1
|
Wu K, Kang K, Liu D, Zhang C, Wang X, Zhang M, Li Q. Gold-catalyzed endo-selective Ring-opening of Epoxides and its Application in Construction of Poly-ethers. Chemistry 2024; 30:e202400234. [PMID: 38273816 DOI: 10.1002/chem.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Tetrahydropyran and tetrahydropyran-fused poly-ethers scaffolds are found in many classes of natural products and medicinally relevant small molecules. Here we describe a catalytic system for 6-endo selective ring-opening of epoxides by Au(I) or Au(III) catalyst that provides rapid access to various tetrahydropyran-derived motifs. It also could efficiently construct the subunits of marine ladder-like poly-ethers through emulating the Nakanishi's hypothesis on the biosynthesis of these toxins. The synthetic utility of this method is also demonstrated in the preparation of the tricyclic core of tetrahydropyran-containing macrolide natural products lituarines A-C.
Collapse
Affiliation(s)
- Kehuan Wu
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Kaiwen Kang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chiyue Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Miaocheng Zhang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Podturkina AV, Ardashov OV, Volcho KP, Salakhutdinov NF. A New Stereoselective Approach to the Substitution of Allyl Hydroxy Group in para-Mentha-1,2-diol in the Search for New Antiparkinsonian Agents. Molecules 2023; 28:7303. [PMID: 37959723 PMCID: PMC10650740 DOI: 10.3390/molecules28217303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Two approaches to the synthesis of para-menthene epoxide ((1S,5S,6R)-4) are developed. The first approach includes a reaction between chlorohydrin 7 and NaH in THF. The second involves the formation of epoxide in the reaction of corresponding diacetate 6 with sodium tert-butoxide. One possible mechanism of this reaction is proposed to explain unexpected outcomes in the regio- and stereospecificity of epoxide (1S,5S,6R)-4 formation. The epoxide ring in (1S,5S,6R)-4 is then opened by various S- and O-nucleophiles. This series of reactions allows for the stereoselective synthesis of diverse derivatives of the monoterpenoid Prottremine 1, a compound known for its antiparkinsonian activity, including promising antiparkinsonian properties.
Collapse
Affiliation(s)
| | | | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.F.S.)
| | | |
Collapse
|
3
|
Rodríguez-Berríos RR, Isbel SR, Bugarin A. Epoxide-Based Synthetic Approaches toward Polypropionates and Related Bioactive Natural Products. Int J Mol Sci 2023; 24:6195. [PMID: 37047173 PMCID: PMC10094535 DOI: 10.3390/ijms24076195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Polypropionate units are a common structural feature of many of the natural products in polyketides, some of which have shown a broad range of antimicrobial and therapeutic potential. Polypropionates are composed of a carbon skeleton with alternating methyl and hydroxy groups with a specific configuration. Different approaches have been developed for the synthesis of polypropionates and herein we include, for the first time, all of the epoxide-based methodologies that have been reported over the years by several research groups such as Kishi, Katsuki, Marashall, Miyashita, Prieto, Sarabia, Jung, McDonald, etc. Several syntheses of polypropionate fragments and natural products that employed epoxides as key intermediates have been described and summarized in this review. These synthetic approaches involve enatio- and diastereoselective synthesis of epoxides (epoxy-alcohols, epoxy-amides, and epoxy-esters) and their regioselective cleavage with carbon and/or hydride nucleophiles. In addition, we included a description of the isolation and biological activities of the polypropionates and related natural products that have been synthetized using epoxide-based approaches. In conclusion, the epoxide-based methodologies are a non-aldol alternative approach for the construction of polypropionate.
Collapse
Affiliation(s)
- Raúl R. Rodríguez-Berríos
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23346, San Juan 00931-3346, Puerto Rico;
| | - Stephen R. Isbel
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| |
Collapse
|
4
|
Sasaki M, Seida M, Umehara A. Convergent and Scalable Synthesis of the ABCDE-Ring Fragment of Caribbean Ciguatoxin C-CTX-1. J Org Chem 2023; 88:403-418. [PMID: 36537759 DOI: 10.1021/acs.joc.2c02414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Convergent and scalable synthesis of the ABCDE-ring fragment of Caribbean ciguatoxin C-CTX-1, the major causative toxin for ciguatera poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in detail. The key features of the synthesis include an iterative use of 2,2,6,6-tetramethyl piperidine 1-oxyl (TEMPO)/PhI(OAc)2-mediated oxidative lactonization and Suzuki-Miyaura coupling en route to the DE-ring system and a convergent fragment coupling to form the ABCDE-ring skeleton via the Suzuki-Miyaura coupling strategy.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Miku Seida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Bowen JI, Wang L, Crump MP, Willis CL. Synthetic and biosynthetic methods for selective cyclisations of 4,5-epoxy alcohols to tetrahydropyrans. Org Biomol Chem 2022; 20:1150-1175. [PMID: 35029626 PMCID: PMC8827043 DOI: 10.1039/d1ob01905h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Tetrahydropyrans (THPs) are common structural motifs found in natural products and synthetic therapeutic molecules. In Nature these 6-membered oxygen heterocycles are often assembled via intramolecular reactions involving either oxy-Michael additions or ring opening of epoxy-alcohols. Indeed, the polyether natural products have been particularly widely studied due to their fascinating structures and important biological properties; these are commonly formed via endo-selective epoxide-opening cascades. In this review we outline synthetic approaches for endo-selective intramolecular epoxide ring opening (IERO) of 4,5-epoxy-alcohols and their applications in natural product synthesis. In addition, the biosynthesis of THP-containing natural products which utilise IERO reactions are reviewed.
Collapse
Affiliation(s)
- James I Bowen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Luoyi Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
6
|
Mori Y. The Power of Small Wins. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuji Mori
- Faculty of Pharmacy, Meijo University
| |
Collapse
|
7
|
Nitroxyl radical-catalyzed chemoselective alcohol oxidation for the synthesis of polyfunctional molecules. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
|
9
|
Sakai T, Sakakibara H, Omoto Y, Tsunekawa M, Hadano Y, Kato S, Mori Y. Synthesis of the GHIJKL Fragment of Gymnocin-B. Org Lett 2019; 21:6864-6868. [PMID: 31436430 DOI: 10.1021/acs.orglett.9b02502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GHIJKL fragment of gymnocin-B was synthesized using the oxiranyl anion strategy. The first highlight of the synthesis is the bromoketone cyclization reaction on the oxepane ring to construct the fused bisoxepane GH ring. The second key step is the introduction of the trans-4-hydroxy-3-methyloxepane J ring via addition of trimethylaluminum to a conjugated oxonium moiety, followed by diastereoselective epoxidation and regioselective reduction.
Collapse
Affiliation(s)
- Takeo Sakai
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Hideaki Sakakibara
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yumi Omoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Marina Tsunekawa
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yoshinori Hadano
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shota Kato
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yuji Mori
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
10
|
Elustondo F, Chintalapudi V, Clark JS. A Short Sequence for the Iterative Synthesis of Fused Polyethers. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Frédéric Elustondo
- School of ChemistryUniversity of Nottingham, University Park Nottingham NG7 2RD United Kingdom
| | - Venkaiah Chintalapudi
- School of Chemistry, Joseph Black BuildingUniversity of Glasgow, University Avenue Glasgow G12 8QQ United Kingdom
| | - J. Stephen Clark
- School of Chemistry, Joseph Black BuildingUniversity of Glasgow, University Avenue Glasgow G12 8QQ United Kingdom
| |
Collapse
|
11
|
Iwabuchi Y. Recent Progress in Oxidative Organic Transformations Employing Nitroxyl Radicals. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Mori Y. Development of New Synthetic Methods Using Oxiranyl Anions and Application in the Syntheses of Polycyclic Ether Marine Natural Products. Chem Pharm Bull (Tokyo) 2019; 67:1-17. [DOI: 10.1248/cpb.c18-00699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Mori
- Faculty of Pharmacy, Meijo University
| |
Collapse
|
13
|
Abstract
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.
Collapse
Affiliation(s)
- Jonathan W Lehmann
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
14
|
Mori Y, Sakai T, Aoyama K, Oshima R, Furukawa K. Stereoinversion of a Tertiary Alcohol on a THP Ring: a Recovery Route to an Intermediate for Gymnocin-A. HETEROCYCLES 2018. [DOI: 10.3987/com-17-s(t)8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Ishida K, Tobita F, Kusama H. Lewis Acid-Assisted Photoinduced Intermolecular Coupling between Acylsilanes and Aldehydes: A Formal Cross Benzoin-Type Condensation. Chemistry 2017; 24:543-546. [DOI: 10.1002/chem.201704776] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Kento Ishida
- Department of Chemistry; Faculty of Science; Gakushuin University; 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Fumiya Tobita
- Department of Chemistry; Faculty of Science; Gakushuin University; 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Hiroyuki Kusama
- Department of Chemistry; Faculty of Science; Gakushuin University; 1-5-1 Mejiro Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
16
|
Sakai T. Convergent Synthesis of Fused Ring Systems in Large Polycyclic Ethers. YAKUGAKU ZASSHI 2017; 137:1095-1101. [DOI: 10.1248/yakushi.17-00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Sakai T, Ishihara A, Mori Y. Synthesis of the KLMN Fragment of Gymnocin-A from the FGH Fragment. J Org Chem 2017; 82:3976-3981. [PMID: 28276689 DOI: 10.1021/acs.joc.7b00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An improved route for the synthesis of the KLMN fragment of gymnocin-A was developed through the oxiranyl anion coupling of the FGH fragment with a chiral C3 epoxy sulfone, followed by 6-endo cyclization. This straightforward approach reduced the number of synthetic steps by 14 compared with a previous route using alternative building blocks.
Collapse
Affiliation(s)
- Takeo Sakai
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Aoi Ishihara
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yuji Mori
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
18
|
Sakai T, Fukuta A, Nakamura K, Nakano M, Mori Y. Total Synthesis of Brevisamide Using an Oxiranyl Anion Strategy. J Org Chem 2016; 81:3799-808. [PMID: 27057586 DOI: 10.1021/acs.joc.6b00484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A total synthesis of brevisamide, a marine monocyclic ether amide isolated from the dinoflagellate Karenia brevis, has been achieved in 18 steps starting from 4-(benzyloxy)butanol. The synthesis involves oxiranyl anion coupling between an epoxy sulfone and a triflate, intramolecular etherification of a hydroxy-bromoketone, diastereoselective introduction of the axial methyl group by hydroxyl-directed hydrogenation of an exocyclic olefin, and installation of an acetamide side chain by nucleophilic substitution of an N-acetyl carbamate. The dienal side chain is assembled using a Horner-Wadsworth-Emmons reaction to complete the synthesis.
Collapse
Affiliation(s)
- Takeo Sakai
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Ayumi Fukuta
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kumiko Nakamura
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Masato Nakano
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yuji Mori
- Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
19
|
Meyer AG, Smith JA, Hyland C, Williams CC, Bissember AC, Nicholls TP. Seven-Membered Rings. PROGRESS IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/b978-0-08-100755-6.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Shibuya M. Development of Efficient Nitroxyl Radical-Catalyzed Oxidation Systems —Selective Oxidation from Primary Alcohols to Carboxylic Acids—. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masatoshi Shibuya
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|