, Horan JL, Herring AM, Greenlee LF. Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02552] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Stephanie L. Candelaria
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Nicholas M. Bedford
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Taylor J. Woehl
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Nikki S. Rentz
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Allison R. Showalter
- Department
of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svitlana Pylypenko
- Department
of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Bruce A. Bunker
- Department
of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sungsik Lee
- X-Ray
Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Benjamin Reinhart
- X-Ray
Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yang Ren
- X-Ray
Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S. Piril Ertem
- Department
of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - E. Bryan Coughlin
- Department
of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas A. Sather
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - James L. Horan
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Andrew M. Herring
- Department
of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Lauren F. Greenlee
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
- Ralph
E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
10
|
Martinolich AJ, Kurzman JA, Neilson JR. Circumventing Diffusion in Kinetically Controlled Solid-State Metathesis Reactions. J Am Chem Soc 2016; 138:11031-7. [PMID: 27490369 DOI: 10.1021/jacs.6b06367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state diffusion is often the primary limitation in the synthesis of crystalline inorganic materials and prevents the potential discovery and isolation of new materials that may not be the most stable with respect to the reaction conditions. Synthetic approaches that circumvent diffusion in solid-state reactions are rare and often allow the formation of metastable products. To this end, we present an in situ study of the solid-state metathesis reactions MCl2 + Na2S2 → MS2 + 2 NaCl (M = Fe, Co, Ni) using synchrotron powder X-ray diffraction and differential scanning calorimetry. Depending on the preparation method of the reaction, either combining the reactants in an air-free environment or grinding homogeneously in air before annealing, the barrier to product formation, and therefore reaction pathway, can be altered. In the air-free reactions, the product formation appears to be diffusion limited, with a number of intermediate phases observed before formation of the MS2 product. However, grinding the reactants in air allows NaCl to form directly without annealing and displaces the corresponding metal and sulfide ions into an amorphous matrix, as confirmed by pair distribution function analysis. Heating this mixture yields direct nucleation of the MS2 phase and avoids all crystalline binary intermediates. Grinding in air also dissipates a large amount of lattice energy via the formation of NaCl, and the crystallization of the metal sulfide is a much less exothermic process. This approach has the potential to allow formation of a range of binary, ternary, or higher-ordered compounds to be synthesized in the bulk, while avoiding the formation of many binary intermediates that may otherwise form in a diffusion-limited reaction.
Collapse
Affiliation(s)
- Andrew J Martinolich
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| | - Joshua A Kurzman
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| | - James R Neilson
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
11
|
Bøjesen ED, Jensen KMØ, Tyrsted C, Mamakhel A, Andersen HL, Reardon H, Chevalier J, Dippel AC, Iversen BB. The chemistry of ZnWO 4 nanoparticle formation. Chem Sci 2016; 7:6394-6406. [PMID: 28451095 PMCID: PMC5355961 DOI: 10.1039/c6sc01580h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022] Open
Abstract
The need for a new approach to describing nanoparticle nucleation and growth different from the classical models is highlighted. In and ex situ total scattering experiments combined with additional characterization techniques are used to unravel the chemistry dictating ZnWO4 formation.
The need for a change away from classical nucleation and growth models for the description of nanoparticle formation is highlighted. By the use of in situ total X-ray scattering experiments the transformation of an aqueous polyoxometalate precursor mixture to crystalline ZnWO4 nanoparticles under hydrothermal conditions was followed. The precursor solution is shown to consist of specific Tourné-type sandwich complexes. The formation of pristine ZnWO4 within seconds is understood on the basis of local restructuring and three-dimensional reordering preceding the emergence of long range order in ZnWO4 nanoparticles. An observed temperature dependent trend in defect concentration can be rationalized based on the proposed formation mechanism. Following nucleation the individual crystallites were found to grow into prolate morphology with elongation along the unit cell c-direction. Extensive electron microscopy characterization provided evidence for particle growth by oriented attachment; a notion supported by sudden particle size increases observed in the in situ total scattering experiments. A simple continuous hydrothermal flow method was devised to synthesize highly crystalline monoclinic zinc tungstate (ZnWO4) nanoparticles in large scale in less than one minute. The present results highlight the profound influence of structural similarities in local structure between reactants and final materials in determining the specific nucleation of nanostructures and thus explains the potential success of a given synthesis procedure in producing nanocrystals. It demonstrates the need for abolishing outdated nucleation models, which ignore subtle yet highly important system dependent differences in the chemistry of the forming nanocrystals.
Collapse
Affiliation(s)
- Espen D Bøjesen
- Center for Materials Crystallography , Department of Chemistry and iNANO , Aarhus University , Langelandsgade 140 , DK-8000 , Aarhus , Denmark .
| | - Kirsten M Ø Jensen
- Department of Chemistry , University of Copenhagen , 2100 København Ø , Denmark
| | | | - Aref Mamakhel
- Center for Materials Crystallography , Department of Chemistry and iNANO , Aarhus University , Langelandsgade 140 , DK-8000 , Aarhus , Denmark .
| | - Henrik L Andersen
- Center for Materials Crystallography , Department of Chemistry and iNANO , Aarhus University , Langelandsgade 140 , DK-8000 , Aarhus , Denmark .
| | - Hazel Reardon
- Center for Materials Crystallography , Department of Chemistry and iNANO , Aarhus University , Langelandsgade 140 , DK-8000 , Aarhus , Denmark .
| | - Jacques Chevalier
- Department of Physics and Astronomy , Aarhus University , Ny Munkegade 120 , DK-8000 Aarhus C , Denmark
| | - Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY , Photon Science Division , Notkestrasse 85 , D-22607 Hamburg , Germany
| | - Bo B Iversen
- Center for Materials Crystallography , Department of Chemistry and iNANO , Aarhus University , Langelandsgade 140 , DK-8000 , Aarhus , Denmark .
| |
Collapse
|
12
|
|