1
|
Zhang Z, Sheetz EG, Pink M, Yamamoto N, Flood AH. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angew Chem Int Ed Engl 2024; 63:e202409070. [PMID: 38969622 DOI: 10.1002/anie.202409070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Steric manipulation is a known concept in molecular recognition but there is currently no linear free energy relationship correlating sterics to the stability of receptor-anion complexes nor to the reactivity of the bound anion. By analogy to Tolman cone angles in cation coordination chemistry, we explore how to define and correlate cone angles of organo-trifluoroborates (R-BF3 -) to the affinities observed for cyanostar-anion binding. We extend the analogy to a rare investigation of the anion's reactivity and how it changes upon binding. The substituent on the anion is used to define the cone angle, θ. A series of 10 anions were studied including versions with ethynyl, ethylene, and ethyl substituents to tune steric bulk across the sp, sp2 and sp3 hybridized α-carbons bearing 0, 1 and 2 hydrogen atoms. A linear relationship between affinity and cone angle is observed for anions bearing substituents larger than the -BF3 - headgroup. This correlation predicted affinities of two new anions to within ±5 %. We explored how complexation affects the reactivity of fluoride exchange. The yield of fluoride transfer from R-BF3 - to Lewis acid triphenylborane is correlated with cone angle. We predict that other rigid macrocycles, like commercially available bambusuril, could follow these trends.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| |
Collapse
|
2
|
Fargher HA, Delmau LH, Bryantsev VS, Haley MM, Johnson DW, Moyer BA. Disrupting the Hofmeister bias in salt liquid-liquid extraction with an arylethynyl bisurea anion receptor. Chem Sci 2024; 15:5311-5318. [PMID: 38577371 PMCID: PMC10988605 DOI: 10.1039/d3sc05922g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Host-mediated liquid-liquid extraction is a convenient method for the separation of inorganic salts. However, selective extraction of an anion, regardless of its hydrophilicity or lipophilicity as qualitatively described by its place in the Hofmeister series, remains challenging. Herein we report the complete disruption of the Hofmeister-based ordering of anions in host-mediated extraction by a rigidified tweezer-type receptor possessing remarkably strong anion-binding affinity under the conditions examined. Experiments introduce a convenient new method for determination of anion binding using phosphorus inductively coupled plasma mass spectrometry (ICP-MS) to measure extraction of tetra-n-butylphosphonium (TBP+) salts from water into nitrobenzene, specifically examining the disrupting effect of the added arylethynyl bisurea anion receptor. In the absence of the receptor, the salt partitioning follows the expected Hofmeister-type ordering favoring the larger, less hydrated anions; the analysis yields the value -24 kJ mol-1 for the standard Gibbs energy of partitioning of TBP+ cation from water into nitrobenzene at 25 °C. Selectivity is markedly changed by the addition of receptor to the nitrobenzene and is concentration dependent, giving rise to three selectivity regimes. We then used SXLSQI liquid-liquid equilibrium analysis software developed at Oak Ridge National Laboratory to fit host-mediated extraction equilibria for TBP+ salts of Cl-, Br-, I-, and NO3- to the distribution data. While the reverse-Hofmeister 1 : 1 binding of the anions by the receptor effectively cancels the Hofmeister selectivity of the TBPX partitioning into nitrobenzene, formation of unexpected 2 : 1 receptor : anion complexes favoring Cl- and Br- dominates the selectivity at elevated receptor concentrations, producing the unusual order Br- > Cl- > NO3- > I- in anion distribution wherein a middle member of the series is selected and the most lipophilic anion is disfavored. Density functional theory calculations confirmed the likelihood of forming 2 : 1 complexes, where Cl- and Br- are encapsulated by two receptors adopting energetically competitive single or double helix structures. The calculations explain the rare non-Hofmeister preference for Br-. This example shows that anion receptors can be used to control the selectivity and efficiency of salt extraction regardless of the position of the anion in the Hofmeister series.
Collapse
Affiliation(s)
- Hazel A Fargher
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Lætitia H Delmau
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6384 USA
| | | | - Michael M Haley
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Darren W Johnson
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA
| | - Bruce A Moyer
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA
| |
Collapse
|
3
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Structural Landscape of α-Acetamidocinnamic Acid Cocrystals with Bipyridine-Based Coformers: Influence of Crystal Packing on Their Thermal and Photophysical Properties. CRYSTAL GROWTH & DESIGN 2024; 24:1746-1765. [PMID: 38405168 PMCID: PMC10885007 DOI: 10.1021/acs.cgd.3c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Controlling the supramolecular synthon outcome in systems with different functionalities has been a key factor for the design of supramolecular materials, which also affected their physicochemical properties. In this contribution, we have analyzed the structural landscape of α-acetamidocinnamic acid (HACA) aiming to find its synthon outcome from the competitivity between its acidic and amidic groups. We prepared four multicomponent forms including one dihydrate (HACA·2H2O) and three cocrystals bearing different bipyridine coformers with formulas (HACA)2(1,2-bpe) (1), (HACA)2(4,4'-azpy) (2), and (HACA)2(4,4'-bipy)3 (3) (1,2-bpe = 1,2-bis(4-pyridyl)ethylene; 4,4'-azpy = 4,4'-azopyridine; 4,4'-bipy = 4,4'-bipyridine). First, we applied a virtual screening approach to assess the feasibility of cocrystal formation. Then, we synthesized the cocrystals, via liquid-assisted grinding (LAG) (1 and 2) or solvothermal (3) techniques, and single crystals of HACA, and their four multicomponent forms were obtained showing different synthons and crystal packings. Besides, a Cambridge Structural Database (CSD) search of the cocrystals presenting bipyridine-type coformers and molecules with acid and amide functionalities was performed, and the observed synthon occurrences as well as the possibility of synthon modification by tuning the H-donor/H-acceptor propensity of the acidic and amidic groups were shown. Finally, we measured their thermal and photophysical properties, which were correlated with their structural features.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament
de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat
de Difracció de Raig-X, Centres Científics i Tecnològics
de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Chvojka M, Madea D, Valkenier H, Šindelář V. Tuning CH Hydrogen Bond-Based Receptors toward Picomolar Anion Affinity via the Inductive Effect of Distant Substituents. Angew Chem Int Ed Engl 2023:e202318261. [PMID: 38063265 DOI: 10.1002/anie.202318261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Inspired by nature, artificial hydrogen bond-based anion receptors have been developed to achieve high anion selectivity; however, their binding affinity is usually low. The potency of these receptors is usually increased by the introduction of aryl substituents, which withdraw electrons from their binding site through the resonance effect. Here, we show that the polarization of the C(sp3 )-H binding site of bambusuril receptors, and thus their potency to bind anions, can be modulated by the inductive effect. The presence of electron-withdrawing groups on benzyl substituents of bambusurils significantly increases their binding affinities to halides, resulting in the strongest iodide receptor reported to date with an association constant greater than 1013 M-1 in acetonitrile. A Hammett plot showed that while the bambusuril affinity toward halides linearly increases with the electron-withdrawing power of their substituents, their binding selectivity remains essentially unchanged.
Collapse
Affiliation(s)
- Matúš Chvojka
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Engineering of Molecular NanoSystems, École polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050, Brussels, Belgium
| | - Dominik Madea
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, École polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050, Brussels, Belgium
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| |
Collapse
|
6
|
McNeill JN, Bard JP, Johnson DW, Haley MM. Azaphosphinines and their derivatives. Chem Soc Rev 2023. [PMID: 37997364 DOI: 10.1039/d3cs00737e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Six-membered heterocycles containing one phosphorus and one nitrogen atom, known as azaphosphinines, have existed in the shadows of their single heteroatom-containing analogues for almost 150 years. Despite this, recent chemistry has seen a rapid increase in publications concerning this uncommon scaffold. Azaphosphinines exist in one of six isomers-there are three possible orientations of the pnictogen atoms and in each of these, the phosphorus is in one of two valences (PIIIvs. PV). This review aims to outline and inform on the synthesis and applications of all six isomers. PV-oxo azaphosphinines are of particular interest to this review as many of the discussed heterocycles either form as the pentavalent species directly or oxidize to this over time. In very recent years the published applications of azaphosphinines have blossomed into subjects spanning several fields of chemistry such as asymmetric catalysis, supramolecular association, cellular imaging, and medicinal chemistry.
Collapse
Affiliation(s)
- J Nolan McNeill
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Jeremy P Bard
- Department of Chemistry, Washington College, Chestertown, MD 21620-1438, USA.
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| |
Collapse
|
7
|
Cao R, Rossdeutcher RB, Zhong Y, Shen Y, Miller DP, Sobiech TA, Wu X, Buitrago LS, Ramcharan K, Gutay MI, Figueira MF, Luthra P, Zurek E, Szyperski T, Button B, Shao Z, Gong B. Aromatic pentaamide macrocycles bind anions with high affinity for transport across biomembranes. Nat Chem 2023; 15:1559-1568. [PMID: 37814114 DOI: 10.1038/s41557-023-01315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/08/2023] [Indexed: 10/11/2023]
Abstract
The convergent positioning of functional groups in biomacromolecules leads to good binding, catalytic and transport capabilities. Synthetic frameworks capable of convergently locking functional groups with minimized conformational uncertainty-leading to similar properties-are highly desirable but rare. Here we report C5-symmetric aromatic pentaamide macrocycles synthesized in one pot from the corresponding monomers. Their crystal structures reveal a star-shaped, fully constrained backbone that causes ten alternating NH/CH hydrogen-bond donors and five large amide dipoles to orient towards the centre of the macrocycle. With a highly electropositive cavity in a high-energy unbound state, the macrocycles bind anions in a 1:1 stoichiometry in solution, with high affinity for halides and very high affinity for oxoanions. We demonstrate that such macrocycles are able to transport anions across lipid bilayers with a high chloride selectivity and restore the depleted airway surface liquid of cystic fibrosis airway cell cultures.
Collapse
Affiliation(s)
- Ruikai Cao
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert B Rossdeutcher
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yulong Zhong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yi Shen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel P Miller
- Department of Chemistry, Hofstra University, Hempstead, NY, USA
| | - Thomas A Sobiech
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Xiangxiang Wu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | | | | | - Mark I Gutay
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Pia Luthra
- Department of Chemistry, Hofstra University, Hempstead, NY, USA
| | - Eva Zurek
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Bing Gong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
8
|
Samaroo S, Hengesbach C, Bruggeman C, Carducci NGG, Mtemeri L, Staples RJ, Guarr T, Hickey DP. C-H···π interactions disrupt electrostatic interactions between non-aqueous electrolytes to increase solubility. Nat Chem 2023; 15:1365-1373. [PMID: 37580445 DOI: 10.1038/s41557-023-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023]
Abstract
Grid-scale energy storage applications, such as redox flow batteries, rely on the solubility of redox-active organic molecules. Although redox-active pyridiniums exhibit exceptional persistence in multiple redox states at low potentials (desirable properties for energy storage applications), their solubility in non-aqueous media remains low, and few practical molecular design strategies exist to improve solubility. Here we convey the extent to which discrete, attractive interactions between C-H groups and π electrons of an aromatic ring (C-H···π interactions) can describe the solubility of N-substituted pyridinium salts in a non-aqueous solvent. We find a direct correlation between the number of C-H···π interactions for each pyridinium salt and its solubility in acetonitrile. The correlation presented in this work highlights a consequence of disrupting strong electrostatic interactions with weak dispersion interactions, showing how minimal structural change can dramatically impact pyridinium solubility.
Collapse
Affiliation(s)
- Sharmila Samaroo
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Charley Hengesbach
- Michigan State University Bioeconomy Institute, Michigan State University, Holland, MI, USA
| | - Chase Bruggeman
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Nunzio Giorgio G Carducci
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Lincoln Mtemeri
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Thomas Guarr
- Michigan State University Bioeconomy Institute, Michigan State University, Holland, MI, USA.
- Jolt Energy Storage Technologies, LLC, Holland, MI, USA.
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Sun J, Decato DA, Bryantsev VS, John EA, Berryman OB. The interplay between hydrogen and halogen bonding: substituent effects and their role in the hydrogen bond enhanced halogen bond. Chem Sci 2023; 14:8924-8935. [PMID: 37621436 PMCID: PMC10445465 DOI: 10.1039/d3sc02348f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The hydrogen bond enhanced halogen bond (HBeXB) has recently been used to effectively improve anion binding, organocatalysis, and protein structure/function. In this study, we present the first systematic investigation of substituent effects in the HBeXB. NMR analysis confirmed intramolecular HBing between the amine and the electron-rich belt of the XB donor (N-H⋯I). Gas-phase density functional theory studies showed that the influence of HBing on the halogen atom is more sensitive to substitution on the HB donor ring (R1). The NMR studies revealed that the intramolecular HBing had a significant impact on receptor performance, resulting in a 50-fold improvement. Additionally, linear free energy relationship (LFER) analysis was employed for the first time to study the substituent effect in the HBeXB. The results showed that substituents on the XB donor ring (R2) had a competing effect where electron donating groups strengthened the HB and weakened the XB. Therefore, selecting an appropriate substituent on the adjacent HB donor ring (R1) could be an alternative and effective way to enhance an electron-rich XB donor. X-ray crystallographic analysis demonstrated that intramolecular HBing plays an important role in the receptor adopting the bidentate conformation. Taken together, the findings imply that modifying distal substituents that affect neighboring noncovalent interactions can have a similar impact to conventional para substitution substituent effects.
Collapse
Affiliation(s)
- Jiyu Sun
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| | | | - Eric A John
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| |
Collapse
|
10
|
Sudan S, Chen DW, Berton C, Fadaei-Tirani F, Severin K. Synthetic Receptors with Micromolar Affinity for Chloride in Water. Angew Chem Int Ed Engl 2023; 62:e202218072. [PMID: 36628647 DOI: 10.1002/anie.202218072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
A water-soluble coordination cage was obtained by reaction of Pd(NO3 )2 with a 1,3-di(pyridin-3-yl)benzene ligand featuring a short PEG chain. The cavity of the metal-organic cage contains one nitrate anion, which is readily replaced by chloride. The apparent association constant for chloride binding in buffered aqueous solution is Ka =1.8(±0.1)×105 M-1 . This value is significantly higher than what has been reported for other macrocyclic chloride receptors. The heavier halides Br- and I- compete with binding or self-assembly, but the receptor displays very good selectivity over common anions such as phosphate, acetate, carbonate, and sulfate. A further increase of the chloride binding affinity by a factor of 3 was achieved using a fluorinated dipyridyl ligand.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien W Chen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Cesare Berton
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Zhang J, Shao Y, Zheng H, Xue XS. Transition State Stabilization by SCF 2 -H⋅⋅⋅O Bifurcated Hydrogen Bond. Chem Asian J 2023; 18:e202201244. [PMID: 36635229 DOI: 10.1002/asia.202201244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
The difluoromethylthio group (SCF2 H), which is generally considered a highly lipophilic weak hydrogen bonding donor, has attracted special interest from the pharmaceutical and agrochemical industry. Remarkably, there have been relatively few literature investigations of SCF2 H hydrogen bonding interactions. Here, we report the determination of the hydrogen bond acidity parameter A of the SCF2 H in the most popularly used electrophilic difluoromethylthiolating reagent. We present kinetic and computational evidence of the RSCF2 -H⋅⋅⋅O2 bifurcated hydrogen bond for stabilizing the SCF2 H-transferring transition state, which could cause a reversal of apparent electrophilic reactivity of difluoromethylthiolating and trifluoromethylthiolating reagents. Solvent effects on the RSCF2 -H⋅⋅⋅O2 bifurcated hydrogen bonds will also be discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yingbo Shao
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hanliang Zheng
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiao-Song Xue
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
12
|
Fan D, Du J, Dang J, Wang C, Mo Y. The strength and selectivity of perfluorinated nano-hoops and buckybowls for anion binding and the nature of anion-π interactions. J Comput Chem 2023; 44:138-148. [PMID: 35147229 DOI: 10.1002/jcc.26820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
Abstract
Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5-8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl- , Br- and I- ), and remarkable binding strengths up to -294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.
Collapse
Affiliation(s)
- Dan Fan
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jingshuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
13
|
Xi J, Ng EWH, Ho CY. Unsymmetric N-Aryl Substituent Effects on Chiral NHC-Cu: Enantioselectivity and Reactivity Enhancement by Ortho-H and Syn-Configuration. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jianwei Xi
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Elvis Wang Hei Ng
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Yu Ho
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
14
|
Kaupp M, Schattenberg CJ, Müller R, Reimann M. Unusually Large Effects of Charge-assisted C-H⋅⋅⋅F Hydrogen Bonds to Anionic Fluorine in Organic Solvents: Computational Study of 19 F NMR Shifts versus Thermochemistry. Chemistry 2022; 11:e202200146. [PMID: 35984672 PMCID: PMC9716039 DOI: 10.1002/open.202200146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Indexed: 01/31/2023]
Abstract
A comparison of computed 19 F NMR chemical shifts and experiment provides evidence for large specific solvent effects for fluoride-type anions interacting with the σ*(C-H) orbitals in organic solvents like MeCN or CH2 Cl2 . We show this for systems ranging from the fluoride ion and the bifluoride ion [FHF]- to polyhalogen anions [ClFx ]- . Discrepancies between computed and experimental shifts when using continuum solvent models like COSMO or force-field-based descriptions like the 3D-RISM-SCF model show specific orbital interactions that require a quantum-mechanical treatment of the solvent molecules. This is confirmed by orbital analyses of the shielding constants, while less negatively charged fluorine atoms (e. g., in [EF4 ]- ) do not require such quantum-mechanical treatments to achieve reasonable accuracy. The larger 19 F solvent shift of fluoride in MeCN compared to water is due to the larger coordination number in the former. These observations are due to unusually strong charge-assisted C-H⋅⋅⋅F- hydrogen bonds, which manifest beyond some threshold negative natural charge on fluorine of ca. < -0.6 e. The interactions are accompanied by sizable free energies of solvation, in the order F- ≫[FHF]- >[ClF2 ]- >[ClF4 ]- . COSMO-RS solvation free energies tend to moderately underestimate those from the micro-solvated cluster treatment. Red-shifted and intense vibrational C-H stretching bands, potentially accessible in bulk solution, are further spectroscopic finger prints.
Collapse
Affiliation(s)
- Martin Kaupp
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| | - Caspar J. Schattenberg
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| | - Robert Müller
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| | - Marc Reimann
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| |
Collapse
|
15
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fargher HA, Sherbow TJ, Haley MM, Johnson DW, Pluth MD. C-H⋯S hydrogen bonding interactions. Chem Soc Rev 2022; 51:1454-1469. [PMID: 35103265 PMCID: PMC9088610 DOI: 10.1039/d1cs00838b] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The short C-H⋯S contacts found in available structural data for both small molecules and larger biomolecular systems suggest that such contacts are an often overlooked yet important stabilizing interaction. Moreover, many of these short C-H⋯S contacts meet the definition of a hydrogen bonding interaction. Using available structural data from the Cambridge Structural Database (CSD), as well as selected examples from the literature in which important C-H⋯S contacts may have been overlooked, we highlight the generality of C-H⋯S hydrogen bonding as an important stabilizing interaction. To uncover and establish the generality of these interactions, we compare C-H⋯S contacts with other traditional hydrogen bond donors and acceptors as well as investigate how coordination number and metal bonding affect the preferred geometry of interactions in the solid state. This work establishes that the C-H⋯S bond meets the definition of a hydrogen bond and serves as a guide to identify C-H⋯S hydrogen bonds in diverse systems.
Collapse
Affiliation(s)
- Hazel A. Fargher
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Tobias J. Sherbow
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Michael M. Haley
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Darren W. Johnson
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| |
Collapse
|
17
|
Dey SK, Harmalkar SS, Yadav RKHO, Lama P, Das G. Structure directing roles of weak noncovalent interactions and charge-assisted hydrogen bonds in the self-assembly of solvated podands: Example of an anion-assisted dimeric water capsule. CrystEngComm 2022. [DOI: 10.1039/d2ce00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures of two new podand molecules (1 and 2) synthesized from 1,3,5-tris(bromomethyl)mesitylene and two bromide salts of tris(4-amino-N-ethylbenzamide)amine (3) were elucidated to witness the structure directing roles of weak...
Collapse
|
18
|
Liu X, Luo Y, Ma H, Zhang S, Che P, Zhang M, Gao J, Xu J. Hydrogen‐Binding‐Initiated Activation of O−H Bonds on a Nitrogen‐Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Liu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yang Luo
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Hong Ma
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Shujing Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penghua Che
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
19
|
Liu X, Luo Y, Ma H, Zhang S, Che P, Zhang M, Gao J, Xu J. Hydrogen-Binding-Initiated Activation of O-H Bonds on a Nitrogen-Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angew Chem Int Ed Engl 2021; 60:18103-18110. [PMID: 34121299 DOI: 10.1002/anie.202103604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/31/2021] [Indexed: 11/11/2022]
Abstract
Hydrogen binding of molecules on solid surfaces is an attractive interaction that can be used as the driving force for bond activation, material-directed assembly, protein protection, etc. However, the lack of a quantitative characterization method for hydrogen bonds (HBs) on surfaces seriously limits its application. We measured the standard Gibbs free energy change (ΔG0 ) of on-surface HBs using NMR. The HB-accepting ability of the surface was investigated by comparing ΔG0 values employing the model biomass platform 5-hydroxymethylfurfural on a series of Co-N-C-n catalysts with adjustable electron-rich nitrogen-doped contents. Decreasing ΔG0 improves the HB-accepting ability of the nitrogen-doped surface and promotes the selectively initiated activation of O-H bonds in the oxidation of 5-hydroxymethylfurfural. As a result, the reaction kinetics is accelerated. In addition to the excellent catalytic performance, the turnover frequency (TOF) for this oxidation is much higher than for reported non-noble-metal catalysts.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Hong Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Shujing Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Penghua Che
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
20
|
Fargher HA, Nickels RA, de Faria TP, Haley MM, Pluth MD, Johnson DW. Deuterium equilibrium isotope effects in a supramolecular receptor for the hydrochalcogenide and halide anions. RSC Adv 2021; 11:26581-26585. [PMID: 35479978 PMCID: PMC9037421 DOI: 10.1039/d1ra05711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
We highlight a convenient synthesis to selectively deuterate an aryl C-H hydrogen bond donor in an arylethynyl bisurea supramolecular anion receptor and use the Perrin method of competitive titrations to study the deuterium equilibrium isotope effects (DEIE) of anion binding for HS-, Cl-, and Br-. This work highlights the utility and also challenges in using this method to determine EIE with highly reactive and/or weakly binding anions.
Collapse
Affiliation(s)
- Hazel A Fargher
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403-1253 USA
| | - Russell A Nickels
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403-1253 USA
| | - Thaís P de Faria
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403-1253 USA
| | - Michael M Haley
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403-1253 USA
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403-1253 USA
| | - Darren W Johnson
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR 97403-1253 USA
| |
Collapse
|
21
|
Timmer BJJ, Mooibroek TJ. Anion binding properties of a hollow PdL-cage. Chem Commun (Camb) 2021; 57:7184-7187. [PMID: 34190254 PMCID: PMC8291284 DOI: 10.1039/d1cc02663a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022]
Abstract
The hollow [PdL][BArF]2 complex 1 of a tetra-pyridyl (py) ligand (L) has a [Pd(py)4]2+ coordination environment. Addition of coordinating anions resulted in the formation of a neutral species with Pd(py)2(anion)2 coordination environment (12A). These species bind further to the coordinating anions in the order Cl- > N3- > Br- > I- > AcO- with Ka1 : 1 ≤ 414 M-1. With relatively non-coordinating anions 1 remains intact and displays 1 : 2 binding behaviour dominated by the 1 : 1 stoichiometry in the order NO3- (∼105 M-1) » ClO4- and BF4- (∼103 M-1). As evidenced by crystal structure data, DFT calculations and {1H-19F}-HOESY NMR with BF4-, the anions are bound by charge assisted [C-H]+···anion interactions.
Collapse
Affiliation(s)
- Brian J J Timmer
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| | - Tiddo J Mooibroek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| |
Collapse
|
22
|
Yokoya M, Kimura S, Yamanaka M. Urea Derivatives as Functional Molecules: Supramolecular Capsules, Supramolecular Polymers, Supramolecular Gels, Artificial Hosts, and Catalysts. Chemistry 2021; 27:5601-5614. [DOI: 10.1002/chem.202004367] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Masashi Yokoya
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| | - Shinya Kimura
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| |
Collapse
|
23
|
Sattar F, Feng Z, Zou H, Ye H, Zhang Y, You L. Dynamic covalent bond constrained ureas for multimode fluorescence switching, thermally induced emission, and chemical signaling cascades. Org Chem Front 2021. [DOI: 10.1039/d1qo00500f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A combination of organic ureas and dynamic covalent chemistry was demonstrated for multistate switching, thermally induced fluorescence, and signaling cascades.
Collapse
Affiliation(s)
- Fazli Sattar
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yi Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Lei You
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
24
|
Johnson DW, Haley MM, Bard JP. Bumpy Roads Lead to Beautiful Places: The Twists and Turns in Developing a New Class of PN-Heterocycles. Synlett 2020. [DOI: 10.1055/s-0040-1707168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Haley and Johnson labs at the University of Oregon have been collaborating since 2006, combining skillsets in synthetic organic, physical organic, and supramolecular chemistries. This joint project has produced many examples of host molecules that bind anionic guests and give chemical, photophysical, and/or electrical responses. Many of these receptors utilize two-armed arylethynyl backbones that have a variety of hydrogen- or halogen-bonding functional groups appended. However, in attempts to produce a bisamide-containing host using a peptide-coupling protocol with P(OPh)3 present, we isolated something unexpected – a heterocycle containing neighboring P and N atoms. This ‘failed’ reaction turned into a surprisingly robust synthesis of phosphaquinolinones, an unusual class of PN-heterocycles. This Account article tells the rollercoaster story of these heterocycles in our lab. It will highlight our key works to this field, including a suite of fundamental studies of both the original PN-naphthalene moiety, as well as a variety of structural modifications to the arene backbone. It will also discuss the major step forward the project took when we developed a phosphaquinolinone-containing receptor molecule capable of binding HSO4
– selectively, reversibly, and with recyclability. With these findings, the project has gone from hospice care to making a full, robust recovery.1 Introduction2 Initial Discovery3 Setbacks Breathe New Life4 A New Dynamic Duo Develops Dozens of Derivatives5 Physicochemical Characterization5.1 Fluorescence5.2 Molecular Structures5.3 Solution Dimerization Studies6 Applying What We Have Learned6.1 Development of Supramolecular Host6.2 Use of PN Moiety as an Impressive Fluorophore7 Conclusions and Outlook
Collapse
|
25
|
Sherbow TJ, Fargher HA, Haley MM, Pluth MD, Johnson DW. Solvent-Dependent Linear Free-Energy Relationship in a Flexible Host-Guest System. J Org Chem 2020; 85:12367-12373. [PMID: 32916056 PMCID: PMC10778081 DOI: 10.1021/acs.joc.0c01616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supramolecular chemistry provides an effective strategy for the molecular recognition of diverse molecules. Significant efforts to design synthetic hosts have enabled the successful binding of many types of guests; however, less is known about how host-guest environments influence binding. Herein, we present a comprehensive study in which we measure the host-guest binding of a bis(arylethynyl phenylurea) host with a chloride guest in eight solvents spanning ET(30) values ranging from nonpolar (40.7 kcal mol-1) to polar (47.4 kcal mol-1). Polar solvents show significantly weaker binding in comparison to nonpolar solvents, and the bulk solvent polarity parameter, ET(30), shows a linear free-energy relationship with respect to the free energy of binding in the host-guest complex. These studies provide a better understanding of how host-guest binding in flexible receptors is governed by their environments and highlight the importance of host reorganization contributions in the free energy of binding. In addition, these studies highlight that preorganization may not be as important as previously thought for weak binding in which enthalpic contributions are smaller versus in polar solvents where solvent effects are magnified.
Collapse
Affiliation(s)
- Tobias J. Sherbow
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Hazel A. Fargher
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael M. Haley
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Darren W. Johnson
- Department of Chemistry & Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
26
|
Darren Johnson. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Darren Johnson. Angew Chem Int Ed Engl 2020; 59:17330. [DOI: 10.1002/anie.202004305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Yang Z, Wang Y, Liu X, Vanderlinden RT, Ni R, Li X, Stang PJ. Hierarchical Self-Assembly of a Pyrene-Based Discrete Organoplatinum(II) Double-Metallacycle with Triflate Anions via Hydrogen Bonding and Its Tunable Fluorescence Emission. J Am Chem Soc 2020; 142:13689-13694. [DOI: 10.1021/jacs.0c06666] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zaiwen Yang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yiliang Wang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
| | - Ryan T. Vanderlinden
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Ruidong Ni
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Fargher HA, Lau N, Richardson HC, Cheong PHY, Haley MM, Pluth MD, Johnson DW. Tuning Supramolecular Selectivity for Hydrosulfide: Linear Free Energy Relationships Reveal Preferential C-H Hydrogen Bond Interactions. J Am Chem Soc 2020; 142:8243-8251. [PMID: 32283020 DOI: 10.1021/jacs.0c00441] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Supramolecular anion receptors can be used to study the molecular recognition properties of the reactive yet biologically critical hydrochalcogenide anions (HCh-). Achieving selectivity for HCh- over the halides is challenging but necessary for not only developing future supramolecular probes for HCh- binding and detection, but also for understanding the fundamental properties that govern these binding and recognition events. Here we demonstrate that linear free energy relationships (LFERs)-including Hammett and Swain-Lupton plots-reveal a clear difference in sensitivity to the polarity of an aryl C-H hydrogen bond (HB) donor for HS- over other HCh- and halides. Analysis using electrostatic potential maps highlights that this difference in sensitivity results from a preference of the aryl C-H HB donor for HS- in this host scaffold. From this study, we demonstrate that LFERs are a powerful tool to gain interpretative insight into motif design for future anion-selective supramolecular receptors and highlight the importance of C-H HB donors for HS- recognition. From our results, we suggest that aryl C-H HB donors should be investigated in the next generation of HS- selective receptors based on the enhanced HS- selectivity over other competing anions in this system.
Collapse
Affiliation(s)
- Hazel A Fargher
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Nathanael Lau
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - H Camille Richardson
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Michael M Haley
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Darren W Johnson
- Department of Chemistry & Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
30
|
Chen XL, Shen YJ, Gao C, Yang J, Sun X, Zhang X, Yang YD, Wei GP, Xiang JF, Sessler JL, Gong HY. Regulating the Structures of Self-Assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects. J Am Chem Soc 2020; 142:7443-7455. [PMID: 32216311 DOI: 10.1021/jacs.9b13473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substituent effects play critical roles in both modulating reaction chemistry and supramolecular self-assembly processes. Using substituted terephthalate dianions (p-phthalic acid dianions; PTADAs), the effect of varying the type, number, and position of the substituents was explored in terms of their ability to regulate the inherent anion complexation features of a tetracationic macrocycle, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (referred to as the Texas-sized molecular box; 14+), in the form of its tetrakis-PF6- salt in DMSO. Several of the tested substituents, including 2-OH, 2,5-di(OH), 2,5-di(NH2), 2,5-di(Me), 2,5-di(Cl), 2,5-di(Br), and 2,5-di(I), were found to promote pseudorotaxane formation in contrast to what was seen for the parent PTADA system. Other derivatives of PTADA, including those with 2,3-di(OH), 2,6-di(OH), 2,5-di(OMe), 2,3,5,6-tetra(Cl), and 2,3,5,6-tetra(F) substituents, led only to so-called outside binding, where the anion interacts with 14+ on the outside of the macrocyclic cavity. The differing binding modes produced by the choice of PTADA derivative were found to regulate further supramolecular self-assembly when the reaction components included additional metal cations (M). Depending on the specific choice of PTADA derivatives and metal cations (M = Co2+, Ni2+, Zn2+, Cd2+, Gd3+, Nd3+, Eu3+, Sm3+, Tb3+), constructs involving one-dimensional polyrotaxanes, outside-type rotaxanated supramolecular organic frameworks (RSOFs), or two-dimensional metal-organic rotaxane frameworks (MORFs) could be stabilized. The presence and nature of the substituent were found to dictate which specific higher order self-assembled structure was obtained using a given cation. In the specific case of the 2,5-di(OH), 2,5-di(Cl), and 2,5-di(Br) PTADA derivatives and Eu3+, so-called MORFs with distinct fluorescence emission properties could be produced. The present work serves to illustrate how small changes in guest substitution patterns may be used to control structure well beyond the first interaction sphere.
Collapse
Affiliation(s)
- Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Chao Gao
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Jian Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Sun
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Xin Zhang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| | - Gong-Ping Wei
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun-Feng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jonathan L Sessler
- Department of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China.,Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai street, Beijing 100875, People's Republic of China
| |
Collapse
|
31
|
Luo Y, Ma H, Zhang S, Zheng D, Che P, Liu X, Zhang M, Gao J, Xu J. Binding Energy as Driving Force for Controllable Reconstruction of Hydrogen Bonds with Molecular Scissors. J Am Chem Soc 2020; 142:6085-6092. [DOI: 10.1021/jacs.9b12117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hong Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Shujing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Daoyuan Zheng
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Penghua Che
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Xin Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| |
Collapse
|
32
|
Young Lee G, Bay KL, Houk KN. Evaluation of DFT Methods and Implicit Solvation Models for Anion‐Binding Host‐Guest Systems. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ga Young Lee
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| | - Katherine L. Bay
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| | - Kendall N. Houk
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| |
Collapse
|
33
|
Eytel LM, Fargher HA, Haley MM, Johnson DW. The road to aryl CHanion binding was paved with good intentions: fundamental studies, host design, and historical perspectives in CH hydrogen bonding. Chem Commun (Camb) 2019; 55:5195-5206. [PMID: 30944916 DOI: 10.1039/c9cc01460h] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Throughout the design and development of supramolecular receptors for anion binding, many different non-covalent anion-binding motifs have been employed. One motif seen in many host-guest systems is the sometimes weaker, 'non-traditional' aryl CH hydrogen bond. From June Sutor's discovery of the interaction and its subsequent dismissal by the field in the 1960s to today's use of the aryl CH hydrogen bond in synthetic anion receptors, the path our lab took to begin studying this interaction has been influenced by many other researchers in the field. This feature article highlights the history and properties of the CH hydrogen bond, with a particular focus on aryl CH hydrogen bonds in anion recognition. We highlight select recent developments in the field of anion receptors utilizing aryl CH hydrogen bonds, with an emphasis on how this has influenced the evolution of our approach in designing fundamental studies on CH hydrogen bonding and exploiting this interaction in efforts aimed toward preferential anion binding.
Collapse
Affiliation(s)
- Lisa M Eytel
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Hazel A Fargher
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| |
Collapse
|
34
|
Ferreira Q, Delfino CL, Morgado J, Alcácer L. Bottom-Up Self-Assembled Supramolecular Structures Built by STM at the Solid/Liquid Interface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E382. [PMID: 30691079 PMCID: PMC6384807 DOI: 10.3390/ma12030382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
One of the lines of research on organic devices is focused on their miniaturization to obtain denser and faster electronic circuits. The challenge is to build devices adding atom by atom or molecule by molecule until the desired structures are achieved. To do this job, techniques able to see and manipulate matter at this scale are needed. Scanning tunneling microscopy (STM) has been the selected technique by scientists to develop smart and functional unimolecular devices. This review article compiles the latest developments in this field giving examples of supramolecular systems monitored and fabricated at the molecular scale by bottom-up approaches using STM at the solid/liquid interface.
Collapse
Affiliation(s)
- Quirina Ferreira
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Catarina L Delfino
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Department of Bioengineering , Instituto Superior Técnico, University of Lisbon, Av.Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Luís Alcácer
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
35
|
Fargher HA, Lau N, Zakharov LN, Haley MM, Johnson DW, Pluth MD. Expanding reversible chalcogenide binding: supramolecular receptors for the hydroselenide (HSe -) anion. Chem Sci 2018; 10:67-72. [PMID: 30746074 PMCID: PMC6335636 DOI: 10.1039/c8sc03968b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/18/2018] [Indexed: 01/09/2023] Open
Abstract
Synthetic supramolecular receptors have been widely used to study reversible solution binding of anions; however, few systems target highly-reactive species. In particular, the hydrochalcogenide anions hydrosulfide (HS-) and hydroselenide (HSe-) have been largely overlooked despite their critical roles in biological systems. Herein we present the first example of reversible HSe- binding in two distinct synthetic supramolecular receptors, using hydrogen bonds from N-H and aromatic C-H moieties. The arylethynyl bisurea scaffold 1 t Bu achieved a binding affinity of 460 ± 50 M-1 for HSe- in 10% DMSO-d 6/CD3CN, whereas the tripodal-based receptor 2CF3 achieved a binding affinity of 290 ± 50 M-1 in CD3CN. Association constants were also measured for HS-, Cl-, and Br-, and both receptors favored binding of smaller, more basic anions. These studies contribute to a better understanding of chalcogenide hydrogen bonding and provide insights into further development of probes for the reversible binding, and potential quantification, of HSe- and HS-.
Collapse
Affiliation(s)
- Hazel A Fargher
- Department of Chemistry & Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , OR 97403-1253 , USA . ; ;
| | - Nathanael Lau
- Department of Chemistry & Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , OR 97403-1253 , USA . ; ;
| | - Lev N Zakharov
- Department of Chemistry & Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , OR 97403-1253 , USA . ; ;
| | - Michael M Haley
- Department of Chemistry & Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , OR 97403-1253 , USA . ; ;
| | - Darren W Johnson
- Department of Chemistry & Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , OR 97403-1253 , USA . ; ;
| | - Michael D Pluth
- Department of Chemistry & Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , OR 97403-1253 , USA . ; ;
| |
Collapse
|
36
|
Sengupta A, Liu Y, Flood AH, Raghavachari K. Anion‐Binding Macrocycles Operate Beyond the Electrostatic Regime: Interaction Distances Matter. Chemistry 2018; 24:14409-14417. [PMID: 30036449 DOI: 10.1002/chem.201802657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Arkajyoti Sengupta
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
- Current Address: Department of Chemistry Michigan State University East Lansing Michigan 48824 USA
| | - Yun Liu
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
- Current Address: Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
37
|
Luo Y, Ma H, Sun Y, Che P, Nie X, Wang T, Xu J. Understanding and Measurement for the Binding Energy of Hydrogen bonds of Biomass-Derived Hydroxyl Compounds. J Phys Chem A 2018; 122:843-848. [DOI: 10.1021/acs.jpca.7b10637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yang Luo
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hong Ma
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Yuxia Sun
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Penghua Che
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Xin Nie
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Tianlong Wang
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| | - Jie Xu
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| |
Collapse
|
38
|
Ito S, Okuno M, Asami M. Differentiation of enantiomeric anions by NMR spectroscopy with chiral bisurea receptors. Org Biomol Chem 2018; 16:213-222. [DOI: 10.1039/c7ob02318a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enantiomeric 1H NMR signals of chiral anions are separated by forming 1 : 1 and 1 : 2 host–guest complexes with chiral bisurea.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Manami Okuno
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Masatoshi Asami
- Department of Advanced Materials Chemistry
- Graduate School of Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| |
Collapse
|
39
|
|
40
|
Li Y, Yang GH, Shen YY, Xue XS, Li X, Cheng JP. N-tert-Butyl Sulfinyl Squaramide Receptors for Anion Recognition through Assisted tert-Butyl C–H Hydrogen Bonding. J Org Chem 2017; 82:8662-8667. [DOI: 10.1021/acs.joc.7b01634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yao Li
- State Key Laboratory of Elemento-Organic
Chemistry, College of Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Guo-Hui Yang
- State Key Laboratory of Elemento-Organic
Chemistry, College of Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ye-Ye Shen
- State Key Laboratory of Elemento-Organic
Chemistry, College of Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic
Chemistry, College of Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic
Chemistry, College of Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic
Chemistry, College of Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Vlasov VM. Activation parameter changes as an additive tool for a mechanistic viewpoint in the aromatic nucleophilic substitution reactions in solution. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1956-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Molina P, Zapata F, Caballero A. Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chem Rev 2017; 117:9907-9972. [PMID: 28665114 DOI: 10.1021/acs.chemrev.6b00814] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights the most significant examples of an emerging field in the design of highly selective anion receptors. To date, there has been remarkable progress in the binding and sensing of anions. This has been driven in part by the discovery of ways to construct effective anion binding receptors using the dominant N-H functional groups and neutral and cationic C-H hydrogen bond donors, as well as underexplored strong directional noncovalent interactions such as halogen-bonding and anion-π interactions. In this review, we will describe a new and promising strategy for constructing anion binding receptors with distinct advantages arising from their elaborate design, incorporating multiple binding sites able to interact cooperatively with anions through these different kinds of noncovalent interactions. Comparisons with control species or solely hydrogen-bonding analogues reveal unique characteristics in terms of strength, selectivity, and interaction geometry, representing important advances in the rising field of supramolecular chemistry.
Collapse
Affiliation(s)
- Pedro Molina
- Departamento de Química Orgánica, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Fabiola Zapata
- Departamento de Química Orgánica, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Antonio Caballero
- Departamento de Química Orgánica, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
43
|
Insights into the complexation of N-Allyl-4-(4-(N-phenylureido)benzylamino)-1,8-naphthalimide with various anions. Sci Rep 2017; 7:2512. [PMID: 28566707 PMCID: PMC5451411 DOI: 10.1038/s41598-017-02470-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022] Open
Abstract
A new urea functionalised 4-amino-1,8-naphthalimide based fluorescent anion sensor was synthesised in 64% yield over three steps. Fluorescence and 1H NMR titrations showed that the sensor complexes strongly with acetate and dihydrogen phosphate and to a lesser extent bromide. The corresponding binding stoichiometries were examined using 1H NMR titrations. Results show that the sensor molecule initially forms 1:1 complexes through hydrogen bonding to the urea moiety, followed by secondary complexation to form higher order host:guest stoichiometries. Specifically, oxyanions complex to the sensor via hydrogen bonding through synergistic aryl C-H and N-H anion interactions in a 1:2 sensor:oxyanion arrangement. Furthermore, 2:1 sensor:oxyanion complexes are formed through an oxyanion linkage between two urea functionalities on different host molecules. This contrasts the majority of previous reports for similar hosts, which indicate 1:1 binding stoichiometry.
Collapse
|
44
|
Eytel LM, Gilbert AK, Görner P, Zakharov LN, Johnson DW, Haley MM. Do CH-Anion and Anion-π Interactions Alter the Mechanism of 2:1 Host-Guest Complexation in Arylethynyl Monourea Anion Receptors? Chemistry 2017; 23:4051-4054. [PMID: 28198117 DOI: 10.1002/chem.201605452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 11/06/2022]
Abstract
Selective tuning of arylethynyl urea scaffolds for anionic guests requires an understanding of preferred binding motifs of the host-guest interaction. To investigate the binding preference of receptors without a pre-organized binding pocket, two electron-deficient phenylacetylene receptors with a single urea moiety have been prepared and were found to bind halides as 2:1 host-guest complexes that feature key CH-anion or anion-π interactions. These supporting interactions also appear to influence the mechanism of the 2:1 binding event.
Collapse
Affiliation(s)
- Lisa M Eytel
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, 97403-1253, USA
| | - Annie K Gilbert
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, 97403-1253, USA
| | - Paul Görner
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, 97403-1253, USA
| | - Lev N Zakharov
- CAMCOR-Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, OR, 97403-1443, USA
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, 97403-1253, USA
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR, 97403-1253, USA
| |
Collapse
|
45
|
Zhan T, Lin M, Wu L, Zhang X, Zhang L, Zhao X, Zhang K. Proton-anion Ion-pair Recognition by a Hexaazatriphenylene-Hexaurea Receptor. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tianguang Zhan
- College of Chemistry and Life Science; Zhejiang Normal University, 688 Yingbin Road; Jinhua Zhejiang 321004 China
| | - Mengdi Lin
- College of Chemistry and Life Science; Zhejiang Normal University, 688 Yingbin Road; Jinhua Zhejiang 321004 China
| | - Lin Wu
- College of Chemistry and Life Science; Zhejiang Normal University, 688 Yingbin Road; Jinhua Zhejiang 321004 China
| | - Xiang Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
- School of Chemical Engineering; Hunan Chemical Vocational Technology College; Zhuzhou Hunan 412000 China
| | - Liang Zhang
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| | - Kangda Zhang
- College of Chemistry and Life Science; Zhejiang Normal University, 688 Yingbin Road; Jinhua Zhejiang 321004 China
| |
Collapse
|
46
|
Tresca BW, Brueckner AC, Haley MM, Cheong PHY, Johnson DW. Computational and Experimental Evidence of Emergent Equilibrium Isotope Effects in Anion Receptor Complexes. J Am Chem Soc 2017; 139:3962-3965. [PMID: 28282134 PMCID: PMC5364433 DOI: 10.1021/jacs.7b00612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The measurement of a deuterium equilibrium
isotope effect (EIE)
for the aryl CH···Cl– interaction
of anion receptor 1H/1D is reported. Computations corroborate
the results of solution measurements for a small, normal EIE in the
full complex (KaH/KaD = 1.019 ± 0.010). Interestingly,
isotope effects involving fragments of the anion receptor (urea, aryl
ring, etc.) are predicted to produce an inverse effect. This points
to an unusual and subtle structural organization effect of the anion
receptor complex that changes the nature of the combined interactions
to a normal isotope effect. The reversal of EIE values suggests that
overall architecture of the anion receptor can dramatically impact
the nature of bonding in these complexes.
Collapse
Affiliation(s)
- Blakely W Tresca
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| | - Alexander C Brueckner
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| | - Paul H-Y Cheong
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| |
Collapse
|
47
|
Ye H, Hai Y, Ren Y, You L. Versatile Dynamic Covalent Assemblies for Probing π-Stacking and Chirality Induction from Homotopic Faces. Chemistry 2017; 23:3804-3809. [DOI: 10.1002/chem.201606040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hebo Ye
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
- College of Material Science and Engineering; Fujian Normal University; Fuzhou 350007 P.R. China
| | - Yulong Ren
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Lei You
- State Key Laboratory of Structural Chemistry; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| |
Collapse
|
48
|
Rodríguez J, Mosquera J, Couceiro JR, Nitschke JR, Vázquez ME, Mascareñas JL. Anion Recognition as a Supramolecular Switch of Cell Internalization. J Am Chem Soc 2017; 139:55-58. [PMID: 27984855 PMCID: PMC5389450 DOI: 10.1021/jacs.6b11103] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cell internalization of designed oligoarginine peptides equipped with six glutamic acid residues and an anionic pyranine at the N-terminus is triggered upon addition of a supramolecular host. This host binds specifically to the pyranine moiety, enabling the complex to traverse the cell membrane. Interestingly, none of the components, neither the host nor the guest, are able to cross the cell membrane on their own.
Collapse
Affiliation(s)
- Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jonathan R. Nitschke
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L. Mascareñas
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
49
|
Pike SJ, Hunter CA. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors. Org Biomol Chem 2017; 15:9603-9610. [DOI: 10.1039/c7ob02092a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report on the development of a dual molecular recognition probe for hydrogen bond acceptors.
Collapse
Affiliation(s)
- Sarah J. Pike
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | | |
Collapse
|
50
|
Bagwill C, Anderson C, Sullivan E, Manohara V, Murthy P, Kirkpatrick CC, Stalcup A, Lewis M. Predicting the Strength of Anion−π Interactions of Substituted Benzenes: the Development of Anion−π Binding Substituent Constants. J Phys Chem A 2016; 120:9235-9243. [DOI: 10.1021/acs.jpca.6b06276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Christina Bagwill
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Christa Anderson
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Elizabeth Sullivan
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Varun Manohara
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Prithvi Murthy
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Charles C. Kirkpatrick
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Apryll Stalcup
- Irish
Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Michael Lewis
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|