1
|
Miller AH, Blagova EV, Large B, Booth RL, Wilson KS, Duhme-Klair AK. Catch-and-Release: The Assembly, Immobilization, and Recycling of Redox-Reversible Artificial Metalloenzymes. ACS Catal 2024; 14:3218-3227. [PMID: 38449525 PMCID: PMC10913039 DOI: 10.1021/acscatal.3c05294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Technologies to improve the applicability of artificial metalloenzymes (ArMs) are gaining considerable interest; one such approach is the immobilization of these biohybrid catalysts on support materials to enhance stability and enable their retention, recovery, and reuse. Here, we describe the immobilization of polyhistidine-tagged ArMs that allow the redox-controlled replacement of catalytic cofactors that have lost activity, e.g., due to poisoning or decomposition, on immobilized metal affinity chromatography resins. By using periplasmic siderophore-binding protein scaffolds that originate from thermophilic bacteria (GstCeuE and PthCeuE) in combination with a siderophore-linked imine reduction catalyst, reaction rates were achieved that are about 3.5 times faster than those previously obtained with CjCeuE, the analogous protein of Campylobacter jejuni. Upon immobilization, the GstCeuE-derived ArM showed a decrease in turnover frequency in the reduction of dehydrosalsolidine by 3.4-fold, while retaining enantioselectivity (36%) and showing improved stability that allowed repeat recovery and recycling cycles. Catalytic activity was preserved over the initial four cycles. In subsequent cycles, a gradual reduction of activity was evident. Once the initial activity decreased to around 40% of the initial activity (23rd recycling cycle), the redox-triggered artificial cofactor release permitted the subsequent recharging of the immobilized protein scaffold with fresh, active cofactor, thereby restoring the initial catalytic activity of the immobilized ArM and allowing its reuse for several more cycles. Furthermore, the ArM could be assembled directly from protein present in crude cell extracts, avoiding time-consuming and costly protein purification steps. Overall, this study demonstrates that the immobilization of redox-reversible ArMs facilitates their "catch-and-release" assembly and disassembly and the recycling of their components, improving their potential commercial viability and environmental footprint.
Collapse
Affiliation(s)
- Alex H. Miller
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Elena V. Blagova
- Structural
Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Benjamin Large
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Rosalind L. Booth
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Keith S. Wilson
- Structural
Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Anne-K. Duhme-Klair
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
2
|
Fernandez-Lopez L, Cea-Rama I, Alvarez-Malmagro J, Ressmann AK, Gonzalez-Alfonso JL, Coscolín C, Shahgaldian P, Plou FJ, Modregger J, Pita M, Sanz-Aparicio J, Ferrer M. Transforming an esterase into an enantioselective catecholase through bioconjugation of a versatile metal-chelating inhibitor. Chem Commun (Camb) 2023. [PMID: 37376994 DOI: 10.1039/d3cc01946b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Metal complexes introduced into protein scaffolds can generate versatile biomimetic catalysts endowed with a variety of catalytic properties. Here, we synthesized and covalently bound a bipyridinyl derivative to the active centre of an esterase to generate a biomimetic catalyst that shows catecholase activity and enantioselective catalytic oxidation of (+)-catechin.
Collapse
Affiliation(s)
| | - Isabel Cea-Rama
- Instituto de Quimica Fisica Rocasolano (IQFR), CSIC, Madrid 28006, Spain
| | | | | | | | - Cristina Coscolín
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid 28049, Spain.
| | - Patrick Shahgaldian
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
| | - Francisco J Plou
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid 28049, Spain.
| | | | - Marcos Pita
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid 28049, Spain.
| | | | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid 28049, Spain.
| |
Collapse
|
3
|
Denison M, Ahrens JJ, Dunbar MN, Warmahaye H, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Dynamic Ir(III) Photosensors for the Major Human Drug-Metabolizing Enzyme Cytochrome P450 3A4. Inorg Chem 2023; 62:3305-3320. [PMID: 36758158 PMCID: PMC10268476 DOI: 10.1021/acs.inorgchem.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Probing the activity of cytochrome P450 3A4 (CYP3A4) is critical for monitoring the metabolism of pharmaceuticals and identifying drug-drug interactions. A library of Ir(III) probes that detect occupancy of the CYP3A4 active site were synthesized and characterized. These probes show selectivity for CYP3A4 inhibition, low cellular toxicity, Kd values as low as 9 nM, and are highly emissive with lifetimes up to 3.8 μs in cell growth media under aerobic conditions. These long emission lifetimes allow for time-resolved gating to distinguish probe from background autofluorescence from growth media and live cells. X-ray crystallographic analysis revealed structure-activity relationships and the preference or indifference of CYP3A4 toward resolved stereoisomers. Ir(III)-based probes show emission quenching upon CYP3A4 binding, then emission increases following displacement with CYP3A4 inhibitors or substrates. Importantly, the lead probes inhibit the activity of CYP3A4 at concentrations as low as 300 nM in CYP3A4-overexpressing HepG2 cells that accurately mimic human hepatic drug metabolism. Thus, the Ir(III)-based agents show promise as novel chemical tools for monitoring CYP3A4 active site occupancy in a high-throughput manner to gain insight into drug metabolism and drug-drug interactions.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Justin J Ahrens
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Habon Warmahaye
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
4
|
Song Z, Zhang Q, Wu W, Pu Z, Yu H. Rational design of enzyme activity and enantioselectivity. Front Bioeng Biotechnol 2023; 11:1129149. [PMID: 36761300 PMCID: PMC9902596 DOI: 10.3389/fbioe.2023.1129149] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The strategy of rational design to engineer enzymes is to predict the potential mutants based on the understanding of the relationships between protein structure and function, and subsequently introduce the mutations using the site-directed mutagenesis. Rational design methods are universal, relatively fast and have the potential to be developed into algorithms that can quantitatively predict the performance of the designed sequences. Compared to the protein stability, it was more challenging to design an enzyme with improved activity or selectivity, due to the complexity of enzyme molecular structure and inadequate understanding of the relationships between enzyme structures and functions. However, with the development of computational force, advanced algorithm and a deeper understanding of enzyme catalytic mechanisms, rational design could significantly simplify the process of engineering enzyme functions and the number of studies applying rational design strategy has been increasing. Here, we reviewed the recent advances of applying the rational design strategy to engineer enzyme functions including activity and enantioselectivity. Five strategies including multiple sequence alignment, strategy based on steric hindrance, strategy based on remodeling interaction network, strategy based on dynamics modification and computational protein design are discussed and the successful cases using these strategies are introduced.
Collapse
Affiliation(s)
- Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Qunfeng Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Denison M, Steinke SJ, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Ir(III)-Based Agents for Monitoring the Cytochrome P450 3A4 Active Site Occupancy. Inorg Chem 2022; 61:13673-13677. [PMID: 35994607 PMCID: PMC9547529 DOI: 10.1021/acs.inorgchem.2c02587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochromes P450 (CYPs) are a superfamily of enzymes responsible for biosynthesis and drug metabolism. Monitoring the activity of CYP3A4, the major human drug-metabolizing enzyme, is vital for assessing the metabolism of pharmaceuticals and identifying harmful drug-drug interactions. Existing probes for CYP3A4 are irreversible turn-on substrates that monitor activity at specific time points in end-point assays. To provide a more dynamic approach, we designed, synthesized, and characterized emissive Ir(III) and Ru(II) complexes that allow monitoring of the CYP3A4 active-site occupancy in real time. In the bound state, probe emission is quenched by the active-site heme. Upon displacement from the active site by CYP3A4-specific inhibitors or substrates, these probes show high emission turn-on. Direct probe binding to the CYP3A4 active site was confirmed by X-ray crystallography. The lead Ir(III)-based probe has nanomolar Kd and high selectivity for CYP3A4, efficient cellular uptake, and low toxicity in CYP3A4-overexpressing HepG2 cells.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
7
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
9
|
Computational enzyme redesign: large jumps in function. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Martins FL, Pordea A, Jäger CM. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase. Faraday Discuss 2022; 234:315-335. [PMID: 35156975 DOI: 10.1039/d1fd00070e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial metalloenzymes (ArMs) confer non-biological reactivities to biomolecules, whilst taking advantage of the biomolecular architecture in terms of their selectivity and renewable origin. In particular, the design of ArMs by the supramolecular anchoring of metal catalysts to protein hosts provides flexible and easy to optimise systems. The use of cofactor dependent enzymes as hosts gives the advantage of both a (hydrophobic) binding site for the substrate and a cofactor pocket to accommodate the catalyst. Here, we present a computationally driven design approach of ArMs for the transfer hydrogenation reaction of cyclic imines, starting from the NADP+-dependent alcohol dehydrogenase from Thermoanaerobacter brockii (TbADH). We tested and developed a molecular docking workflow to define and optimize iridium catalysts with high affinity for the cofactor binding site of TbADH. The workflow uses high throughput docking of compound libraries to identify key structural motifs for high affinity, followed by higher accuracy docking methods on smaller, focused ligand and catalyst libraries. Iridium sulfonamide catalysts were selected and synthesised, containing either a triol, a furane, or a carboxylic acid to provide the interaction with the cofactor binding pocket. IC50 values of the resulting complexes during TbADH-catalysed alcohol oxidation were determined by competition experiments and were between 4.410 mM and 0.052 mM, demonstrating the affinity of the iridium complexes for either the substrate or the cofactor binding pocket of TbADH. The catalytic activity of the free iridium complexes in solution showed a maximal turnover number (TON) of 90 for the reduction of salsolidine by the triol-functionalised iridium catalyst, whilst in the presence of TbADH, only the iridium catalyst with the triol anchoring functionality showed activity for the same reaction (TON of 36 after 24 h). The observation that the artificial metalloenzymes developed here lacked stereoselectivity demonstrates the need for the further investigation and optimisation of the ArM. Our results serve as a starting point for the design of robust artificial metalloenzymes, exploiting supramolecular anchoring to natural NAD(P)H binding pockets.
Collapse
Affiliation(s)
- Floriane L Martins
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Anca Pordea
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Christof M Jäger
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Stein A, Chen D, Igareta NV, Cotelle Y, Rebelein JG, Ward TR. A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS CENTRAL SCIENCE 2021; 7:1874-1884. [PMID: 34849402 PMCID: PMC8620556 DOI: 10.1021/acscentsci.1c00825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Artificial metalloenzymes result from anchoring a metal cofactor within a host protein. Such hybrid catalysts combine the selectivity and specificity of enzymes with the versatility of (abiotic) transition metals to catalyze new-to-nature reactions in an evolvable scaffold. With the aim of improving the localization of an arylsulfonamide-bearing iridium-pianostool catalyst within human carbonic anhydrase II (hCAII) for the enantioselective reduction of prochiral imines, we introduced a covalent linkage between the host and the guest. Herein, we show that a judiciously positioned cysteine residue reacts with a p-nitropicolinamide ligand bound to iridium to afford an additional sulfonamide covalent linkage. Three rounds of directed evolution, performed on the dually anchored cofactor, led to improved activity and selectivity for the enantioselective reduction of harmaline (up to 97% ee (R) and >350 turnovers on a preparative scale). To evaluate the substrate scope, the best hits of each generation were tested with eight substrates. X-ray analysis, carried out at various stages of the evolutionary trajectory, was used to scrutinize (i) the nature of the covalent linkage between the cofactor and the host as well as (ii) the remodeling of the substrate-binding pocket.
Collapse
Affiliation(s)
- Alina Stein
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| | - Yoann Cotelle
- Aix-Marseille
Université, CNRS, Centrale Marseille, iSm2, 13284 Marseille, France
| | - Johannes G. Rebelein
- Max
Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Center of Competence in Research “Molecular Systems Engineering”, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Jung SM, Lee J, Song WJ. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier. J Inorg Biochem 2021; 223:111552. [PMID: 34332336 DOI: 10.1016/j.jinorgbio.2021.111552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022]
Abstract
A large fraction of metalloenzymes harbors multiple metal-centers that are electronically and/or functionally arranged within their proteinaceous environments. To explore the orchestration of inorganic and biochemical components and to develop bioinorganic catalysts and materials, we have described selected examples of artificial metalloproteins having multiple metallocofactors that were grouped depending on their initial protein scaffolds, the nature of introduced inorganic moieties, and the method used to propagate the number of metal ions within a protein. They demonstrated that diverse inorganic moieties can be selectively grafted and modulated in protein environments, providing a retrosynthetic bottom-up approach in the design of versatile and proficient biocatalysts and biomimetic model systems to explore fundamental questions in bioinorganic chemistry.
Collapse
Affiliation(s)
- Se-Min Jung
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehee Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Roda S, Robles-Martín A, Xiang R, Kazemi M, Guallar V. Structural-Based Modeling in Protein Engineering. A Must Do. J Phys Chem B 2021; 125:6491-6500. [PMID: 34106727 DOI: 10.1021/acs.jpcb.1c02545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biotechnological solutions will be a key aspect in our immediate future society, where optimized enzymatic processes through enzyme engineering might be an important solution for waste transformation, clean energy production, biodegradable materials, and green chemistry, for example. Here we advocate the importance of structural-based bioinformatics and molecular modeling tools in such developments. We summarize our recent experiences indicating a great prediction/success ratio, and we suggest that an early in silico phase should be performed in enzyme engineering studies. Moreover, we demonstrate the potential of a new technique combining Rosetta and PELE, which could provide a faster and more automated procedure, an essential aspect for a broader use.
Collapse
Affiliation(s)
- Sergi Roda
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | | | - Ruite Xiang
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Masoud Kazemi
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
14
|
Facchetti G, Bucci R, Fusè M, Erba E, Gandolfi R, Pellegrino S, Rimoldi I. Alternative Strategy to Obtain Artificial Imine Reductase by Exploiting Vancomycin/D-Ala-D-Ala Interactions with an Iridium Metal Complex. Inorg Chem 2021; 60:2976-2982. [PMID: 33550804 DOI: 10.1021/acs.inorgchem.0c02969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the supramolecular interaction between vancomycin (Van), an antibiotic glycopeptide, and D-Ala-D-Ala (DADA) dipeptides, a novel class of artificial metalloenzymes was synthesized and characterized. The presence of an iridium(III) ligand at the N-terminus of DADA allowed the use of the metalloenzyme as a catalyst in the asymmetric transfer hydrogenation of cyclic imines. In particular, the type of link between DADA and the metal-chelating moiety was found to be fundamental for inducing asymmetry in the reaction outcome, as highlighted by both computational studies and catalytic results. Using the [IrCp*(m-I)Cl]Cl ⊂ Van complex in 0.1 M CH3COONa buffer at pH 5, a significant 70% (S) e.e. was obtained in the reduction of quinaldine B.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
15
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Booth RL, Grogan G, Wilson KS, Duhme-Klair AK. Artificial imine reductases: developments and future directions. RSC Chem Biol 2020; 1:369-378. [PMID: 34458768 PMCID: PMC8341917 DOI: 10.1039/d0cb00113a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Biocatalytic imine reduction has been a topic of intense research by the artificial metalloenzyme community in recent years. Artificial constructs, together with natural enzymes, have been engineered to produce chiral amines with high enantioselectivity. This review examines the design of the main classes of artificial imine reductases reported thus far and summarises approaches to enhancing their catalytic performance using complementary methods. Examples of utilising these biocatalysts in vivo or in multi-enzyme cascades have demonstrated the potential that artIREDs can offer, however, at this time their use in biocatalysis remains limited. This review explores the current scope of artIREDs and the strategies used for catalyst improvement, and examines the potential for artIREDs in the future.
Collapse
Affiliation(s)
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York UK
| | | |
Collapse
|
17
|
Enhancement in affinity of Aspergillus niger JMU-TS528 α-L-rhamnosidase (r-Rha1) by semiconservative site-directed mutagenesis of (α/α)6 catalytic domain. Int J Biol Macromol 2020; 151:845-854. [DOI: 10.1016/j.ijbiomac.2020.02.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
|
18
|
Roy A, Vaughn MD, Tomlin J, Booher GJ, Kodis G, Simmons CR, Allen JP, Ghirlanda G. Enhanced Photocatalytic Hydrogen Production by Hybrid Streptavidin-Diiron Catalysts. Chemistry 2020; 26:6240-6246. [PMID: 32201996 DOI: 10.1002/chem.202000204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Hybrid protein-organometallic catalysts are being explored for selective catalysis of a number of reactions, because they utilize the complementary strengths of proteins and of organometallic complex. Herein, we present an artificial hydrogenase, StrepH2, built by incorporating a biotinylated [Fe-Fe] hydrogenase organometallic mimic within streptavidin. This strategy takes advantage of the remarkable strength and specificity of biotin-streptavidin recognition, which drives quantitative incorporation of the biotinylated diironhexacarbonyl center into streptavidin, as confirmed by UV/Vis spectroscopy and X-ray crystallography. FTIR spectra of StrepH2 show characteristic peaks at shift values indicative of interactions between the catalyst and the protein scaffold. StrepH2 catalyzes proton reduction to hydrogen in aqueous media during photo- and electrocatalysis. Under photocatalytic conditions, the protein-embedded catalyst shows enhanced efficiency and prolonged activity compared to the isolated catalyst. Transient absorption spectroscopy data suggest a mechanism for the observed increase in activity underpinned by an observed longer lifetime for the catalytic species FeI Fe0 when incorporated within streptavidin compared to the biotinylated catalyst in solution.
Collapse
Affiliation(s)
- Anindya Roy
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.,Present Address: Molecular Engineering and Sciences, Institute for Protein Design, University of Washington, Seattle, WA, 98195-1655, USA
| | - Michael D Vaughn
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - John Tomlin
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Garrett J Booher
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Chad R Simmons
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| |
Collapse
|
19
|
Alonso-Cotchico L, Rodrı́guez-Guerra J, Lledós A, Maréchal JD. Molecular Modeling for Artificial Metalloenzyme Design and Optimization. Acc Chem Res 2020; 53:896-905. [PMID: 32233391 DOI: 10.1021/acs.accounts.0c00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Artificial metalloenzymes (ArMs) are obtained by inserting homogeneous catalysts into biological scaffolds and are among the most promising strategies in the quest for new-to-nature biocatalysts. The quality of their design strongly depends on how three partners interact: the biological host, the "artificial cofactor," and the substrate. However, structural characterization of functional artificial metalloenzymes by X-ray or NMR is often partial, elusive, or absent. How the cofactor binds to the protein, how the receptor reorganizes upon the binding of the cofactor and the substrate, and which are the binding mode(s) of the substrate for the reaction to proceed are key questions that are frequently unresolved yet crucial for ArM design. Such questions may eventually be solved by molecular modeling but require a step change beyond the current state-of-the-art methodologies.Here, we summarize our efforts in the study of ArMs, presenting both the development of computational strategies and their application. We first focus on our integrative computational framework that incorporates a variety of methods such as protein-ligand docking, classical molecular dynamics (MD), and pure quantum mechanical (QM) methods, which, when properly combined, are able to depict questions that range from host-cofactor binding predictions to simulations of entire catalytic mechanisms. We also pay particular attention to the protein-ligand docking strategies that we have developed to accurately predict the binding of transition metal-containing molecules to proteins. While this aspect is fundamental to many bioinorganic fields beyond ArMs, it has been disregarded from the molecular modeling landscape until very recently.Next we describe how to apply this computational framework to particular ArMs including systems previously characterized experimentally as well as others where computation served to guide the design. We start with the prediction of the interactions between homogeneous catalysts and biological hosts. Protein-ligand docking is pivotal at that stage, but it needs to be combined with QM/MM or MD approaches when the binding of the cofactor implies significant conformational changes of the protein or involve changes of the electronic state of the metal.Then, we summarize molecular modeling studies aimed at identifying cofactor-substrate arrangements inside the ArM active pocket that are consistent with its reactivity. These calculations stand on "Theozyme"-like dockings, MD-refined or not, which provide molecular rationale of the catalytic profiles of the artificial systems.In the third section, we present case studies to decode the entire catalytic mechanism of two ArMs: (1) an iridium based asymmetric transfer hydrogenase obtained by insertion of Noyori's catalyst into streptavidin and (2) a metallohydrolase achieved by including a receptor. Transition states, second coordination sphere effects, as well as motions of the cofactors are identified as drivers of the enantiomeric profiles.Finally, we report computer-aided designs of ArMs to guide experiments toward chemical and mutational changes that improve their activity and/or enantioselective profiles and expand toward future directions.
Collapse
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jaime Rodrı́guez-Guerra
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Agustí Lledós
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| |
Collapse
|
20
|
Pilar Lamata M, Passarelli V, Carmona D. Recent Advances in Iridium-Catalysed Transfer Hydrogenation Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
TANAKA K, VONG K. Unlocking the therapeutic potential of artificial metalloenzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:79-94. [PMID: 32161212 PMCID: PMC7167364 DOI: 10.2183/pjab.96.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In order to harness the functionality of metals, nature has evolved over billions of years to utilize metalloproteins as key components in numerous cellular processes. Despite this, transition metals such as ruthenium, palladium, iridium, and gold are largely absent from naturally occurring metalloproteins, likely due to their scarcity as precious metals. To mimic the evolutionary process of nature, the field of artificial metalloenzymes (ArMs) was born as a way to benefit from the unique chemoselectivity and orthogonality of transition metals in a biological setting. In its current state, numerous examples have successfully incorporated transition metals into a variety of protein scaffolds. Using these ArMs, many examples of new-to-nature reactions have been carried out, some of which have shown substantial biocompatibility. Given the rapid rate at which this field is growing, this review aims to highlight some important studies that have begun to take the next step within this field; namely the development of ArM-centered drug therapies or biotechnological tools.
Collapse
Affiliation(s)
- Katsunori TANAKA
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- Baton Zone Program, RIKEN, Wako, Saitama, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Correspondence should be addressed: K. Tanaka, Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (e-mail: )
| | - Kenward VONG
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
22
|
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0143-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Wu S, Zhou Y, Rebelein JG, Kuhn M, Mallin H, Zhao J, Igareta NV, Ward TR. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. J Am Chem Soc 2019; 141:15869-15878. [PMID: 31509711 PMCID: PMC6805045 DOI: 10.1021/jacs.9b06923] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The biotin–streptavidin technology
has been extensively
exploited to engineer artificial metalloenzymes (ArMs) that catalyze
a dozen different reactions. Despite its versatility, the homotetrameric
nature of streptavidin (Sav) and the noncooperative binding of biotinylated
cofactors impose two limitations on the genetic optimization of ArMs:
(i) point mutations are reflected in all four subunits of Sav, and
(ii) the noncooperative binding of biotinylated cofactors to Sav may
lead to an erosion in the catalytic performance, depending on the
cofactor:biotin-binding site ratio. To address these challenges, we
report on our efforts to engineer a (monovalent) single-chain dimeric
streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility
of scdSav as host protein is highlighted for the asymmetric transfer
hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning
of the biotin-binding vestibule, unrivaled levels of activity and
selectivity were achieved for the reduction of challenging prochiral
imines. Comparison of the saturation kinetic data and X-ray structures
of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally
related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav
highlights the advantages of the presence of a single biotinylated
cofactor precisely localized within the biotin-binding vestibule of
the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated
for the reduction of the salsolidine precursor (500 mM) to afford
(R)-salsolidine in 90% ee and >17 000 TONs.
Monovalent scdSav thus provides a versatile scaffold to evolve more
efficient ArMs for in vivo catalysis and large-scale applications.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Yi Zhou
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Johannes G Rebelein
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Miriam Kuhn
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Hendrik Mallin
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Jingming Zhao
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Nico V Igareta
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| |
Collapse
|
24
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
25
|
Davis H, Ward TR. Artificial Metalloenzymes: Challenges and Opportunities. ACS CENTRAL SCIENCE 2019; 5:1120-1136. [PMID: 31404244 PMCID: PMC6661864 DOI: 10.1021/acscentsci.9b00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 05/04/2023]
Abstract
Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.
Collapse
|
26
|
Baumann T, Hauf M, Richter F, Albers S, Möglich A, Ignatova Z, Budisa N. Computational Aminoacyl-tRNA Synthetase Library Design for Photocaged Tyrosine. Int J Mol Sci 2019; 20:ijms20092343. [PMID: 31083552 PMCID: PMC6539999 DOI: 10.3390/ijms20092343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/20/2023] Open
Abstract
Engineering aminoacyl-tRNA synthetases (aaRSs) provides access to the ribosomal incorporation of noncanonical amino acids via genetic code expansion. Conventional targeted mutagenesis libraries with 5–7 positions randomized cover only marginal fractions of the vast sequence space formed by up to 30 active site residues. This frequently results in selection of weakly active enzymes. To overcome this limitation, we use computational enzyme design to generate a focused library of aaRS variants. For aaRS enzyme redesign, photocaged ortho-nitrobenzyl tyrosine (ONBY) was chosen as substrate due to commercial availability and its diverse applications. Diversifying 17 first- and second-shell sites and performing conventional aaRS positive and negative selection resulted in a high-activity aaRS. This MjTyrRS variant carries ten mutations and outperforms previously reported ONBY-specific aaRS variants isolated from traditional libraries. In response to a single in-frame amber stop codon, it mediates the in vivo incorporation of ONBY with an efficiency matching that of the wild type MjTyrRS enzyme acylating cognate tyrosine. These results exemplify an improved general strategy for aaRS library design and engineering.
Collapse
Affiliation(s)
- Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Matthias Hauf
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
| | - Florian Richter
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Suki Albers
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany.
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
27
|
Rebelein JG, Cotelle Y, Garabedian B, Ward TR. Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein. ACS Catal 2019; 9:4173-4178. [PMID: 31080690 PMCID: PMC6503580 DOI: 10.1021/acscatal.9b01006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Indexed: 12/12/2022]
Abstract
![]()
Artificial
metalloenzymes combine a synthetic metallocofactor with
a protein scaffold and can catalyze abiotic reactions in vivo. Herein, we report on our efforts to valorize human carbonic anhydrase
II as a scaffold for whole-cell transfer hydrogenation. Two platforms
were tested: periplasmic compartmentalization and surface display
in Escherichia coli. A chemical optimization of an
IrCp* cofactor was performed. This led to 90 turnovers in the cell,
affording a 69-fold increase in periplasmic product formation over
the previously reported, sulfonamide-bearing IrCp* cofactor. These
findings highlight the versatility of carbonic anhydrase as a promising
scaffold for whole-cell catalysis with artificial metalloenzymes.
Collapse
Affiliation(s)
- Johannes G. Rebelein
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Yoann Cotelle
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Brett Garabedian
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Thomas R. Ward
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
28
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
29
|
Imam HT, Jarvis AG, Celorrio V, Baig I, Allen CCR, Marr AC, Kamer PCJ. Catalytic and biophysical investigation of rhodium hydroformylase. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01679a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh-Containing artificial metalloenzymes based on two mutants of sterol carrier protein_2L (SCP_2L) have been shown to act as hydroformylases, exhibiting significant activity and unexpectedly high selectivity in the hydroformylation of alkenes.
Collapse
Affiliation(s)
- Hasan T. Imam
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
- School of Chemistry and Chemical Engineering
| | | | | | - Irshad Baig
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | | - Andrew C. Marr
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Paul C. J. Kamer
- Bioinspired Homo- & Heterogeneous Catalysis
- Leibniz Institute for Catalysis
- Rostock
- Germany
| |
Collapse
|
30
|
Carvalho HF, Branco RJF, Leite FAS, Matzapetakis M, Roque ACA, Iranzo O. Hydrolytic zinc metallopeptides using a computational multi-state design approach. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01364d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combination of multi-state design and long-timescale conformational dynamics as a powerful strategy to obtain metalloenzymes.
Collapse
Affiliation(s)
- Henrique F. Carvalho
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Ricardo J. F. Branco
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Fábio A. S. Leite
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Manolis Matzapetakis
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - A. Cecília A. Roque
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | | |
Collapse
|
31
|
Chen X, Zhou XY, Wu H, Lei, YZ, Li JH. Highly efficient reduction of nitro compounds: Recyclable Pd/C-catalyzed transfer hydrogenation with ammonium formate or hydrazine hydrate as hydrogen source. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1484924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Hong Wu
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Yi-Zhu Lei,
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Jin-Hui Li
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
32
|
Li QH, Dong Y, Chen FF, Liu L, Li CX, Xu JH, Zheng GW. Reductive amination of ketones with ammonium catalyzed by a newly identified Brevibacterium epidermidis strain for the synthesis of (S)-chiral amines. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63108-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Hayashi T, Hilvert D, Green AP. Engineered Metalloenzymes with Non-Canonical Coordination Environments. Chemistry 2018; 24:11821-11830. [PMID: 29786902 DOI: 10.1002/chem.201800975] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 11/09/2022]
Abstract
Nature employs a limited number of genetically encoded, metal-coordinating residues to create metalloenzymes with diverse structures and functions. Engineered components of the cellular translation machinery can now be exploited to encode non-canonical ligands with user-defined electronic and structural properties. This ability to install "chemically programmed" ligands into proteins can provide powerful chemical probes of metalloenzyme mechanism and presents excellent opportunities to create metalloprotein catalysts with augmented properties and novel activities. In this Concept article, we provide an overview of several recent studies describing the creation of engineered metalloenzymes with interesting catalytic properties, and reveal how characterization of these systems has advanced our understanding of nature's bioinorganic mechanisms. We also highlight how powerful laboratory evolution protocols can be readily adapted to allow optimization of metalloenzymes with non-canonical ligands. This approach combines beneficial features of small molecule and protein catalysis by allowing the installation of a greater variety of local metal coordination environments into evolvable protein scaffolds, and holds great promise for the future creation of powerful metalloprotein catalysts for a host of synthetically valuable transformations.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Anthony P Green
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
34
|
Heinisch T, Schwizer F, Garabedian B, Csibra E, Jeschek M, Vallapurackal J, Pinheiro VB, Marlière P, Panke S, Ward TR. E. coli surface display of streptavidin for directed evolution of an allylic deallylase. Chem Sci 2018; 9:5383-5388. [PMID: 30079176 PMCID: PMC6048633 DOI: 10.1039/c8sc00484f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
Artificial metalloenzymes (ArMs hereafter) combine attractive features of both homogeneous catalysts and enzymes and offer the potential to implement new-to-nature reactions in living organisms. Herein we present an E. coli surface display platform for streptavidin (Sav hereafter) relying on an Lpp-OmpA anchor. The system was used for the high throughput screening of a bioorthogonal CpRu-based artificial deallylase (ADAse) that uncages an allylcarbamate-protected aminocoumarin 1. Two rounds of directed evolution afforded the double mutant S112M-K121A that displayed a 36-fold increase in surface activity vs. cellular background and a 5.7-fold increased in vitro activity compared to the wild type enzyme. The crystal structure of the best ADAse reveals the importance of mutation S112M to stabilize the cofactor conformation inside the protein.
Collapse
Affiliation(s)
- Tillmann Heinisch
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Fabian Schwizer
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Brett Garabedian
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Eszter Csibra
- Institute of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , UK
| | - Markus Jeschek
- Department of Biosystems Science and Engineering , ETH Zurich , Mattenstrasse 26 , Basel CH-4058 , Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| | - Vitor B Pinheiro
- Institute of Structural and Molecular Biology , University College London , Gower Street , London , WC1E 6BT , UK
| | | | - Sven Panke
- Department of Biosystems Science and Engineering , ETH Zurich , Mattenstrasse 26 , Basel CH-4058 , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel CH-4002 , Switzerland .
| |
Collapse
|
35
|
Abstract
Biotechnology has revolutionized therapeutics for the treatment of a wide range of diseases. Recent advances in protein engineering and material science have made the targeted delivery of enzyme therapeutics using nanocarriers (NCs) a new model of treatment. Several NCs have been approved for clinical use in drug delivery. Despite their advantages, few NCs have been approved to deliver enzyme cargo in a targeted manner. This review details the current arsenal of platforms developed to deliver enzyme therapeutics as well as the advantages and challenges of using enzymes as drugs, with examples from the literature, and discusses the benefits and liabilities of a given approach. We conclude by providing a perspective on how this field may evolve over the near and long-term.
Collapse
|
36
|
Courbet A, Amar P, Fages F, Renard E, Molina F. Computer-aided biochemical programming of synthetic microreactors as diagnostic devices. Mol Syst Biol 2018; 14:e7845. [PMID: 29700076 PMCID: PMC5917673 DOI: 10.15252/msb.20177845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Biological systems have evolved efficient sensing and decision-making mechanisms to maximize fitness in changing molecular environments. Synthetic biologists have exploited these capabilities to engineer control on information and energy processing in living cells. While engineered organisms pose important technological and ethical challenges, de novo assembly of non-living biomolecular devices could offer promising avenues toward various real-world applications. However, assembling biochemical parts into functional information processing systems has remained challenging due to extensive multidimensional parameter spaces that must be sampled comprehensively in order to identify robust, specification compliant molecular implementations. We introduce a systematic methodology based on automated computational design and microfluidics enabling the programming of synthetic cell-like microreactors embedding biochemical logic circuits, or protosensors, to perform accurate biosensing and biocomputing operations in vitro according to temporal logic specifications. We show that proof-of-concept protosensors integrating diagnostic algorithms detect specific patterns of biomarkers in human clinical samples. Protosensors may enable novel approaches to medicine and represent a step toward autonomous micromachines capable of precise interfacing of human physiology or other complex biological environments, ecosystems, or industrial bioprocesses.
Collapse
Affiliation(s)
- Alexis Courbet
- Sys2diag UMR9005 CNRS/ALCEDIAG, Montpellier, France
- Department of Endocrinology, Diabetes, Nutrition and INSERM 1411 Clinical Investigation Center, University Hospital of Montpellier, Montpellier Cedex 5, France
| | - Patrick Amar
- Sys2diag UMR9005 CNRS/ALCEDIAG, Montpellier, France
- LRI, Université Paris Sud - UMR CNRS 8623, Orsay Cedex, France
| | | | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition and INSERM 1411 Clinical Investigation Center, University Hospital of Montpellier, Montpellier Cedex 5, France
- Institute of Functional Genomics, CNRS UMR 5203, INSERM U1191, University of Montpellier, Montpellier Cedex 5, France
| | | |
Collapse
|
37
|
de Jesús Cázares-Marinero J, Przybylski C, Salmain M. Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Cédric Przybylski
- Institut Parisien de Chimie Moléculaire, IPCM; Sorbonne Université, CNRS; 75005 Paris France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire, IPCM; Sorbonne Université, CNRS; 75005 Paris France
| |
Collapse
|
38
|
Valdez CE, Morgenstern A, Eberhart ME, Alexandrova AN. Predictive methods for computational metalloenzyme redesign - a test case with carboxypeptidase A. Phys Chem Chem Phys 2018; 18:31744-31756. [PMID: 27841396 DOI: 10.1039/c6cp02247b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Computational metalloenzyme design is a multi-scale problem. It requires treating the metal coordination quantum mechanically, extensive sampling of the protein backbone, and additionally accounting for the polarization of the active site by both the metal cation and the surrounding protein (a phenomenon called electrostatic preorganization). We bring together a combination of theoretical methods that jointly offer these desired qualities: QM/DMD for mixed quantum-classical dynamic sampling, quantum theory of atoms in molecules (QTAIM) for the assessment of electrostatic preorganization, and Density Functional Theory (DFT) for mechanistic studies. Within this suite of principally different methods, there are both complementarity of capabilities and cross-validation. Using these methods, predictions can be made regarding the relative activities of related enzymes, as we show on the native Zn2+-dependent carboxypeptidase A (CPA), and its mutant proteins, which are hypothesized to hydrolyze modified substrates. For the native CPA, we replicated the catalytic mechanism and the rate in close agreement with the experiment, giving validity to the QM/DMD predicted structure, the DFT mechanism, and the QTAIM assessment of catalytic activity. For most sequences of the modified substrate and tried CPA mutants, substantially worsened activity is predicted. However, for the substrate mutant that contains Asp instead of Phe at the C-terminus, one CPA mutant exhibits a reasonable activity, as predicted across the theoretical methods. CPA is a well-studied system, and here it serves as a testing ground for the offered methods.
Collapse
Affiliation(s)
- Crystal E Valdez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Amanda Morgenstern
- Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401, USA.
| | - Mark E Eberhart
- Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401, USA.
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA. and California NanoSystems Institute, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Yu Y, Hu C, Xia L, Wang J. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03754] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Yu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Cheng Hu
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Lin Xia
- Center
for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiangyun Wang
- Laboratory
of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
40
|
Pellizzoni MM, Schwizer F, Wood CW, Sabatino V, Cotelle Y, Matile S, Woolfson DN, Ward TR. Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03773] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michela M. Pellizzoni
- University of Basel, Department of Chemistry, Mattenstrasse 24a, BPR 1096, CH 4002 Basel, Switzerland
| | - Fabian Schwizer
- University of Basel, Department of Chemistry, Mattenstrasse 24a, BPR 1096, CH 4002 Basel, Switzerland
| | | | - Valerio Sabatino
- University of Basel, Department of Chemistry, Mattenstrasse 24a, BPR 1096, CH 4002 Basel, Switzerland
| | - Yoann Cotelle
- School
of Chemistry and Biochemistry, University of Geneva, Quai Ernest
Ansermet 30, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry, University of Geneva, Quai Ernest
Ansermet 30, CH-1211 Geneva, Switzerland
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Thomas R. Ward
- University of Basel, Department of Chemistry, Mattenstrasse 24a, BPR 1096, CH 4002 Basel, Switzerland
| |
Collapse
|
41
|
Abstract
The last decade has seen a dramatic increase in the utilization of enzymes as green and sustainable (bio)catalysts in pharmaceutical and industrial applications. This trend has to a significant degree been fueled by advances in scientists' and engineers' ability to customize native enzymes by protein engineering. A review of the literature quickly reveals the tremendous success of this approach; protein engineering has generated enzyme variants with improved catalytic activity, broadened or altered substrate specificity, as well as raised or reversed stereoselectivity. Enzymes have been tailored to retain activity at elevated temperatures and to function in the presence of organic solvents, salts and pH values far from physiological conditions. However, readers unfamiliar with the field will soon encounter the confusingly large number of experimental techniques that have been employed to accomplish these engineering feats. Herein, we use history to guide a brief overview of the major strategies for protein engineering-past, present, and future.
Collapse
Affiliation(s)
- Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| | - Samantha M Iamurri
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
42
|
Bozkurt E, Soares TA, Rothlisberger U. Can Biomimetic Zinc Compounds Assist a (3 + 2) Cycloaddition Reaction? A Theoretical Perspective. J Chem Theory Comput 2017; 13:6382-6390. [DOI: 10.1021/acs.jctc.7b00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esra Bozkurt
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Thereza A. Soares
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Fundamental Chemistry, Federal University of Pernambuco, Recife 50740-560, Brazil
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Song WJ, Yu J, Tezcan FA. Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-lactamases. J Am Chem Soc 2017; 139:16772-16779. [PMID: 28992705 DOI: 10.1021/jacs.7b08981] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe the design and evolution of catalytic hydrolase activity on a supramolecular protein scaffold, Zn4:C96RIDC14, which was constructed from cytochrome cb562 building blocks via a metal-templating strategy. Previously, we reported that Zn4:C96RIDC14 could be tailored with tripodal (His/His/Glu), unsaturated Zn coordination motifs in its interfaces to generate a variant termed Zn8:A104AB34, which in turn displayed catalytic activity for the hydrolysis of activated esters and β-lactam antibiotics. Zn8:A104AB34 was subsequently subjected to directed evolution via an in vivo selection strategy, leading to a variant Zn8:A104/G57AB34 which displayed enzyme-like Michaelis-Menten behavior for ampicillin hydrolysis. A criterion for the evolutionary utility or designability of a new protein structure is its ability to accommodate different active sites. With this in mind, we examined whether Zn4:C96RIDC14 could be tailored with alternative Zn coordination sites that could similarly display evolvable catalytic activities. We report here a detailed structural and functional characterization of new variant Zn8:AB54, which houses similar, unsaturated Zn coordination sites to those in Zn8:A104/G57AB34, but in completely different microenvironments. Zn8:AB54 displays Michaelis-Menten behavior for ampicillin hydrolysis without any optimization. Yet, the subsequent directed evolution of Zn8:AB54 revealed limited catalytic improvement, which we ascribed to the local protein rigidity surrounding the Zn centers and the lack of evolvable loop structures nearby. The relaxation of local rigidity via the elimination of adjacent disulfide linkages led to a considerable structural transformation with a concomitant improvement in β-lactamase activity. Our findings reaffirm previous observations that the delicate balance between protein flexibility and stability is crucial for enzyme design and evolution.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States.,Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - Jaeseung Yu
- Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States
| |
Collapse
|
44
|
|
45
|
Drienovská I, Alonso-Cotchico L, Vidossich P, Lledós A, Maréchal JD, Roelfes G. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem Sci 2017; 8:7228-7235. [PMID: 29081955 PMCID: PMC5633786 DOI: 10.1039/c7sc03477f] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate-metal cofactor-host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2'-bipyridin-5yl)alanine is used to bind the catalytic Cu(ii) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein-ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.
Collapse
Affiliation(s)
- Ivana Drienovská
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| | - Lur Alonso-Cotchico
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Pietro Vidossich
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Agustí Lledós
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Jean-Didier Maréchal
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Gerard Roelfes
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| |
Collapse
|
46
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
47
|
Di Meo T, Ghattas W, Herrero C, Velours C, Minard P, Mahy JP, Ricoux R, Urvoas A. αRep A3: A Versatile Artificial Scaffold for Metalloenzyme Design. Chemistry 2017; 23:10156-10166. [PMID: 28543753 DOI: 10.1002/chem.201701518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 12/19/2022]
Abstract
αRep refers to a new family of artificial proteins based on a thermostable α-helical repeated motif. One of its members, αRep A3, forms a stable homo-dimer with a wide cleft that is able to accommodate metal complexes and thus appears to be suitable for generating new artificial biocatalysts. Based on the crystal structure of αRep A3, two positions (F119 and Y26) were chosen, and independently changed into cysteine residues. A phenanthroline ligand was covalently attached to the unique cysteine residue of each protein variant, and the corresponding biohybrids were purified and characterized. Once mutated and coupled to phenanthroline, the protein remained folded and dimeric. Copper(II) was specifically bound by the two biohybrids with two different binding modes. Furthermore, the holo-biohybrid A3F119NPH was found to be capable of enantioselectively catalyzing Diels-Alder (D-A) cycloadditions with up to 62 % ee. This study validates the choice of the αRep A3 dimer as a protein scaffold and provides a promising new route for the design and production of new enantioselective biohybrids based on entirely artificial proteins obtained from a highly diverse library.
Collapse
Affiliation(s)
- Thibault Di Meo
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bât. 420, rue du Doyen Georges Poitou, 91405, Orsay cedex, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Wadih Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bât. 420, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bât. 420, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Christophe Velours
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bât. 420, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bât. 420, rue du Doyen Georges Poitou, 91405, Orsay cedex, France
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
48
|
Li H, Tian P, Xu JH, Zheng GW. Identification of an Imine Reductase for Asymmetric Reduction of Bulky Dihydroisoquinolines. Org Lett 2017; 19:3151-3154. [DOI: 10.1021/acs.orglett.7b01274] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Li
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ping Tian
- Shanghai
Institute of Organic Chemistry, Chinese Academy of Science, 345
Lingling Road, Shanghai 200032, P. R. China
| | - Jian-He Xu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Gao-Wei Zheng
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
49
|
Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpoint☆. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Liskova V, Stepankova V, Bednar D, Brezovsky J, Prokop Z, Chaloupkova R, Damborsky J. Different Structural Origins of the Enantioselectivity of Haloalkane Dehalogenases toward Linear β-Haloalkanes: Open-Solvated versus Occluded-Desolvated Active Sites. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Veronika Liskova
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Veronika Stepankova
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
- Enantis s.r.o.; Kamenice 34 625 00 Brno Czech Republic
| | - David Bednar
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories; Department of Experimental Biology and RECETOX; Faculty of Science; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center; St. Anne's University Hospital; Pekarska 53 656 91 Brno Czech Republic
| |
Collapse
|