1
|
Song M, Alavi A, Li Manni G. Permutation symmetry in spin-adapted many-body wave functions. Faraday Discuss 2024; 254:261-294. [PMID: 39158096 DOI: 10.1039/d4fd00061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In the domain of exchange-coupled polynuclear transition-metal (PNTM) clusters, local emergent symmetries exist which can be exploited to greatly increase the sparsity of the configuration interaction (CI) eigensolutions of such systems. Sparsity of the CI secular problem is revealed by exploring the site permutation space within spin-adapted many-body bases, and highly compressed wave functions may arise by finding optimal site orderings. However, the factorial cost of searching through the permutation space remains a bottleneck for clusters with a large number of metal centers. In this work, we explore ways to reduce the factorial scaling, by combining permutation and point group symmetry arguments, and using commutation relations between cumulative partial spin and the Hamiltonian operators, . Certain site orderings lead to commuting operators, from which more sparse wave functions arise. Two graphical strategies will be discussed, one to rapidly evaluate the commutators of interest, and one in the form of a tree search algorithm to predict how many and which distinct site permutations are to be analyzed, eliminating redundancies in the permutation space. Particularly interesting is the case of the singlet spin states for which an additional reversal symmetry can be utilized to further reduce the number of distinct site permutations.
Collapse
Affiliation(s)
- Maru Song
- Electronic Structure Theory Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| | - Ali Alavi
- Electronic Structure Theory Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Giovanni Li Manni
- Electronic Structure Theory Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
| |
Collapse
|
2
|
Nayak P, Singh AK, Nayak M, Kar S, Sahu K, Meena K, Topwal D, Indra A, Kar S. Structural modification of nickel tetra(thiocyano)corroles during electrochemical water oxidation. Dalton Trans 2024; 53:14922-14932. [PMID: 39194402 DOI: 10.1039/d4dt01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In this study, we present two fully characterized nickel tetrathiocyanocorroles, representing a novel class of 3d-metallocorroles. These nickel(II) ions form square planar complexes, exhibiting a d8-electronic configuration. These anionic complexes are stabilized by the electron-withdrawing SCN groups on the bipyrrole unit of the corrole. The reduced aromaticity in these anionic nickel(II) corrole complexes is evidenced by single crystal X-ray diffraction (XRD) data and a markedly altered absorption profile, with stronger Q bands compared to Soret bands. Notably, the UV-Vis and electrochemical data exhibit significant differences from previously reported nickel(II) corrole radical cation and nickel(II) porphyrin complexes. While these electrochemical data bear a resemblance to those of the anionic nickel(II) corrole by Gross et al., the UV-Vis data show substantial distinctions. Additionally, we explore the utilization of nickel(II)-corrole@CC (where CC denotes carbon cloth) as an electrocatalyst for the oxygen evolution reaction (OER) in an alkaline medium. During electrochemical water oxidation, the molecular catalyst is partially converted to nickel (oxy)hydroxide, Ni(O)OH. The structure reveals the coexistence of the molecular complex and Ni(O)OH in the active catalyst, achieving a turnover frequency (TOF) of 3.32 × 10-2 s-1. The synergy between the homogeneous and heterogeneous phases improves the OER activity, providing more active sites and edge sites and enhancing interfacial charge transfer.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Ajit Kumar Singh
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Subhajit Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Dinesh Topwal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
- Institute of Physics, Bhubaneswar 751005, India
| | - Arindam Indra
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
3
|
Chen JN, Pan ZH, Qiu QH, Wang C, Long LS, Zheng LS, Kong XJ. Soluble Gd 6Cu 24 clusters: effective molecular electrocatalysts for water oxidation. Chem Sci 2024; 15:511-515. [PMID: 38179510 PMCID: PMC10762933 DOI: 10.1039/d3sc05849b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
The water oxidation half reaction in water splitting for hydrogen production is extremely rate-limiting. This study reports the synthesis of two heterometallic clusters (Gd6Cu24-IM and Gd6Cu24-AC) for application as efficient water oxidation catalysts. Interestingly, the maximum turnover frequency of Gd6Cu24-IM in an NaAc solution of a weak acid (pH 6) was 319 s-1. The trimetallic catalytic site, H2O-GdIIICuII2-H2O, underwent two consecutive two-electron two-proton coupled transfer processes to form high-valent GdIII-O-O-CuIII2 intermediates. Furthermore, the O-O bond was formed via intramolecular interactions between the CuIII and GdIII centers. The results of this study revealed that synergistic catalytic water oxidation between polymetallic sites can be an effective strategy for regulating O-O bond formation.
Collapse
Affiliation(s)
- Jia-Nan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhong-Hua Pan
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Qi-Hao Qiu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
4
|
Han R, Luber S, Li Manni G. Magnetic Interactions in a [Co(II) 3Er(III)(OR) 4] Model Cubane through Forefront Multiconfigurational Methods. J Chem Theory Comput 2023; 19:2811-2826. [PMID: 37126736 DOI: 10.1021/acs.jctc.2c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strong electron correlation effects are one of the major challenges in modern quantum chemistry. Polynuclear transition metal clusters are peculiar examples of systems featuring such forms of electron correlation. Multireference strategies, often based on but not limited to the concept of complete active space, are adopted to accurately account for strong electron correlation and to resolve their complex electronic structures. However, transition metal clusters already containing four magnetic centers with multiple unpaired electrons make conventional active space based strategies prohibitively expensive, due to their unfavorable scaling with the size of the active space. In this work, forefront techniques, such as density matrix renormalization group (DMRG), full configuration interaction quantum Monte Carlo (FCIQMC), and multiconfiguration pair-density functional theory (MCPDFT), are employed to overcome the computational limitation of conventional multireference approaches and to accurately investigate the magnetic interactions taking place in a [Co(II)3Er(III)(OR)4] (chemical formula [Co(II)3Er(III)(hmp)4(μ2-OAc)2(OH)3(H2O)], hmp = 2-(hydroxymethyl)-pyridine) model cubane water oxidation catalyst. Complete active spaces with up to 56 electrons in 56 orbitals have been constructed for the seven energetically lowest different spin states. Relative energies, local spin, and spin-spin correlation values are reported and provide crucial insights on the spin interactions for this model system, pivotal in the rationalization of the catalytic activity of this system in the water-splitting reaction. A ferromagnetic ground state is found with a very small, ∼50 cm-1, highest-to-lowest spin gap. Moreover, for the energetically lowest states, S = 3-6, the three Co(II) sites exhibit parallel aligned spins, and for the lower states, S = 0-2, two Co(II) sites retain strong parallel spin alignment.
Collapse
Affiliation(s)
- Ruocheng Han
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Petrus R, Kowaliński A, Utko J, Matuszak K, Lis T, Sobota P. Heterometallic 3d-4f Alkoxide Precursors for the Synthesis of Binary Oxide Nanomaterials. Inorg Chem 2023; 62:2197-2212. [PMID: 36696546 PMCID: PMC9906784 DOI: 10.1021/acs.inorgchem.2c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, a new method for the synthesis of heterometallic 3d-4f alkoxides by the direct reaction of metallic lanthanides (La, Pr, Nd, Gd) with MCl2 (M = Mn, Ni, Co) in 2-methoxyethanol was developed. The method was applied to the synthesis of the heterometallic oxo-alkoxide clusters [Ln4Mn2(μ6-O)(μ3-OR)8(HOR)xCl6] (Ln = La (1), Nd (2), Gd (3); x = 0, 2, 4); [Pr4M2(μ6-O)(μ3-OR)8(HOR)xCl6] (M = Co (4), Ni (5); x = 2, 4); and [Ln4Mn2(μ3-OH)2(μ3-OR)4(μ-OR)4(μ-Cl)2(HOR)4Cl6] (Ln = La (11) and Pr (12)). Mechanistic investigation led to the isolation of the homo- and heterometallic intermediates [Pr(μ-OR)(μ-Cl)(HOR)Cl]n (6), [Co4(μ3-OR)4(HOR)4Cl4] (7), [Ni4(μ3-OR)4(HOEt)4Cl4] (8), [Mn4(μ3-OR)4(HOR)2(HOEt)2Cl4] (9), and [Nd(HOR)4Cl][CoCl4] (10). In the presence of an external M(II) source at 1100 °C, 1-4 and 12 were selectively converted into binary metal oxide nanomaterials with trigonal or orthorhombic perovskite structures, i.e., LaMnO3, GdMnO3, NdMnO3, Pr0.9MnO3, and PrCoO3. Compound 5 decomposed into a mixture of homo- and heterometallic oxides. The method presented provides a valuable platform for the preparation of advanced heterometallic oxide materials with promising magnetic, luminescence, and/or catalytic applications.
Collapse
Affiliation(s)
- Rafał Petrus
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland,
| | - Adrian Kowaliński
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland
| | - Józef Utko
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland
| | - Karolina Matuszak
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland
| | - Tadeusz Lis
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Piotr Sobota
- Faculty
of Chemistry, Wrocław University of
Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland,
| |
Collapse
|
6
|
Du MH, Wang DH, Wu LW, Jiang LP, Li JP, Long LS, Zheng LS, Kong XJ. Hierarchical Assembly of Coordination Macromolecules with Atypical Geometries: Gd 44 Co 28 Crown and Gd 95 Co 60 Cage. Angew Chem Int Ed Engl 2022; 61:e202200537. [PMID: 35148015 DOI: 10.1002/anie.202200537] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 12/15/2022]
Abstract
The discovered giant clusters are always highly symmetric owing to the spontaneous assembly of one or two basic units. Herein we report the Gd44 Co28 crown and Gd95 Co60 cage, formulated as [Gd44 Co28 (IDA)20 (OH)72 (CO3 )12 (OAc)28 (H2 O)64 ]⋅(ClO4 )24 and [Na4 Gd95 Co60 (IDA)40 (OH)150 (CO3 )40 (OAc)58 (H2 O)164 ] ⋅ (ClO4 )41 (H2 IDA=iminodiacetic acid), respectively, by providing a library containing multiple low-nuclearity units. The heart-like units and crown-like tetramer found in both compounds indicate unprecedented assembly levels, leading to an atypical geometry characteristic compared to the giant clusters directly assembled by regular units. These two clusters not only significantly increase the size of Ln-Co clusters but also exhibit the enhanced magnetic entropy change at ultra-low temperatures. This work provided an effective way to fabricate cluster compounds with giant size and geometry complexity simultaneously.
Collapse
Affiliation(s)
- Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dong-Hui Wang
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ling-Wei Wu
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin-Peng Jiang
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jun-Ping Li
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
|
8
|
San Esteban ACM, Kuwamura N, Yoshinari N, Konno T. Serendipitous formation of oxygen-bridged CuII6M (M = Mn II, Co II) double cubanes showing electrocatalytic water oxidation. Chem Commun (Camb) 2022; 58:4192-4195. [PMID: 35274119 DOI: 10.1039/d1cc07199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxido-bridged CuII6M double-cubane clusters (M = MnII, CoII) supported by D-penicillaminedisulfide were unexpectedly formed by treating a D-penicillaminato CuII2PtII2 complex with MBr2 in water. The clusters displayed heterogeneous electrocatalytic activities for water oxidation dependent on the central M shared by two CuII cubane units.
Collapse
Affiliation(s)
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
9
|
Koellner CA, Gau MR, Polyak A, Bayana M, Zdilla MJ. Hemicubane topological analogs of the oxygen-evolving complex of photosystem II mediating water-assisted propylene carbonate oxidation. Chem Commun (Camb) 2022; 58:2532-2535. [PMID: 35098954 DOI: 10.1039/d1cc05825h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Ca-Mn clusters with the ligand 2-pyridinemethoxide (Py-CH2O) have been prepared with varying degrees of topological similarity to the biological oxygen-evolving complex. These clusters activate water as a substrate in the oxidative degradation of propylene carbonate, with activity correlated with topological similarity to the OEC, lowering the onset potential of the oxidation by as much as 700 mV.
Collapse
Affiliation(s)
- Connor A Koellner
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Aleksander Polyak
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| | - Manish Bayana
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| | - Michael J Zdilla
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| |
Collapse
|
10
|
Du MH, Wang DH, Wu LW, Jiang LP, Li JP, Long LS, Zheng LS, Kong XJ. Hierarchical Assembly of Coordination Macromolecules with Atypical Geometries: Gd44Co28 Crown and Gd95Co60 Cage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming-Hao Du
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Dong-Hui Wang
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Ling-Wei Wu
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Lin-Peng Jiang
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Jun-Ping Li
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - La-Sheng Long
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Lan-Sun Zheng
- Xiamen University College of Chemistry and Chemical Engineering 361005 Xiamen CHINA
| | - Xiang-Jian Kong
- Xiamen University Department of Chemistry 422 siming road 361005 Xiamen CHINA
| |
Collapse
|
11
|
Sushila, Dhamija S, Patra M, Pécaut J, Kataria R, Goswami S, Bhowmik S, Patra R. Probing the structural features and magnetic behaviors in dinuclear cobalt(II) and trinuclear iron(III) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
An ultrafast and facile nondestructive strategy to convert various inefficient commercial nanocarbons to highly active Fenton-like catalysts. Proc Natl Acad Sci U S A 2022; 119:2114138119. [PMID: 35017300 PMCID: PMC8784125 DOI: 10.1073/pnas.2114138119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/04/2022] Open
Abstract
The Fenton-like process catalyzed by metal-free materials is one promising strategy for water purification, but to develop catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed, greatly increasing the costs for industrialization. Herein, we developed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI). The n-doping by PEI could create net charge on the carbon plane and greatly enhance the electron mobility, rendering the catalyst much higher persulfate activation efficiency. Such interface engineering represents an innovative, simple, yet effective, strategy for boosting activities of nanocarbons, providing a conceptual advance to design cost-effective and highly efficient catalysts in environmental remediation, chemical synthesis, and fuel-cell applications. The Fenton-like process catalyzed by metal-free materials presents one of the most promising strategies to deal with the ever-growing environmental pollution. However, to develop improved catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed. Herein, we proposed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI). The modified catalysts could be in situ fabricated by direct addition of PEI aqueous solution into the nanocarbon suspensions within 30 s and without any tedious treatment. The unexpectedly high catalytic activity is even superior to that of the single-atom catalyst and could reach as high as 400 times higher than the pristine carbon material. Theoretical and experimental results reveal that PEI creates net negative charge via intermolecular charge transfer, rendering the catalyst higher persulfate activation efficiency.
Collapse
|
13
|
Qasem KMA, Khan S, Fitta M, Akhtar MN, AlDamen MA, Shahid M, Saleh HAM, Ahmad M. A new {Cu3-Gd2} cluster as two-in-one functional material with unique topology acting as a refrigerant as well as adsorbent for cationic dye. CrystEngComm 2022. [DOI: 10.1039/d2ce00795a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new heterometallic cluster system, [Cu3Gd2(H3btp)2(OAc)6]3H2O {Cu3-Gd2} is designed by employing 1,3-Bis(tris(hydroxymethyl)methylamino)propane (H6btp) as a ligand. The cluster is characterized by FTIR, TGA, PXRD, SCXRD and topological analyses. The crystallography...
Collapse
|
14
|
|
15
|
Kondo M, Tatewaki H, Masaoka S. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chem Soc Rev 2021; 50:6790-6831. [PMID: 33977932 DOI: 10.1039/d0cs01442g] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four-electron oxidation of water (2H2O → O2 + 4H+ + 4e-) is considered the main bottleneck in artificial photosynthesis. In nature, this reaction is catalysed by a Mn4CaO5 cluster embedded in the oxygen-evolving complex of photosystem II. Ruthenium-based complexes have been successful artificial molecular catalysts for mimicking this reaction. However, for practical and large-scale applications in the future, molecular catalysts that contain earth-abundant first-row transition metal ions are preferred owing to their high natural abundance, low risk of depletion, and low costs. In this review, the frontier of water oxidation reactions mediated by first-row transition metal complexes is described. Special attention is paid towards the design of molecular structures of the catalysts and their reaction mechanisms, and these factors are expected to serve as guiding principles for creating efficient and robust molecular catalysts for water oxidation using ubiquitous elements.
Collapse
Affiliation(s)
- Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan
| | - Hayato Tatewaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Wang J, Meng X, Xie W, Zhang X, Fan Y, Wang M. Two biologically inspired tetranuclear nickel(II) catalysts: effect of the geometry of Ni 4 core on electrocatalytic water oxidation. J Biol Inorg Chem 2021; 26:205-216. [PMID: 33544224 DOI: 10.1007/s00775-020-01846-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Two biologically inspired tetranuclear nickel complexes [Ni4(L-H)4(CH3COO)3]·Cl (1) and [Ni4(L-H)4(CH3COO)4]·2CH3OH (2) (L = di(pyridin-2-yl)methanediol) have been synthesized and investigated by a combination of X-ray crystallography, PXRD, electrochemistry, in-situ UV-Vis spectroelectrochemistry and DLS. Both of the two complexes feature a core composed of four Ni(II) ions with the same peripheral ligation provided by the anionic di(pyridin-2-yl)methanediol and MeCOO- ligands. Whereas, complex 1 possesses one distorted cubane-like [Ni4(µ3-O)4] core, while 2 has one extended butterfly-like [Ni4(µ3-O)2] core. The homogeneous electrocatalytic reactivity of the two water-soluble complexes for water oxidation have been thoroughly studied, which demonstrates that both of them can efficiently electrocatalyze water oxidation with high stability under alkaline conditions, at relatively low over-potentials (η) of 420-790 mV for 1 and 390-780 mV for 2, both in the pH range of 7.67-12.32, with the high TOF of about 139 s-1 (1) and 69 s-1 (2) at pH = 12.32, respectively. By a series of comparative experiments for complexes 1 and 2, we proposed that their crystal geometries play an important role in their electrocatalytic reactivity for water oxidation. We verified that biomimetic cubane geometry could promote OER catalysis with two very similar compounds for the first time. Compared with 2, the biomimetic cubane topology of 1 could promote OER catalysis by facilitating efficient charge delocalization and electron-transfer.
Collapse
Affiliation(s)
- Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China
| | - Xiangmin Meng
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Wangjing Xie
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China.
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 26610, Shandong, China.
| |
Collapse
|
17
|
Maity S, Mahapatra P, Ghosh TK, Gomila RM, Frontera A, Ghosh A. Synthesis of Ni(ii)-Mn(ii) complexes using a new mononuclear Ni(ii) complex of an unsymmetrical N 2O 3 donor ligand: structures, magnetic properties and catalytic oxidase activity. Dalton Trans 2021; 50:4686-4699. [PMID: 33729241 DOI: 10.1039/d0dt04337k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new Ni(ii) complex [NiL] (complex 1) of an asymmetrically di-condensed N2O3 donor Schiff base ligand, N-salicylidene-N'-3-methoxysalicylidene-1,3-propanediamine (H2L), has been synthesized and utilized for the synthesis of three heterometallic complexes, [(NiL)2Mn(NCS)2(CH3OH)2]·CH3OH (2) [(NiL)2Mn(N(CN)2)2(CH3OH)2]·CH3OH (3) and [(NiL)2Mn2(N3)2(μ1,1-N3)2(CH3OH)2] (4). Single crystal X-ray diffraction analyses show that complexes 2 and 3 have linear trinuclear structures where two tridentate O3 donor (NiL) units are coordinated to the central octahedral Mn(ii) centre, whereas complex 4 has a centrosymmetric tetranuclear structure where two binuclear (NiL)Mn units are linked via two phenoxido and two μ1,1-N3 bridges. Among the heterometallic complexes (2-4), only 4 is active towards the catalytic oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone. The turnover number for the aerobic oxidation of 3,5-DTBC is 935 h-1. ESI-mass spectra have been recorded to scrutinize the mechanistic pathway of this catalytic reaction. Variable temperature magnetic susceptibility measurements suggest that complexes 2-4 are antiferromagnetically coupled with coupling constants (J) of -4.84 and -5.23 cm-1 for complexes 2 and 3, respectively and J1 = -2.20 cm-1, J2 = 1.13 cm-1 and J3 = -1.12 cm-1 for complex 4. DFT calculations have been used to rationalize the magnetic super-exchange in complexes 2-4, by computing the theoretical coupling constants and analyzing the spin density plots.
Collapse
Affiliation(s)
- Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.
| | | | | | | | | | | |
Collapse
|
18
|
Chen R, Chen CL, Du MH, Wang X, Wang C, Long LS, Kong XJ, Zheng LS. Soluble lanthanide-transition-metal clusters Ln 36Co 12 as effective molecular electrocatalysts for water oxidation. Chem Commun (Camb) 2021; 57:3611-3614. [PMID: 33723563 DOI: 10.1039/d0cc08132a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report for the first time soluble lanthanide-transition-metal clusters Ln36Co12 (Ln = Eu, Gd and Dy) as effective homogeneous water oxidation electrocatalysts. The stable 48-metal Ln36Co12 clusters show an effective water oxidation activity under acidic conditions because of the synergistic effect between lanthanide and transition metals in O-O bond formation.
Collapse
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dodecanuclear {Co10Ln2} metallorings. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Nakazono T, Wada T. Photochemical Water Oxidation Using a Doubly N-Confused Hexaphyrin Dinuclear Cobalt Complex. Inorg Chem 2021; 60:1284-1288. [PMID: 33314915 DOI: 10.1021/acs.inorgchem.0c02602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A doubly N-confused hexaphyrin dinuclear cobalt complex (Co2DNCH) is revealed as an efficient water oxidation catalyst, outperforming the mononuclear cobalt porphyrin with the same aryl group as those in Co2DNCH. By photoirradiation of a water/acetone-d6 (9:1) mixture containing Co2DNCH, [RuII(bpy)3]2+, and S2O82- as the water oxidation catalyst, photosensitizer, and sacrificial electron acceptor, respectively, with visible light, O2 was obtained as the maximum with turnover number = 1200, turnover frequency = 3.9 s-1, and quantum yield = 0.30.
Collapse
Affiliation(s)
- Takashi Nakazono
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
21
|
Chen W, Zhou G, Gou Z, Wang S, Zhai Y, Han T, Schnack J, Zheng Y. Hendecanuclear [Cu6Gd5] magnetic cooler with high molecular symmetry of D3h. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Boyce SAJ, Moutet J, Niederegger L, Simler T, Nocton G, Hess CR. Influence of a Lanthanide Ion on the Ni Site of a Heterobimetallic 3d-4f Mabiq Complex. Inorg Chem 2021; 60:403-411. [PMID: 33319984 DOI: 10.1021/acs.inorgchem.0c03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work presents the synthesis and characterization of a 3d-4f bimetallic complex based on the redox-active macrocyclic biquinazoline ligand, Mabiq. The mixed Yb-Ni complex, [(Cp*)2Yb(Mabiq)Ni]BArF (3), was synthesized upon reaction of [NiII(Mabiq)]BArF (2) with (Cp*)2YbII(OEt2). The molecular structures of 3 and its sister complex, [(Cp*)2Yb(Mabiq)Ni][(Cp*)2Yb(OTf)2] (1), confirmed the presence of a Yb(III) center and a reduced Ni-Mabiq unit. Spectroscopy (absorption and NMR), cyclic voltammetry, and magnetic susceptibility studies were employed to analyze the electronic structure of 3, which is best described by the [(Cp*)2YbIII(Mabiq•)NiII]+ formulation. Notably, the ligand-centered radical is delocalized over both the diketiminate and bipyrimidine units of the Mabiq ligand. The magnetic susceptibility and variable temperature NMR studies for 3 denote coupling between the Ni-Mabiq site and the peripheral Yb center-previously unobserved in 3d-3d Mabiq complexes. The complex nature of the exchange interactions is highlighted by the multiconfigurational ground state for 3, comprising nearly degenerate singlet and triplet states.
Collapse
Affiliation(s)
- Stuart A J Boyce
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.,School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Jules Moutet
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Cedex Palaiseau, France
| | - Lukas Niederegger
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Simler
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Cedex Palaiseau, France
| | - Grégory Nocton
- LCM, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Cedex Palaiseau, France
| | - Corinna R Hess
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
23
|
Liu BQ, Liu WH, Wang CR, Zheng JH, Zhang YH, Zhang JW. Syntheses and properties of two types of linear tetranuclear heterometallic clusters with identical formulas but different structures. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
25
|
Two series of novel Ln2Mn and Ln6Mn2 (Ln = Gd/Tb) clusters: Synthesis, structures and magnetic properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Chen R, Zhuang GL, Wang ZY, Gao YJ, Li Z, Wang C, Zhou Y, Du MH, Zeng S, Long LS, Kong XJ, Zheng LS. Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. Natl Sci Rev 2020; 8:nwaa234. [PMID: 34691725 PMCID: PMC8433082 DOI: 10.1093/nsr/nwaa234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 01/28/2023] Open
Abstract
Photosynthesis in nature uses the Mn4CaO5 cluster as the oxygen-evolving center to catalyze the water oxidation efficiently in photosystem II. Herein, we demonstrate bio-inspired heterometallic LnCo3 (Ln = Nd, Eu and Ce) clusters, which can be viewed as synthetic analogs of the CaMn4O5 cluster. Anchoring LnCo3 on phosphorus-doped graphitic carbon nitrides (PCN) shows efficient overall water splitting without any sacrificial reagents. The NdCo3/PCN-c photocatalyst exhibits excellent water splitting activity and a quantum efficiency of 2.0% at 350 nm. Ultrafast transient absorption spectroscopy revealed the transfer of a photoexcited electron and hole into the PCN and LnCo3 for hydrogen and oxygen evolution reactions, respectively. A density functional theory (DFT) calculation showed the cooperative water activation on lanthanide and O−O bond formation on transition metal for water oxidation. This work not only prepares a synthetic model of a bio-inspired oxygen-evolving center but also provides an effective strategy to realize light-driven overall water splitting.
Collapse
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhi-Ye Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Suyuan Zeng
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
27
|
Biswas M, Sañudo EC, Ray D. Octanuclear Ni
4
Ln
4
Coordination Aggregates from Schiff Base Anion Supports and Connecting of Two Ni
2
Ln
2
Cubes: Syntheses, Structures, and Magnetic Properties. Chem Asian J 2020; 15:2731-2741. [DOI: 10.1002/asia.202000679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Mousumi Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur 721 302 India
| | - E. Carolina Sañudo
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut de Nanociència i Nanotecnologia Universitat de Barcelona (IN2UB) 08028 Barcelona Spain
| | - Debashis Ray
- Department of Chemistry Indian Institute of Technology Kharagpur 721 302 India
| |
Collapse
|
28
|
Schilling M, Cunha RA, Luber S. Enhanced Ab Initio Molecular Dynamics Exploration Unveils the Complex Role of Different Intramolecular Bases on the Water Nucleophilic Attack Mechanism. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mauro Schilling
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Richard A. Cunha
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
29
|
Wang Y, Tang G, Wu Y. A Set of phenyl sulfonate metal coordination complexes triggered Biginelli reaction for the high efficient synthesis of 3,4‐dihydropyrimidin‐2(1
H
)‐ones under solvent‐free conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yong‐Tao Wang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Gui‐Mei Tang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yu‐Song Wu
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| |
Collapse
|
30
|
Han R, Luber S. Complete active space analysis of a reaction pathway: Investigation of the oxygen–oxygen bond formation. J Comput Chem 2020; 41:1586-1597. [DOI: 10.1002/jcc.26201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/21/2020] [Accepted: 03/21/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ruocheng Han
- Institut für Chemie, Universität Zürich Zürich Switzerland
| | - Sandra Luber
- Institut für Chemie, Universität Zürich Zürich Switzerland
| |
Collapse
|
31
|
Tibbetts I, Kostakis GE. Recent Bio-Advances in Metal-Organic Frameworks. Molecules 2020; 25:E1291. [PMID: 32178399 PMCID: PMC7144006 DOI: 10.3390/molecules25061291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Metal-organic frameworks (MOFs) have found uses in adsorption, catalysis, gas storage and other industrial applications. Metal Biomolecule Frameworks (bioMOFs) represent an overlap between inorganic, material and medicinal sciences, utilising the porous frameworks for biologically relevant purposes. This review details advances in bioMOFs, looking at the synthesis, properties and applications of both bioinspired materials and MOFs used for bioapplications, such as drug delivery, imaging and catalysis, with a focus on examples from the last five years.
Collapse
Affiliation(s)
| | - George E. Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK;
| |
Collapse
|
32
|
Olivares M, van der Ham CJM, Mdluli V, Schmidtendorf M, Müller‐Bunz H, Verhoeven TWGM, Li M, Niemantsverdriet JW(H, Hetterscheid DGH, Bernhard S, Albrecht M. Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for Catalytic Water Oxidation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marta Olivares
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3, CH ‐3012 Bern Switzerland
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | | | - Velabo Mdluli
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | | | - Helge Müller‐Bunz
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| | - Tiny W. G. M. Verhoeven
- Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Mo Li
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | | | | | - Stefan Bernhard
- Department of Chemistry Carnegie Mellon University 15213 Pittsburgh Pennsylvania USA
| | - Martin Albrecht
- Departement für Chemie und Biochemie Universität Bern Freiestrasse 3, CH ‐3012 Bern Switzerland
- School of Chemistry University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
33
|
Ramirez BL, Lu CC. Rare-Earth Supported Nickel Catalysts for Alkyne Semihydrogenation: Chemo- and Regioselectivity Impacted by the Lewis Acidity and Size of the Support. J Am Chem Soc 2020; 142:5396-5407. [DOI: 10.1021/jacs.0c00905] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bianca L. Ramirez
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Connie C. Lu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
34
|
Wen HR, Hu JJ, Yang K, Zhang JL, Liu SJ, Liao JS, Liu CM. Family of Chiral ZnII–LnIII (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amine–Phenol Ligand Showing Multifunctional Properties. Inorg Chem 2020; 59:2811-2824. [DOI: 10.1021/acs.inorgchem.9b03164] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343000, People’s Republic of China
| | - Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Jia-Li Zhang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Jin-Sheng Liao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
35
|
Zhou Z, Li MX, Sui Y, Nfor EN, Wang ZX. Two 1D homochiral heterometallic chains: crystal structures, spectra, ferroelectricity and ferromagnetic properties. RSC Adv 2020; 10:7004-7010. [PMID: 35493874 PMCID: PMC9049737 DOI: 10.1039/d0ra00732c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 11/22/2022] Open
Abstract
Two new homo chiral Cu-Ln (Ln = Gd and Ho) compounds bearing a chiral Schiff base ligand (1R,3S)-N',N''-bis[3-methoxysalicylidene]-1,3-diamino-1,2,2-trimethylcyclopentane (H2L) have been synthesized and characterized by elemental analysis, IR spectroscopic and single-crystal X-ray diffraction techniques. The compounds were found to exhibit 1D zig-zag skeletons with double μ-1,5 bridging dicyanamide anions. Circular dichroism (CD) spectra have been used to verify their chiroptical activities. Magnetic studies suggest that 1 and 2 hold the same magnetic behavior with the dinuclear compounds presenting ferromagnetic interaction. Furthermore, both compounds show ferroelectricity with the remnant polarization (P r) value of 0.23 and 0.18 μC cm-2 at room temperature, respectively.
Collapse
Affiliation(s)
- Zhuoqiang Zhou
- Department of Pharmaceutical Engineering, College of Materials & Energy, South China Agricultural University Guangzhou 510642 PR China
| | - Ming-Xing Li
- Department of Chemistry, Centre for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 PR China
| | - Yan Sui
- School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Jinggangshan University Ji'an Jiangxi 343009 PR China
| | - Emmanuel N Nfor
- Department of Chemistry, Faculty of Science, University of Buea POBox 63 Buea Cameroon
| | - Zhao-Xi Wang
- Department of Chemistry, Centre for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 PR China
| |
Collapse
|
36
|
Yin JJ, Chen C, Zhuang GL, Zheng J, Zheng XY, Kong XJ. Anion-Dependent Assembly of 3d-4f Heterometallic Clusters Ln 5Cr 2 and Ln 8Cr 4. Inorg Chem 2020; 59:1959-1966. [PMID: 31950821 DOI: 10.1021/acs.inorgchem.9b03308] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of heterometallic Ln-Cr clusters with the formulas [Ln5Cr2(H2L)2(OAc)6(μ3-OH)6(H2O)15](ClO4)7·xH2O (Ln = Gd and x = 33 for 1 and Ln = Dy and x = 21 for 2) and [Ln8Cr4(H2L)4(OAc)8(μ3-OH)16(μ4-O)1(H2O)8](Cl)(ClO4)5·10H2O (Ln = Gd for 3 and Ln = Dy for 4) was obtained through the reaction of the acetate ligands 2,2-dimethylolpropionic acid (H3L) and Ln(ClO4)3 in the presence of chromium salts with different anions under the same high pH conditions. X-ray analysis revealed that compound 1 contained a metal unit [Gd3Cr2] displaying the pentagonal bipyramid configuration and that compound 3 was templated by Cl- and ClO4- as a mixed anion template featuring a quadrangular structure. In compound 3, the 12 metal atoms were arranged in a wheel-shaped metal skeleton [Gd8Cr4], which was produced by 4 tetrahedral metal units [Gd3Cr] sharing vertices. The introduction of the mixed anion template increased the number of metal atoms in the Ln-Cr clusters. Magnetic calculations indicated that there was weak antiferromagnetic Gd···Cr coupling and weak ferromagnetic Gd···Gd coupling in 1, whereas both Gd···Cr and Gd···Gd in 3 exhibited weak antiferromagnetic interactions. Magnetothermal studies showed that compounds 1 and 3 displayed magnetic entropy changes of 25.2 J kg-1 K-1 at 5 K and 7 T and 33.8 J kg-1 K-1 at 2 K and 7 T, respectively.
Collapse
Affiliation(s)
- Jia-Jia Yin
- Institutes of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P. R. China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P. R. China
| | - Gui-Lin Zhuang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , 310032 , P. R. China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P. R. China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P. R. China.,Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China
| |
Collapse
|
37
|
Chen R, Yan Z, Kong X. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Zhi‐Hao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xiang‐Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| |
Collapse
|
38
|
Liu Y, Su X, Guan W, Yan L. Ruthenium-based catalysts for water oxidation: the key role of carboxyl groups as proton acceptors. Phys Chem Chem Phys 2020; 22:5249-5254. [DOI: 10.1039/c9cp05893a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the mechanism of water oxidation catalyzed by an Ru-based complex [Ru(L)]+ (L = 5,5-chelated 2-carboxy-phen, 2,2′;6′,2′′-terpyridine) was studied by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yuting Liu
- Faculty of Chemistry
- Institute of Functional Material Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xiaofang Su
- Faculty of Chemistry
- Institute of Functional Material Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Wei Guan
- Faculty of Chemistry
- Institute of Functional Material Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Likai Yan
- Faculty of Chemistry
- Institute of Functional Material Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
39
|
Nath BD, Takaishi K, Ema T. Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01894h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in homogeneous catalysis with macrocyclic multinuclear metal complexes (categories A–C) is overviewed.
Collapse
Affiliation(s)
- Bikash Dev Nath
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Tadashi Ema
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
40
|
Ye S, Ding C, Liu M, Wang A, Huang Q, Li C. Water Oxidation Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902069. [PMID: 31495962 DOI: 10.1002/adma.201902069] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Water oxidation is the primary reaction of both natural and artificial photosynthesis. Developing active and robust water oxidation catalysts (WOCs) is the key to constructing efficient artificial photosynthesis systems, but it is still facing enormous challenges in both fundamental and applied aspects. Here, the recent developments in molecular catalysts and heterogeneous nanoparticle catalysts are reviewed with special emphasis on biomimetic catalysts and the integration of WOCs into artificial photosystems. The highly efficient artificial photosynthesis depends largely on active WOCs integrated into light harvesting materials via rational interface engineering based on in-depth understanding of charge dynamics and the reaction mechanism.
Collapse
Affiliation(s)
- Sheng Ye
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Mingyao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Aoqi Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
41
|
Syntheses, crystal structures, and solid-state photoluminescence properties of heterotrinuclear Zn2Ln (Ln: La, Sm, Eu, Tb) complexes derived from 1,4-diaminobutane-based N2O4 compartmental ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Li J, Wan W, Triana CA, Novotny Z, Osterwalder J, Erni R, Patzke GR. Dynamic Role of Cluster Cocatalysts on Molecular Photoanodes for Water Oxidation. J Am Chem Soc 2019; 141:12839-12848. [PMID: 31373808 DOI: 10.1021/jacs.9b06100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While loading of cocatalysts is one of the most widely investigated strategies to promote the efficiency of photoelectrodes, the understanding of their functionality remains controversial. We established new hybrid molecular photoanodes with cobalt-based molecular cubane cocatalysts on hematite as a model system. Photoelectrochemical and rate law analyses revealed an interesting functionality transition of the {Co(II)4O4}-type cocatalysts. Their role changed from predominant hole reservoirs to catalytic centers upon modulation of the applied bias. Kinetic analysis of the photoelectrochemical processes indicated that this observed transition arises from the dynamic equilibria of photogenerated surface charge carriers. Most importantly, we confirmed this functional transition of the cocatalysts and the related kinetic properties for several cobalt-based molecular and heterogeneous catalysts, indicating wide applicability of the derived trends. Additionally, complementary analytical characterizations show that a transformation of the applied molecular species occurs at higher applied bias, pointing to a dynamic interplay connecting molecular and heterogeneous catalysis. Our insights promote the essential understanding of efficient (molecular) cocatalyzed photoelectrode systems to design tailor-made hybrid devices for a wide range of catalytic applications.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Wenchao Wan
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - C A Triana
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Zbynek Novotny
- Department of Physics , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Jürg Osterwalder
- Department of Physics , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Rolf Erni
- Electron Microscopy Center , Empa, Swiss Federal Laboratories for Materials Science and Technology , CH-8600 Dübendorf , Switzerland
| | - Greta R Patzke
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| |
Collapse
|
43
|
Sai Manoj Gorantla NVT, Guruprasad Reddy P, Abdul Shakoor SM, Mandal R, Roy S, Mondal KC. Tetranuclear 3 d/4 f Coordination Complexes as Homogeneous Catalysts for Bis(indolyl)methane Syntheses. ChemistrySelect 2019. [DOI: 10.1002/slct.201901215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Pulikanti Guruprasad Reddy
- Department of ChemistryIndian Institute of Science Education and Research (IISER) Tirupati Karakambadi Road Tirupati- 517507, Andhra Pradesh India
| | - Sayed Mohmmed Abdul Shakoor
- Department of ChemistryIndian Institute of Science Education and Research (IISER) Tirupati Karakambadi Road Tirupati- 517507, Andhra Pradesh India
| | - Rajkumar Mandal
- Department of ChemistryIndian Institute of Technology-Madras Chennai- 600036 India
| | - Sudipta Roy
- Department of ChemistryIndian Institute of Science Education and Research (IISER) Tirupati Karakambadi Road Tirupati- 517507, Andhra Pradesh India
| | | |
Collapse
|
44
|
Shi Y, Yang AF, Cao CS, Zhao B. Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Wang J, Liu Y, Mao X, Shi N, Zhang X, Wang H, Fan Y, Wang M. Two Trinuclear Cu
II
Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem Asian J 2019; 14:2685-2693. [DOI: 10.1002/asia.201900531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jin‐Miao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ya‐Rong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xue‐Yang Mao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ning‐Ning Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Hui‐Sheng Wang
- Key Laboratory for Green Chemical Process of Ministry of EducationSchool of Chemistry and Environmental EngineeringWuhan Institute of Technology Wuhan 430074 P. R. China
| | - Yu‐Hua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| |
Collapse
|
46
|
Han R, Rempfer K, Zhang M, Dobbek H, Zouni A, Dau H, Luber S. Investigating the Structure and Dynamics of Apo‐Photosystem II. ChemCatChem 2019. [DOI: 10.1002/cctc.201900351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruocheng Han
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| | - Katharina Rempfer
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| | - Miao Zhang
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Holger Dobbek
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Athina Zouni
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Holger Dau
- Institut für PhysikFreie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Sandra Luber
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| |
Collapse
|
47
|
Xing Y, Chen LQ, Zhao YR, Zheng XY, Zhang YJ, Kong XJ, Long LS, Zheng LS. High-Nuclearity Chiral 3d-4f Heterometallic Clusters Ln6Cu24 and Ln6Cu12. Inorg Chem 2019; 58:8494-8499. [DOI: 10.1021/acs.inorgchem.9b00727] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yao Xing
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liu-Qing Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ya-Rui Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiu-Ying Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yu-Jia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
48
|
Song F, Al-Ameed K, Schilling M, Fox T, Luber S, Patzke GR. Mechanistically Driven Control over Cubane Oxo Cluster Catalysts. J Am Chem Soc 2019; 141:8846-8857. [PMID: 31120246 DOI: 10.1021/jacs.9b01356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Predictive and mechanistically driven access to polynuclear oxo clusters and related materials remains a grand challenge of inorganic chemistry. We here introduce a novel strategy for synthetic control over highly sought-after transition metal {M4O4} cubanes. They attract interest as molecular water oxidation catalysts that combine features of both heterogeneous oxide catalysts and nature's cuboidal {CaMn4O5} center of photosystem II. For the first time, we demonstrate the outstanding structure-directing effect of straightforward inorganic counteranions in solution on the self-assembly of oxo clusters. We introduce a selective counteranion toolbox for the controlled assembly of di(2-pyridyl) ketone (dpk) with M(OAc)2 (M = Co, Ni) precursors into different cubane types. Perchlorate anions provide selective access to type 2 cubanes with the characteristic {H2O-M2(OR)2-OH2} edge-site, such as [Co4(dpy-C{OH}O)4(OAc)2(H2O)2](ClO4)2. Type 1 cubanes with separated polar faces [Co4(dpy-C{OH}O)4(L2)4] n+ (L2 = OAc, Cl, or OAc and H2O) can be tuned with a wide range of other counteranions. The combination of these counteranion sets with Ni(OAc)2 as precursor selectively produces type 2 Co/Ni-mixed or {Ni4O4} cubanes. Systematic mechanistic experiments in combination with computational studies provide strong evidence for type 2 cubane formation through reaction of the key dimeric building block [M2(dpy-C{OH}O)2(H2O)4]2+ with monomers, such as [Co(dpy-C{OH}O)(OAc)(H2O)3]. Furthermore, both experiments and DFT calculations support an energetically favorable type 1 cubane formation pathway via direct head-to-head combination of two [Co2(dpy-C{OH}O)2(OAc)2(H2O)2] dimers. Finally, the visible-light-driven water oxidation activity of type 1 and 2 cubanes with tuned ligand environments was assessed. We pave the way to efficient design concepts in coordination chemistry through ionic control over cluster assembly pathways. Our comprehensive strategy demonstrates how retrosynthetic analyses can be implemented with readily available assembly directing counteranions to provide rapid access to tuned molecular materials.
Collapse
Affiliation(s)
- Fangyuan Song
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Karrar Al-Ameed
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland.,Faculty of Science , University of Kufa , 54001 Najaf , Iraq
| | - Mauro Schilling
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Thomas Fox
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Sandra Luber
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Greta R Patzke
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| |
Collapse
|
49
|
Graphical user interface for an easy and reliable construction of input files to CP2K. J Mol Model 2019; 25:115. [DOI: 10.1007/s00894-019-3987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
50
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 424] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|