1
|
Sullivan CM, Nienhaus L. Spectro-Microscopy Methods To Gain a Multimodal Perspective. ACS NANO 2025; 19:10599-10608. [PMID: 40064198 DOI: 10.1021/acsnano.4c18626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Combining spectroscopic techniques with spatially-resolved microscopy capabilities creates an avenue for in-depth investigations into understanding the impact of specific regions and features across surfaces and their relevance for resulting device performance. For device optimization and development, these techniques can be utilized as a means to identify the impacts and roles of the underlying defects and charge extraction across interfaces. Here, we highlight the ways that (correlated) spectro-microscopy methods have been utilized within the field of materials science to understand materials properties and the underlying optoelectronic processes dictating device functionality. We also give a perspective on the importance of correlated morphological and spectro-microscopy methods for future device improvement.
Collapse
Affiliation(s)
- Colette M Sullivan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Lea Nienhaus
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Zhu R, Dong XR, Yang B, Han RL, Mao WJ, Chen G, Zhang Y, Zhang Y, Dong ZC. Revealing Single-Molecule Photocurrent Generation Mechanisms under On- and Off-Resonance Excitation. NANO LETTERS 2025; 25:578-585. [PMID: 39704410 DOI: 10.1021/acs.nanolett.4c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We investigate photocurrent generation mechanisms in a pentacene single-molecule junction using subnanometer resolved photocurrent imaging under both on- and off-resonance laser excitation. By employing a wavelength-tunable laser combined with a lock-in technique, net photocurrent signals are extracted to elucidate photoinduced electron tunneling processes. Under off-resonance excitation, photocurrents are found to arise from photon-assisted tunneling, with contributions from three distinct frontier molecular orbitals at different bias voltages. In contrast, under resonance excitation, photocurrents are found to be significantly enhanced at negative bias voltages, exhibiting a spatial distribution linked to molecular electronic transitions and associated transition dipoles. This study reveals the contributions of different frontier molecular orbitals in the photon-assisted tunneling processes under off-resonance excitation, while molecular optical transitions are also found to be important at negative bias under resonance excitation. These findings could be instructive to the design and optimization of advanced optoelectronic devices.
Collapse
Affiliation(s)
- Rui Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Ru Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ben Yang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Lin Han
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jie Mao
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gong Chen
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
3
|
Llusar J, du Fossé I, Hens Z, Houtepen A, Infante I. Surface Reconstructions in II-VI Quantum Dots. ACS NANO 2024; 18:1563-1572. [PMID: 38169474 PMCID: PMC10795476 DOI: 10.1021/acsnano.3c09265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Although density functional theory (DFT) calculations have been crucial in our understanding of colloidal quantum dots (QDs), simulations are commonly carried out on QD models that are significantly smaller than those generally found experimentally. While smaller models allow for efficient study of local surface configurations, increasing the size of the QD model will increase the size or number of facets, which can in turn influence the energetics and characteristics of trap formation. Moreover, core-shell structures can only be studied with QD models that are large enough to accommodate the different layers with the correct thickness. Here, we use DFT calculations to study the electronic properties of QDs as a function of size, up to a diameter of ∼4.5 nm. We show that increasing the size of QD models traditionally used in DFT studies leads to a disappearance of the band gap and localization of the HOMO and LUMO levels on facet-specific regions of the QD surface. We attribute this to the lateral coupling of surface orbitals and the formation of surface bands. The introduction of surface vacancies and their a posteriori refilling with Z-type ligands leads to surface reconstructions that widen the band gap and delocalize both the HOMO and LUMO. These results show that the surface geometry of the facets plays a pivotal role in defining the electronic properties of the QD.
Collapse
Affiliation(s)
- Jordi Llusar
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Indy du Fossé
- Department
of Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Department of Chemistry, and Center
of Nano and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Arjan Houtepen
- Department
of Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Ivan Infante
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
4
|
Wallum A, Nguyen HA, Gruebele M. Excited-State Imaging of Single Particles on the Subnanometer Scale. Annu Rev Phys Chem 2020; 71:415-433. [DOI: 10.1146/annurev-physchem-071119-040108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the intersection of spectroscopy and microscopy lie techniques that are capable of providing subnanometer imaging of excited states of individual molecules or nanoparticles. Such approaches are particularly important for imaging macromolecules or nanoparticles large enough to have a high probability of containing a defect. These inevitable defects often control properties and function despite an otherwise ideal structure. We discuss real-space imaging techniques such as using scanning tunneling microscopy tips to enhance optical measurements and electron energy-loss spectroscopy in a scanning transmission electron microscope, which is based on focused electron beams to obtain high-resolution spatial information on excited states. The outlook for these methods is bright, as they will provide critical information for the characterization and improvement of energy-switching, electron-switching, and energy-harvesting materials.
Collapse
Affiliation(s)
- Alison Wallum
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huy A. Nguyen
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Nguyen D, Wallum A, Nguyen HA, Nguyen NT, Lyding JW, Gruebele M. Imaging of Carbon Nanotube Electronic States Polarized by the Field of an Excited Quantum Dot. ACS NANO 2019; 13:1012-1018. [PMID: 30605600 DOI: 10.1021/acsnano.8b06806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Efficient heat dissipation and large gate capacitance have made carbon nanotube field-effect transistors (CNT FETs) devices of interest for over 20 years. The mechanism of CNT FETs involves localization of the electronic structure due to a transverse electric field, yet little is known about the localization effect, nor has the electronic polarization been visualized directly. Here, we co-deposit PbS quantum dots (QDs) with CNTs and optically excite the QD so its excited-state dipolar field biases the local environment of a CNT. Using single-molecule absorption scanning tunneling microscopy, we show that the electronic states of the CNT become transversely localized. By nudging QDs to different distances from the CNT, the magnitude of the localization can be controlled. Different bias voltages probe the degree of localization in different CNT excited states. A simple tight-binding model for the CNT in an electrostatic field provides a semiquantitative model for the observed behavior.
Collapse
Affiliation(s)
| | | | | | - Nhan T Nguyen
- Faculty of Chemistry , VNU-University of Science , Hanoi 10000 , Vietnam
| | | | | |
Collapse
|
6
|
Nguyen HA, Banerjee P, Nguyen D, Lyding JW, Gruebele M, Jain PK. STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands. J Phys Chem Lett 2018; 9:1970-1976. [PMID: 29609463 DOI: 10.1021/acs.jpclett.8b00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An optically modulated scanning tunneling microscopy technique developed for measurement of single-molecule optical absorption is used here to image the light absorption by individual Au nanoislands and Au nanostructures. The technique is shown to spatially map, with nanometer resolution, localized surface plasmons (LSPs) excited within the nanoislands. Electrodynamic simulations demonstrate the correspondence of the measured images to plasmonic near-field intensity maps. The optical STM imaging technique captures the wavelength, polarization, and geometry dependence of the LSP resonances and their corresponding near-fields. Thus, we introduce a tool for real-space, nanometer-scale visualization of optical energy absorption, transport, and dissipation in complex plasmonic nanostructures.
Collapse
|
7
|
Nguyen D, Goings JJ, Nguyen HA, Lyding J, Li X, Gruebele M. Orientation-dependent imaging of electronically excited quantum dots. J Chem Phys 2018; 148:064701. [DOI: 10.1063/1.5012784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Duc Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joshua J. Goings
- Department of Chemistry, University of Washington at Seattle, Seattle, Washington 98195, USA
| | - Huy A. Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joseph Lyding
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington at Seattle, Seattle, Washington 98195, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Nguyen D, Nguyen HA, Lyding JW, Gruebele M. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution. ACS NANO 2017; 11:6328-6335. [PMID: 28525955 DOI: 10.1021/acsnano.7b02649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.
Collapse
Affiliation(s)
| | | | | | - Martin Gruebele
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Wieghold S, Nienhaus L, Knoller FL, Schweinberger FF, Shepherd JJ, Lyding JW, Heiz U, Gruebele M, Esch F. Plasmonic support-mediated activation of 1 nm platinum clusters for catalysis. Phys Chem Chem Phys 2017; 19:30570-30577. [DOI: 10.1039/c7cp04882c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanometer-sized metal clusters are prime candidates for photoactivated catalysis, based on their unique tunable properties. Under visible light illumination, these non-plasmonic particles can get catalytically activated by coupling to a plasmonic substrate.
Collapse
Affiliation(s)
- S. Wieghold
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- 85748 Garching
- Germany
| | - L. Nienhaus
- Beckman Institute for Advanced Science and Technology
- Urbana
- USA
- Department of Chemistry
- University of Illinois
| | - F. L. Knoller
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- 85748 Garching
- Germany
| | - F. F. Schweinberger
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- 85748 Garching
- Germany
| | | | - J. W. Lyding
- Beckman Institute for Advanced Science and Technology
- Urbana
- USA
- Department of Electrical and Computer Engineering
- University of Illinois
| | - U. Heiz
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- 85748 Garching
- Germany
| | - M. Gruebele
- Beckman Institute for Advanced Science and Technology
- Urbana
- USA
- Department of Chemistry
- University of Illinois
| | - F. Esch
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- 85748 Garching
- Germany
| |
Collapse
|
10
|
Barborini M, Sorella S, Rontani M, Corni S. Correlation Effects in Scanning Tunneling Microscopy Images of Molecules Revealed by Quantum Monte Carlo. J Chem Theory Comput 2016; 12:5339-5349. [PMID: 27709944 DOI: 10.1021/acs.jctc.6b00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scanning tunneling microscopy (STM) and spectroscopy probe the local density of states of single molecules electrically insulated from the substrate. The experimental images, although usually interpreted in terms of single-particle molecular orbitals, are associated with quasiparticle wave functions dressed by the whole electron-electron interaction. Here we propose an ab initio approach based on quantum Monte Carlo to calculate the quasiparticle wave functions of molecules. Through the comparison between Monte Carlo wave functions and their uncorrelated Hartree-Fock counterparts we visualize the electronic correlation embedded in the simulated STM images, highlighting the many-body features that might be observed.
Collapse
Affiliation(s)
| | - Sandro Sorella
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and CNR-IOM Democritos National Simulation Center, via Bonomea 265, 34136 Trieste, Italy
| | | | | |
Collapse
|