1
|
Park J, Chai K, Kim W, Yoon T, Park H, Kim W, You J, Na S, Park J. Highly enhanced Hg 2+ detection using optimized DNA and a double coffee ring effect-based SERS map. Biosens Bioelectron 2024; 264:116646. [PMID: 39142231 DOI: 10.1016/j.bios.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Hg2+ is a highly toxic heavy metal ion that poses serious risks to human health and the environment. Due to its tendency to accumulate, it can easily enter the human body through the food chain, making it crucial to develop detection sensors that mimic real environmental conditions. To achieve this, our study employed a surface-enhanced Raman scattering (SERS) sensor using two strategies. First, we designed a highly selective probe by optimizing the probe and reporter DNA strands to bind Hg2+ within a thymine-thymine mismatch. Second, we used the double coffee ring effect to concentrate the optimized probe DNA. These two strategies greatly enhanced the SERS signal, resulting in a sensor with exceptional sensitivity, a low detection limit of 208.71 fM, and superior selectivity for Hg2+. The practical application of the sensor was demonstrated by successfully detecting Hg2+ in drinking water, tap water, canned tuna, and tuna sashimi. Additionally, the experimental results were presented in a pizza-shaped SERS mapping image, allowing users to estimate Hg2+ concentrations through color, providing a user-friendly and intuitive method for data comprehension and analysis. Our study presents a promising approach for sensitive and reliable Hg2+ detection, with potential implications for environmental monitoring and food safety.
Collapse
Affiliation(s)
- Joohyung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyunghwan Chai
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woong Kim
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - Hyunjun Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woochang Kim
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Juneseok You
- Department of Mechanical Engineering, Kumoh National Institute of Technology, 39177, Gumi, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Li XY, Long QH, Pan Z, Ma XH, Xia C, Mai X, Li N. Integrated Eu 3+ loaded covalent organic framework with smartphone for ratiometric fluorescence detection of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124610. [PMID: 38852306 DOI: 10.1016/j.saa.2024.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Developing rapid tetracycline sensing system is of great significance to monitor the illegal addition to drugs and pollution to food and ecosystem. By loading covalent organic frameworks (COFs) with Eu3+, a new hybridized material (COF@Eu3+) was prepared for tetracycline determination. Based on the Schiff base reaction, the COFs were by synthesized through solvent evaporation in 30 min at room temperature. Thereafter, Eu3+ was modified into COFs to develop the COF@Eu3+ sensing platform by adsorption and coordination. In presence of tetracycline, tetracycline can displace water molecules and coordinate with Eu3+ through the antenna effect. As a result, the red fluorescence of Eu3+ was enhanced by tetracycline with green fluorescence of COF as a reference. The developed ratiometric fluorescence sensor exhibits a linear range of 0.1-20 μM for detecting tetracycline with a detection limit of 30 nM. Integrated with a smartphone, the rapid tetracycline detection can be realized in situ, which is potential for high-throughput screening of tetracycline contaminated samples. Furthermore, the COF@Eu3+ fluorescence sensor has been successfully applied to the detection of tetracycline in traditional Chinese medicine compound preparation with satisfied recoveries. Therefore, a smartphone-assisted device was successfully developed based on Eu3+-functionalized COF, which is an attractive candidate for further applications of fluorescence sensing and visual detection.
Collapse
Affiliation(s)
- Xin Yuan Li
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Qing Hong Long
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Zhoujian Pan
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Xiao Han Ma
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China; Jiangxi Key Laboratory of Clinical Pharmacokinetics, Nanchang 330031, PR China
| | - Xi Mai
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China.
| | - Na Li
- Pharmaceutical School, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Gong Y, Deng L, Xu X, Liu R, Li J, Huang N, Jiang D. Wiring Covalent Organic Frameworks with Conducting Polymers. Angew Chem Int Ed Engl 2024; 63:e202411806. [PMID: 38988007 DOI: 10.1002/anie.202411806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Covalent organic frameworks are a class of crystalline porous polymers formed by linking organic units into periodically aligned skeletons and pores. Here we report a strategy for wiring these frameworks with conducting polymers via wall engineering and polymerization. We anchored each edge site with one pyrrole unit, which is densely packed along the z direction yet protruded from pore walls. This assembly enables the polymerization of pyrrole units to form polypyrrole and creates a new polypyrrole chain conformation. The resultant framework constitutes six single file polypyrrole chains in each pore and develop spatially segregated yet built-in single molecular wires with exceptional stable polarons. Hall effect measurements revealed that the materials are p-type semiconductors, increase conductivity by eight orders of magnitude compared to the pristine frameworks, and achieve a carrier mobility as large as 13.2 cm2 V-1 s-1. Our results open an avenue to π electronic frameworks by interlayer molecular wiring with conducting polymers.
Collapse
Affiliation(s)
- Yifan Gong
- Integrative Sciences & Engineering, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Lejian Deng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, P. R. China
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Juan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Donglin Jiang
- Integrative Sciences & Engineering, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, P. R. China
| |
Collapse
|
4
|
Jiang S, Niu H, Gu X, Cai Y. Perfluoroalkyl Functionalized Superhydrophobic Covalent Organic Frameworks for Excellent Oil-Water Membrane Separation and Anhydrous Proton Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403772. [PMID: 39004855 DOI: 10.1002/smll.202403772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Rapid economic development has led to oil pollution and energy shortage. Membrane separation has attracted much attention due to its simplicity and efficiency in oil-water-separation. The development of membrane materials with enhanced separation properties is essential to improve the separation-efficiency. Proton exchange membrane fuel cells (PEMFCs) are expected to replace conventional engines due to their high-power-conversion rates and other favorable properties. Anhydrous-proton-conducting materials are vital components of PEMFCs. However, developing stable proton-conducting materials that exhibit high conductivity at varying temperatures remains challenging. Herein, two covalent organic frameworks (COFs) with long-side-chains are synthesized, and their corresponding COF@SSN membranes. Both membranes can effectively separate oil-water mixtures and water-in-oil emulsions. The TFPT-AF membrane achieves a maximum oil-flux of 6.05 × 105 g h-1 m-2 with an oil-water separation efficiency of above 99%, which is almost unchanged after 20 consecutive uses. COF@H3PO4 doped with different ratios of H3PO4 is prepared, the results show that the perfluorocarbon-chain system has excellent anhydrous proton conductivity , achieving an ultra-high proton-conductivity of 3.98 × 10-1 S cm-1 at 125 °C. This study lays the foundation for tailor-made-functionalization of COF through pre-engineering and surface-modification, highlighting the great potential of COFs for oil-water separation and anhydrous-proton-conductivity.
Collapse
Affiliation(s)
- Shaodong Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
| | - Xiaoling Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| |
Collapse
|
5
|
Yan X, Liu N, Liu W, Zeng J, Liu C, Chen S, Yang Y, Gui X, Yu D, Yang G, Zeng Z. Recent advances on COF-based single-atom and dual-atom sites for oxygen catalysis. Chem Commun (Camb) 2024; 60:12787-12802. [PMID: 39391942 DOI: 10.1039/d4cc03535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising platforms for the construction of single-atom and dual-atom catalysts (SACs and DACs), owing to their well-defined structures, tunable pore sizes, and abundant active sites. In recent years, the development of COF-based SACs and DACs as highly efficient catalysts has witnessed a remarkable surge. The synergistic interplay between the metal active sites and the COF has established the design and fabrication of COF-based SACs and DACs as a prominent research area in electrocatalysis. These catalytic materials exhibit promising prospects for applications in energy storage and conversion devices. This review summarizes recent advances in the design, synthesis, and applications of COF-based SACs and DACs for oxygen catalysis. The catalytic mechanisms of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are comprehensively explored, providing a comparative analysis to elucidate the correlation between the structure and performance, as well as their functional attributes in battery devices. This review highlights a promising approach for future research, emphasizing the necessity of rational design, breakthroughs, and in-situ characterization to further advance the development of high-performance COF-based SACs and DACs for sustainable energy applications.
Collapse
Affiliation(s)
- Xinru Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wencai Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jiajun Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shufen Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuhua Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Pu ZF, Wen QL, Wu BC, Li CH, Li RS, Ling J, Cao Q. Synthesis of shape-controlled covalent organic frameworks for light scattering detection of iron and chromium ions. Talanta 2024; 279:126682. [PMID: 39116734 DOI: 10.1016/j.talanta.2024.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Fabricating covalent organic frameworks with different morphologies based on the same structural motifs is both interesting and challenging. Here, a TTA-TFP-COF was synthesized by both solvothermal and room temperature methods, with 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TTA) and 1,3,5-tris(4-formylphenyl)-benzene (TFP) as raw material. Using different synthesis conditions and adding aniline and benzaldehyde as regulators in the synthesis process, we found that these processes could slow down the reaction speed, increase the exchange and metathesis reactions of dynamic reversible reactions, and improve the reversibility of the reaction system. Thus, controllable synthesis of TTA-TFP-COF with different morphologies, including micro-particles, hollow tubes with controllable diameters, and micro-flowers was achieved. Our further study found that metal ions, Fe3+ and Cr3+ ions, could coordinate with N and O in TTA-TFP-COF and partially destroy the structure of TTA-TFP-COF. The particle size of the TTA-TFP-COF became smaller, thus resulting in the decrease of the light scattering intensity of the COF. An excellent linear relationship exists between the light scattering changes (ΔI) and metal ions concentration (c) from 2.0 to 350.0 μM for Fe3+ and 40.0-800.0 μM for Cr3+, respectively. Thus, rapid and selective analytical methods for detecting metal ions were developed by TTA-TFP-COF here.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China; School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China
| | - Bi-Chao Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Chun-Hua Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
7
|
Ren Y, Hou Y, Song J, Zhi D, Li N, Yu Y, Zhu D. Rational Design of Regenerable Amino-Functionalized Fluorescent Covalent Organic Framework for the Exclusive Detection of Mercury(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22990-22996. [PMID: 39404143 DOI: 10.1021/acs.langmuir.4c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Goal-oriented development of novel covalent organic frameworks (COFs) to construct a sensing platform for highly toxic mercury (II, Hg2+) is of tremendous significance. Recently, numerous COFs with sulfur-based ligands were developed for Hg2+ monitoring; however, strong binding of Hg2+ by sulfur makes their regeneration very tough. Herein, we designed and developed an amino-functionalized fluorescent COF (COF-NH2) through facile postmodification for Hg2+ detection in which the π-conjugation skeleton is the signal reader and the nitrogen-based side is the highly selective Hg2+ receptor. More importantly, this nitrogen-based receptor permits the reversible binding of Hg2+. As a sensing platform, the outstanding performance of COF-NH2 for Hg2+ detection was reached with respect to high sensitivity with an ultralow detection of 15.3 nM, real-time response with rapid signal change of 10 s, and facile visualization with significant fluorescence color change. Expectedly, COF-NH2 obtained facile recycling which still shows excellent response performance toward Hg2+ after six cycles based on the reversible interaction between amino groups and Hg2+. Our work not only shows an attractive foreground of fluorescent COF for Hg2+ detection but also emphasizes the easy construction of novel COF materials via the rational introduction of metal ligands for the recognition of other metal ions.
Collapse
Affiliation(s)
- Yanbiao Ren
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yuzhen Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jusuo Song
- Shandong Luxin Design & Engineering Co., Ltd., Jinan 250000, China
| | - Desheng Zhi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Ning Li
- Shandong Lithium Battery Industry Alliance, Zaozhuang 277160, China
| | - Yanxin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Dandan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
8
|
Liu L, Wei D, Liang H, Zhang Y, Zhang X, Zhi Y. Emissive Hydrazone-Linked Covalent Organic Frameworks as Highly Sensitive and Selective Sensor for the Hydrazine Detection. Macromol Rapid Commun 2024:e2400711. [PMID: 39470627 DOI: 10.1002/marc.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Covalent Organic Frameworks (COFs) exhibit a range of exceptional attributes, including notable porosity, outstanding stability, and a precisely tuned π-conjugated network, rendering them highly promising candidates for fluorescence sensors applications. In this study, the synthesis of two emissive hydrazone-linked COFs designed for hydrazine detection is presented. The partially conjugated structure of the hydrazone linkage effectively weakens the fluorescence quenching processes induced by aggregation. Additionally, the incorporation of flexible structural components further reduces conjugation, thereby enhancing luminescent efficiency. Remarkably, these COFs possess a significant abundance of heteroatoms, enabling distinctive interactions with hydrazine molecules, which in turn results in exceptional selectivity and sensitivity for hydrazine detection. The detection limit of these COFs reaches the nanomolar range, surpassing all previously reported COFs, thereby underscoring their superior performance in chemical sensing applications.
Collapse
Affiliation(s)
- Longjin Liu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Dongxue Wei
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Hao Liang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Xueyan Zhang
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
9
|
Guo Y, Di W, Qin C, Liu R, Cao H, Gao X. Covalent Organic Framework-Involved Sensors for Efficient Enrichment and Monitoring of Food Hazards: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23053-23081. [PMID: 39382449 DOI: 10.1021/acs.jafc.4c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The food safety issues caused by environmental pollution have posed great risks to human health that cannot be ignored. Hence, the precise monitoring of hazard factors in food has emerged as a critical concern for the food safety sector. As a novel porous material, covalent organic frameworks (COFs) have garnered significant attention due to their large specific surface area, excellent thermal and chemical stability, modifiability, and abundant recognition sites. This makes it a potential solution for food safety issues. In this research, the synthesis and regulation strategies of COFs were reviewed. The roles of COFs in enriching and detecting food hazards were discussed comprehensively and extensively. Taking representative hazard factors in food as the research object, the expression forms and participation approaches of COFs were explored, along with the effectiveness of corresponding detection methods. Finally, the development directions of COFs in the future as well as the problems existing in practical applications were discussed, which was beneficial to promote the application of COFs in food safety and beyond.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Wenli Di
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Rui Liu
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Hongqian Cao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| | - Xibao Gao
- School of Public Health, Shandong University, Jinan, Shandong Province 250000, China
| |
Collapse
|
10
|
Yuan L, Tang X, Zhang K, Chen H, Yang X, Fan J, Xie M, Zheng S, Cai S. Construction of a Defective Chiral Covalent Organic Framework for Fluorescence Recognition of Amino Acids. Chem Asian J 2024; 19:e202400753. [PMID: 39136386 DOI: 10.1002/asia.202400753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
The design and synthesis of chiral covalent organic frameworks (COFs) with controlled defect sites are highly desirable but still remain largely unexplored. Herein, we report the synthesis of a defective chiral HD-TAPB-DMTP COF by modifying the chiral monomer helicid (HD) into the framework of an achiral imine-linked TAPB-DMTP COF using a chiral monomer exchange strategy. Upon the introduction of the chiral HD unit, the obtained defective chiral HD-TAPB-DMTP COF not only displays excellent crystallinity, large specific surface area (up to 2338 m2/g) and rich accessible chiral functional sites but also exhibits fluorescence emission, rendering it a good candidate for discrimination of amino acids. Notably, the resultant defective chiral HD-TAPB-DMTP COF can be used as a fluorescent sensor for enantioselective recognition of both tyrosine and phenylalanine enantiomers in water, showing enhanced fluorescent responses for the L conformations over those of the D conformations with the enantioselectivity factors being 1.84 and 2.02, respectively. Moreover, molecular docking simulations uncover that stronger binding affinities between chiral HD-TAPB-DMTP COF and L-tyrosine/L-phenylalanine in comparison to those with D-tyrosine/D-phenylalanine play important roles in enantioselective determination. This work provides new insights into the design and construction of highly porous defective chiral COFs for enantioselective fluorescence recognition of amino acids.
Collapse
Affiliation(s)
- Luhai Yuan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Hong Chen
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xi Yang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Mubiao Xie
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| |
Collapse
|
11
|
Dinari M, Golshadi Z, Asadi P, Norton AE, Reid KR, Karimi B. Recent Progress on Covalent Organic Frameworks Supporting Metal Nanoparticles as Promising Materials for Nitrophenol Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1458. [PMID: 39269120 PMCID: PMC11397240 DOI: 10.3390/nano14171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
With the utilization of nitrophenols in manufacturing various materials and the expansion of industry, nitrophenols have emerged as water pollutants that pose significant risks to both humans and the environment. Therefore, it is imperative to convert nitrophenols into aminophenols, which are less toxic. This conversion process is achieved through the use of noble metal nanoparticles, such as gold, silver, copper, and palladium. The primary challenge with noble metal nanoparticles lies in their accumulation and deactivation, leading to a decrease in catalyst activity. Covalent organic frameworks (COFs) are materials characterized by a crystalline structure, good stability, and high porosity with active sites. These properties make them ideal substrates for noble metal nanoparticles, enhancing catalytic activity. This overview explores various articles that focus on the synthesis of catalysts containing noble metal nanoparticles attached to COFs as substrates to reduce nitrophenols to aminophenols.
Collapse
Affiliation(s)
- Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zaynab Golshadi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amie E Norton
- Department of Entomology, Kansas State University, 123 W Waters Hall, 1603 Old Claflin Place, Manhattan, KS 66503, USA
| | - Katelyn R Reid
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Benson Karimi
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
12
|
Chaurasia A, Kumar A. Removal of mercury and lead ions from water using bioinspired N 3Se 3 type small sized moieties. Chem Commun (Camb) 2024; 60:9841-9844. [PMID: 39171504 DOI: 10.1039/d4cc03587a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mercury and lead toxicity in water has serious repercussions on human health. There is an urgent need to develop effective and efficient small moieties for their removal. The convenient one-pot synthesis of a few N3Se3 type small sized moieties is reported herein. The highest metal ion uptake capacity of Hg(II) and Pb(II) ions was found to be 314.3 mg g-1 and 93.5 mg g-1, respectively, by ICP-MS analysis. These ion uptake values are the highest for small sized moieties known in the literature to date.
Collapse
Affiliation(s)
- Avinash Chaurasia
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Abhishek Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
13
|
Nasimpour F, Mansournia M, Badiei A. Nitrogen-contained Nanoporous Hyper-cross-linked Polymer: A New Turn-on Fluorescence Probe for Detection of Ag + Ions in Aqueous Media. J Fluoresc 2024; 34:2115-2121. [PMID: 37707710 DOI: 10.1007/s10895-023-03404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
A fluorescence probe was designed using a nitrogen-contained mesoporous hyper-cross-linked polymer precursor (NH2-HCP) in order to selectively detect silver (Ag+) ions. NH2-HCP exhibits fluorescence intensity, but upon the addition of Ag+, a significant enhancement in fluorescence signal is observed. The relationship between fluorescence intensity enhancement and Ag+ concentration shows a linear and monotonic trend. The probe's response to various other cations such as Al3+, Fe3+, Cd2+, Ni2+, Cu2+, Fe2+, Hg2+, Mg2+, Zn2+, Pb2+, Mn2+, Co2+, Ca2+, Na+, and K+, as well as halogen anions like F-, Cl-, Br-, and I- was also investigated. Under optimal conditions, the probe demonstrated a linear range of 0.1-3 μM and a detection limit of 0.01 μM.
Collapse
Affiliation(s)
- Fariba Nasimpour
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Lan Y, Gong Y, Pang X, Feng Y, Ran Y, Guo H, Lu X. Construction of imine-hydrazone dual linkage covalent organic frameworks. Chem Commun (Camb) 2024; 60:9534-9537. [PMID: 39148473 DOI: 10.1039/d4cc03708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The development of dual linkage covalent organic frameworks (DL-COFs) is fundamentally important for creating diversified structures and functions. Herein, imine-hydrazone DL-COFs were synthesized for the first time. Three novel imine-hydrazone DL-COFs have been constructed with bifunctional molecule 4-amino-2-methoxybenzohydrazide as the key building block via imine and hydrazone condensations simultaneously.
Collapse
Affiliation(s)
- Yubao Lan
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yufeng Gong
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Xiaoya Pang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yanjun Feng
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yi Ran
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Huixia Guo
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
15
|
Huang Q, Zhou N, Peng J, Zeng X, Du L, Zhao Y, Luo X. Sensitivity-improved SERS detection of SARS-CoV-2 spike protein by Au NPs/COFs integrated with catalytic-hairpin-assembly amplification technology. Anal Chim Acta 2024; 1318:342924. [PMID: 39067931 DOI: 10.1016/j.aca.2024.342924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The COVID-19 pandemic, caused by the novel coronavirus, has had a profound impact on global health and economies worldwide. This unprecedented crisis has affected individuals, communities, and nations in diverse manners. Developing simple and accurate diagnostic methods is an imperative task for frequent testing to mitigate the spread of the virus. Among these methods, SARS-CoV-2 antigen tests in clinical specimens have emerged as a promising diagnostic method for COVID-19 due to their sensitive and accurate detection of spike (S) protein, which plays a crucial role in viral infection initiation. RESULTS In this work, a dual-signal amplification surface enhanced Raman scattering (SERS)-based S protein biosensor was constructed based on Au NPs/COFs and enzyme-free catalytic hairpin assembly (CHA) amplification method. The approach relies on a released free DNA sequence (T), which is generated from the competition reaction between Aptamer/T and Aptamer/S protein, to trigger a CHA reaction. Due to the high binding affinity and selectivity between the S protein and its aptamer, CHA process was triggered with the maximum SERS tags (H2-conjugated Au@4-mercaptobenzonitrile@Ag) anchored onto Au NPs/COFs substrate surface. This SERS platform could detect the S protein at concentrations with high sensitivity (limit of detection = 3.0 × 10-16 g/mL), wide detection range (1 × 10-16 to 1 × 10-11 g/mL), acceptable reproducibility (relative standard deviation = 7.01 %) and excellent specificity. The biosensor was also employed to detect S protein in artificial human salivas. SIGNIFICANCE Thus, this study not only developed a novel Au NPs/COFs substrate exhibiting strong SERS enhancement ability and high reproducibility, but also proposed a promising dual-signal amplification SERS-based diagnostic method for COVID-19, holding immense potential for the detection of a wide range of antigens and infectious diseases in future applications.
Collapse
Affiliation(s)
- Qiuwen Huang
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Na Zhou
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Food Microbiology, Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Jiayi Peng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Xuanjiang Zeng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Lijuan Du
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| |
Collapse
|
16
|
Zhou X, Wu Z, Chen B, Zhou Z, Liang Y, He M, Hu B. Quantification of trace heavy metals in environmental water, soil and atmospheric particulates with their bioaccessibility analysis. Talanta 2024; 276:126284. [PMID: 38781914 DOI: 10.1016/j.talanta.2024.126284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
In this work, sulfhydryl (SH) functionalized magnetic covalent organic framework (COF) was synthesized by using 4-aldehyde phenyl butadiyne (DEBD) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as the monomers and ethanedithiol as the modifier, with the aid of thiol-alkyne "click" reaction. The prepared Fe3O4@COFTAPB-DEBD@SH exhibited relatively strong magnetism (32.8 emu g-1), good stability and selectivity to target analytes with a high sulfhydryl content (0.24 mmol g-1). Based on Fe3O4@COFTAPB-DEBD@SH, a method combining magnetic solid phase extraction with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the quantitative analysis of trace metals. Under the optimal conditions, the method merited fast desorption kinetics (<2 min), adsorption kinetics (<20 min), fast phase separation (<1 min), high enrichment factor (100), and the detection limits for Cd, Hg, Pb and Bi were determined to be 1.18, 0.51, 4.91 and 0.39 ng L-1, respectively. A good resistance to complex matrices was demonstrated for the method in the analysis of soil, atmospheric particles and simulated pulmonary fluids samples. Certified reference materials (coal fly ash GBW08401 and soil GBW07427) were employed to validate the accuracy of the method. Four target metals in the range of 12.9-215 ng L-1, 0.06-24.6 μg g-1 and 0.52-33.1 ng m-3 were found in local water, soil and atmospheric particulates (PM), respectively. Additionally, artificial lysosome solution and gamble's solution were used to simulate human pulmonary fluid and the bioaccessibility of Cd, Hg, Pb and Bi in PM2.5 was evaluated to be 58.6-73.1 % and 1.3-7.1 %, respectively.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhekuan Wu
- Tobacco Research Institute of Hubei Province, Hubei Tobacco Company, Wuhan, 430040, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Paul J, Qamar A, Ahankari SS, Thomas S, Dufresne A. Chitosan-based aerogels: A new paradigm of advanced green materials for remediation of contaminated water. Carbohydr Polym 2024; 338:122198. [PMID: 38763724 DOI: 10.1016/j.carbpol.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Chitosan (CS) aerogels are highly porous (∼99 %), exhibit ultralow density, and are excellent sorbents for removing ionic pollutants and oils/organic solvents from water. Their abundant hydroxyl and amino groups facilitate the adsorption of ionic pollutants through electrostatic interaction, complexation and chelation mechanisms. Selection of suitable surface wettability is the way to separate oils/organic solvents from water. This review summarizes the most recent developments in improving the adsorption performance, mechanical strength and regeneration of CS aerogels. The structure of the paper follows the extraction of chitosan, preparation and sorption characteristics of CS aerogels for heavy metal ions, organic dyes, and oils/organic solvents, sequentially. A detailed analysis of the parameters that influence the adsorption/absorption performance of CS aerogels is carried out and their effective control for improving the performance is suggested. The analysis of research outcomes of the recently published data came up with some interesting facts that the unidirectional pore structure and characteristics of the functional group of the aerogel and pH of the adsorbate have led to the enhanced adsorption performance of the CS aerogel. Finally, the excerpts of the literature survey highlighting the difficulties and potential of CS aerogels for water remediation are proposed.
Collapse
Affiliation(s)
- Joyel Paul
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Ahsan Qamar
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sandeep S Ahankari
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sabu Thomas
- School of Polymer Science and Technology, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Nanoscience, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Energy Science, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; School of Chemical Sciences, IIUCNN, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686 560, India; Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa
| | - Alain Dufresne
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| |
Collapse
|
18
|
Li Z, Xu N, Ren J, Hao H, Gao R, Kong X, Yan H, Hua X, Peng YK, Ma S, O'Hare D, Zhao Y. Theory-driven design of cadmium mineralizing layered double hydroxides for environmental remediation. Chem Sci 2024; 15:13021-13031. [PMID: 39148794 PMCID: PMC11323326 DOI: 10.1039/d4sc02860k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
The environmental concern posed by toxic heavy metal pollution in soil and water has grown. Ca-based layered double hydroxides (LDHs) have shown exceptional efficacy in eliminating heavy metal cations through the formation of super-stable mineralization structures (SSMS). Nevertheless, it is still unclear how the intricate coordination environment of Ca2+ in Ca-based LDH materials affects the mineralization performance, which hinders the development and application of Ca-based LDH materials as efficient mineralizers. Herein, we discover that, in comparison to a standard LDH, the mineralization efficiency for Cd2+ ions may be significantly enhanced in the pentacoordinated structure of defect-containing Ca-5-LDH utilizing both density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Furthermore, the calcination-reconstruction technique can be utilized to successfully produce pentacoordinated Ca-5-LDH. Subsequent investigations verified that Ca-5-LDH exhibited double the mineralization performance (421.5 mg g-1) in comparison to the corresponding pristine seven coordinated Ca-7OH/H2O-LDH (191.2 mg g-1). The coordination-relative mineralization mechanism of Ca-based LDH was confirmed by both theoretical calculations and experimental results. The understanding of LDH materials and their possible use in environmental remediation are advanced by this research.
Collapse
Affiliation(s)
- Zixian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Nuo Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jing Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Haigang Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University 010021 Hohhot Inner Mongolia P. R. China
| | - Rui Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University 010021 Hohhot Inner Mongolia P. R. China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiao Hua
- Department of Chemistry, Lancaster University Lancaster LA1 4YB UK
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong Hong Kong Hong Kong SAR 999077 P. R. China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou 324000 Zhejiang P. R. China
| |
Collapse
|
19
|
Das G, Ibrahim FA, Khalil ZA, Bazin P, Chandra F, AbdulHalim RG, Prakasam T, Das AK, Sharma SK, Varghese S, Kirmizialtin S, Jagannathan R, Saleh N, Benyettou F, Roz ME, Addicoat M, Olson MA, Rao DSS, Prasad SK, Trabolsi A. Ionic Covalent Organic Framework as a Dual Functional Sensor for Temperature and Humidity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311064. [PMID: 38396219 DOI: 10.1002/smll.202311064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.
Collapse
Affiliation(s)
- Gobinda Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Fayrouz Abou Ibrahim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Zahraa Abou Khalil
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Philippe Bazin
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Falguni Chandra
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Rasha G AbdulHalim
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Akshaya Kumar Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Sabu Varghese
- New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering Division, New York University Abu Dhabi (NYUAD), Abu Dhabi, 129188, United Arab Emirates
| | - Na'il Saleh
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
- National Water and Energy center, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Mohamad El Roz
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, 6, Boulevard Maréchal Juin 14050, Caen, France
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, NG118NS, UK
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr, Corpus Christi, TX, 78412, USA
| | - D S Shankar Rao
- Centre for Nano and Soft Matter Sciences(CeNS), Arkavathi, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences(CeNS), Arkavathi, Survey No.7, Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
20
|
Elewa AM, Mekhemer IMA, El-Mahdy AFM, Sabbah A, Chen SY, Ting LY, Abdelnaser S, Chou HH. Room-Temperature Synthesis of Covalent Organic Frameworks using Gamma-Irradiation in Open-Air Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311472. [PMID: 38651243 DOI: 10.1002/smll.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Covalent organic frameworks (COFs), which have layered stacking structures, extended π-conjugation, and periodic frameworks have become a promising class of materials for a wide range of applications. However, their synthetic pathways frequently need high temperatures, enclosed systems under high pressures, an inert atmosphere, and extended reaction time, which restrict their practicality in real-world applications. Herein, the use of gamma irradiation is presented to synthesize highly crystalline COFs at room temperature under an open-air condition within a short time. This is demonstrated that there is no significant difference in crystallinity of COFs by gamma irradiation under air, N2 or Ar atmosphere conditions. Moreover, this approach can successfully fabricate COFs in the vessel with different degrees of transparency or even in a plastic container. Importantly, this strategy is applicable not only to imine linkage of COFs but also effective to the imide linkages of COFs. Most importantly, these COFs demonstrate improved crystallinity, surface area, and thermal stability in comparison to the corresponding materials synthesized via the solvothermal method. Finally, a COF synthesized through gamma irradiation exhibits remarkable photocatalytic activity in promoting the sacrificial hydrogen evolution from water, displaying a more catalytic efficiency compared with that of its solvothermal analogue.
Collapse
Affiliation(s)
- Ahmed M Elewa
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
- Department of Nuclear Chemistry, Hot Laboratories Center, Atomic Energy Authority, Cairo, 13759, Egypt
| | - Islam M A Mekhemer
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Yuan Chen
- Energy Catalyst Technology Group, Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8559, Japan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Shimaa Abdelnaser
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Photonics Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
21
|
Zhuang H, Guo C, Huang J, Wang L, Zheng Z, Wang HN, Chen Y, Lan YQ. Hydrazone-Linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202404941. [PMID: 38743027 DOI: 10.1002/anie.202404941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Hydrazone-linked covalent organic frameworks (COFs) with structural flexibility, heteroatomic sites, post-modification ability and high hydrolytic stability have attracted great attention from scientific community. Hydrazone-linked COFs, as a subclass of Schiff-base COFs, was firstly reported in 2011 by Yaghi's group and later witnessed prosperous development in various aspects. Their adjustable structures, precise pore channels and plentiful heteroatomic sites of hydrazone-linked structures possess much potential in diverse applications, for example, adsorption/separation, chemical sensing, catalysis and energy storage, etc. Up to date, the systematic reviews about the reported hydrazone-linked COFs are still rare. Therefore, in this review, we will summarize their preparation methods, characteristics and related applications, and discuss the opportunity or challenge of hydrazone-linked COFs. We hope this review could provide new insights about hydrazone-linked COFs for exploring more appealing functions or applications.
Collapse
Affiliation(s)
- Huifen Zhuang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Can Guo
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jianlin Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Liwen Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zixi Zheng
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yifa Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
22
|
Wang HZ, Chan MHY, Yam VWW. Heavy-Metal Ions Removal and Iodine Capture by Terpyridine Covalent Organic Frameworks. SMALL METHODS 2024:e2400465. [PMID: 39049798 DOI: 10.1002/smtd.202400465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Porous materials are excellent candidates for water remediation in environmental issues. However, it is still a key challenge to design efficient adsorbents for rapid water purification from various heavy metal ions-contaminated wastewater in one step. Here, two robust nitrogen-rich covalent organic frameworks (COFs) bearing terpyridine units on the pore walls by a "bottom-up" strategy are reported. Benefitting from the strong chelation interaction between the terpyridine units and various heavy metal ions, these two terpyridine COFs show excellent removal efficiency and capability for Pb2+, Hg2+, Cu2+, Ag+, Cd2+, Ni2+, and Cr3+ from water. These COFs are shown to remove such heavy metal ions with >90% of contents at one time after the aqueous metal ions mixture is passed through the COF filter. The nitrogen-rich features of the COFs also endow them with the capability of capturing iodine vapors, offering the terpyridine COFs the potential for environmental remediation applications.
Collapse
Affiliation(s)
- Huai-Zhen Wang
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| |
Collapse
|
23
|
Wang Q, Wang P, Wang Y, Xu Y, Xu H, Xi K. Design of High-Performance Formyl-Functionalized COF Aerogels as Quasi-Solid Lithium Battery Electrolyte by a Solvent Substitution Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37052-37062. [PMID: 38965714 DOI: 10.1021/acsami.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Covalent organic framework (COF) aerogels with functional groups offer exceptional processability and functionality for various applications. These hierarchical porous materials combine the advantages of COFs with the benefits of aerogels, overcoming the limitations of conventional insoluble and nonfusible COF powders. However, achieving both high crystallinity and shape retention remains a challenge for functionalized COF aerogels. In this work, we develop a novel and general solvent substitution method for the one-step synthesis of formyl-functionalized COF aerogels without harsh vacuum conditions. These aerogels exhibit excellent processing capabilities, superior mechanical strength, and enhanced functionality. As a proof-of-concept, they were used in adsorption and lithium metal battery applications, significantly maximizing the structural advantages of COFs, e.g.: (i) the hierarchical porous structure is fully wetted by the electrolyte to form continuous transport channels; (ii) the polar groups, which are easier to be acquired, help in desolvation and transfer of Li+; (iii) the regular pore structures stabilize deposition of Li+ and inhibit the growth of lithium dendrites. These combined benefits contribute to a lighter battery with improved energy density and enhanced safety.
Collapse
Affiliation(s)
- Qiaomu Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Yandong Wang
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Haocheng Xu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kai Xi
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
24
|
Zhao W, Zhu Q, Wu X, Zhao D. The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks. Chem Soc Rev 2024; 53:7531-7565. [PMID: 38895859 DOI: 10.1039/d3cs00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) have recently seen significant advancements. Large quantities of structurally & functionally oriented COFs with a wide range of applications, such as gas adsorption, catalysis, separation, and drug delivery, have been explored. Recent achievements in this field are primarily focused on advancing synthetic methodologies, with catalysts playing a crucial role in achieving highly crystalline COF materials, particularly those featuring novel linkages and chemistry. A series of reviews have already been published over the last decade, covering the fundamentals, synthesis, and applications of COFs. However, despite the pivotal role that catalysts and auxiliaries play in forming COF materials and adjusting their properties (e.g., crystallinity, porosity, stability, and morphology), limited attention has been devoted to these essential components. In this Critical Review, we mainly focus on the state-of-the-art progress of catalysts and auxiliaries applied to the synthesis of COFs. The catalysts include four categories: acid catalysts, base catalysts, transition-metal catalysts, and other catalysts. The auxiliaries, such as modulators, oxygen, and surfactants, are discussed as well. This is then followed by the description of several specific applications derived from the utilization of catalysts and auxiliaries. Lastly, a perspective on the major challenges and opportunities associated with catalysts and auxiliaries is provided.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiang Zhu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Xiaofeng Wu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
25
|
Aswathy A, Vineetha PK, Kandathil V, Jose J, Bhat SG, Manoj N. A Simple Live Cell Imaging "Turn-On" Fluorescence Probe for the Selective and Sensitive Detection of Aqueous Hg 2+ Ions. J Fluoresc 2024; 34:1671-1682. [PMID: 37594587 DOI: 10.1007/s10895-023-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
A simple, efficient, and reversible fluorescent sensor probe, PBA (2,6-dimethyl pyrone barbituric acid conjugate), comprised of a pro-aromatic donor conjugated with a barbituric acid, was developed for the detection of highly toxic mercuric ions. The probe showed high selectivity and "Turn-On" fluorescence response towards Hg2+ among various metal cations such as Na+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ba2+, Hg2+, and Pb2+, in both homogeneous and microheterogeneous micelle medium sodium dodecyl sulphate (SDS). The binding stoichiometry, limit of detection (LOD), and binding constant for the PBA-Hg complex were determined. The mechanism of binding was ascertained using the N,N'-dimethylbarbituric acid conjugate of 2,6-dimethylpyran (PDMBA), where no binding interaction by deprotonation is possible. In the presence of cysteamine hydrochloride and trifluoroacetic acid (TFA), the complexation of Hg2+ with PBA was demonstrated to be reversible, indicating its potential for the development of reusable sensors. Moreover, the practical applicability of PBA in monitoring Hg2+ in living cells was also evaluated.
Collapse
Affiliation(s)
- Ajayakumar Aswathy
- Department of Applied Chemistry and Interuniversity Center for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi-22, Kerala, India
| | - Pookalavan Karicherry Vineetha
- Department of Applied Chemistry and Interuniversity Center for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi-22, Kerala, India
| | - Vishal Kandathil
- Department of Applied Chemistry and Interuniversity Center for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi-22, Kerala, India
| | - Jiya Jose
- Department of Biotechnology, Cochin University of Science and Technology, Kochi-22, Kerala, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi-22, Kerala, India
| | - Narayanapillai Manoj
- Department of Applied Chemistry and Interuniversity Center for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi-22, Kerala, India.
| |
Collapse
|
26
|
Zhao Y, Gu H, Zhou Y, Wen C, Liu X, Wang S, Chen Z, Yang H, Wang X. COF-based membranes for liquid phase separation: Preparation, mechanism and perspective. J Environ Sci (China) 2024; 141:63-89. [PMID: 38408835 DOI: 10.1016/j.jes.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Covalent organic frameworks (COFs) are a new kind of crystalline porous materials composed of organic molecules connected by covalent bonds, processes the characteristics of low density, large specific surface area, adjustable pore size and structure, and easy to functionalize, which have been widely used in the field of membrane separation technology. Recently, there are more and more researches focusing on the preparation methods, separation application, and mechanism of COF membranes, which need to be further summarized and compared. In this review, we primarily summarized several conventional preparation methods, such as two-phase interfacial polymerization, in-situ growth on substrate, unidirectional diffusion method, layer-by-layer assembly method, mixed matrix membranes, and so on. The advantages and disadvantages of each method are briefly summarized. The application potential of COF membrane in liquid separation are introduced from four aspects: dyeing wastewater treatment, heavy metal removal, seawater desalination and oil-water separation. Then, the mechanisms including pore structure, hydrophilic/hydrophobic, electrostatic repulsion/attraction and Donnan effect are introduced. For the efficient removal of different kind of pollutions, researchers can select different ligands to construct membranes with specific pore size, hydrophily, salt or organic rejection ability and functional group. The ideas for the design and preparation of COF membranes are introduced. Finally, the future direction and challenges of the next generation of COF membranes in the field of separation are prospected.
Collapse
Affiliation(s)
- Yujie Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - He Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yilun Zhou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Caimei Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
27
|
Yang S, Li X, Liao Y, Ji Y, Li R. Hydrazone-linked covalent organic framework functionalized with cysteine as a fluorescence sensor and Exploration of paper chip for p-nitrophenol detection. CHEMOSPHERE 2024; 359:142297. [PMID: 38729443 DOI: 10.1016/j.chemosphere.2024.142297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
The large use and emission of p-nitrophenol (p-NP) seriously pollute the environment and endanger human health. In this work, a hydrazone-linked fluorescent covalent organic framework (BATHz-COF) was simply synthesized at room temperature and covalently linked N-acetyl-L-cysteine (NALC) via the "thiol-ene" click reaction, where carboxyl groups were introduced to improve dispersion and fluorescence intensity. As a rapid, good selectivity and reusability fluorescence sensor, the obtained COF-NALC has been used for quantitative analysis of p-NP predicated on the internal filtering effect (IFE). Under optimal conditions, COF-NALC enabled quantitative detection of p-NP with a linear range of 5-50 μM and the detection limit was 1.46 μM. The application of COF-NALC to the detection of p-NP in river water samples was successful, and the satisfactory recoveries were 98.0%-109.3%. Furthermore, the fluorescent COF paper chips constructed by in situ growth were combined with a smartphone to build a visual platform for the quick and real-time detection of p-NP, providing an excellent illustration for the development of intelligent fluorescence sensing in environmental analysis.
Collapse
Affiliation(s)
- Shan Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xinyue Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yifang Liao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
28
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
29
|
Tian PJ, Han XH, Qi QY, Zhao X. Identification of two-dimensional covalent organic frameworks with mcm topology and their application in photocatalytic hydrogen evolution. Chem Sci 2024; 15:9669-9675. [PMID: 38939151 PMCID: PMC11206236 DOI: 10.1039/d4sc01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
Covalent organic frameworks have attracted considerable attention in recent years as a distinct class of crystalline porous organic materials. Their functional properties are inherently linked to their structural characteristics. Although hundreds of COFs have been reported so far, the types of their topologic structure are still limited. In this article, we report the identification of mcm topology for three porphyrin-based two-dimensional COFs, which are constructed from [4 + 4] imine condensation reactions. The mcm net is generated by pentagonal tiling, which has not been identified for COFs before. The structure of the COFs is elucidated by a variety of experimental characterization and structural simulations, by which their reticular frameworks exclusively composed of pentagonal pores have been confirmed. Moreover, the COFs exhibit high performance in photocatalytic hydrogen evolution from water, with the best one up to 10.0 mmol g-1 h-1 after depositing 0.76 wt% Pt as a co-catalyst. This study identifies mcm topology for COFs for the first time and highlights the potential of these COFs as promising photocatalysts for sustainable hydrogen production from water.
Collapse
Affiliation(s)
- Peng-Ju Tian
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiang-Hao Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xin Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
30
|
Song Y, Wu G, Zhang E, Feng G, Lei S, Wu L. Photoelectric Multi-Signal Output Sensor Based on Two-Dimensional Covalent Organic Polymer Film Modified by Novel Aggregation-Induced Emission Probes. BIOSENSORS 2024; 14:312. [PMID: 38920616 PMCID: PMC11202238 DOI: 10.3390/bios14060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Optical sensors, especially fluorescence sensors, have been widely used because of their advantages in sensing, such as the high sensitivity, good selectivity, no radiation source, and easy operation. Here, we report an example of fluorescence sensing based on two-dimensional (2D) covalent organic polymers and highlight that the material can achieve a fast response and multi-signal output. This 2DPTPAK+TAPB-based sensor can quickly detect aromatic hydrocarbons and Fe3+ by the fluorescence signal or electrical resistance signal.
Collapse
Affiliation(s)
- Yaru Song
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Guoling Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Enbing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; (Y.S.); (G.W.); (E.Z.); (G.F.)
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
31
|
Sei H, Oka K, Hori Y, Shigeta Y, Tohnai N. Network topology diversification of porous organic salts. Chem Sci 2024; 15:8008-8018. [PMID: 38817574 PMCID: PMC11134405 DOI: 10.1039/d4sc01218f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous organic materials constructed via hydrogen bonds. HOFs have solubility in specific high-polar organic solvents. Therefore, HOFs can be returned to their components and can be reconstructed, which indicates their high recyclability. Network topologies, which are the frameworks of porous structures, control the pore sizes and shapes of HOFs. Therefore, they strongly affect the functions of porous materials. However, hydrogen bonds are usually weak interactions, and the design of the intended network topology in HOFs from their components has been challenging. Porous organic salts (POSs) are an important class of HOFs, are hierarchically constructed via strong charge-assisted hydrogen bonds between sulfonic acids and amines, and therefore are expected to have high designability of the porous structure. However, the network topology of POSs has been limited to only dia-topology. Here, we combined tetrasulfonic acid with the adamantane core (4,4',4'',4'''-(adamantane-1,3,5,7-tetrayl)tetrabenzenesulfonic acid; AdPS) and triphenylmethylamines with modified substituents in para-positions of benzene rings (TPMA-X, X = F, methyl (Me), Cl, Br, I). We changed the steric hindrance between the adamantane and substituents (X) in TPMA-X and obtained not only the common dia-topology for POSs but also rare sod-topology, and lon- and uni-topologies that are formed for the first time in HOFs. Changing template molecules under preparation helped in successfully isolating the porous structures of AdPS/TPMA-Me with dia-, lon-, and sod-topologies which exhibited different gas adsorption properties. Therefore, for the first time, we demonstrated that the steric design of HOF components facilitated the formation, diversification, and control of the network topologies and functions of HOFs.
Collapse
Affiliation(s)
- Hiroi Sei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
32
|
Tang K, Chen Y, Zhao Y. Exploiting halide perovskites for heavy metal ion detection. Chem Commun (Camb) 2024; 60:4511-4520. [PMID: 38597320 DOI: 10.1039/d4cc00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Heavy metal ions such as mercury (Hg), copper (Cu), and cadmium (Cd) pose significant threats to ecosystems and human health due to their toxicity and bioaccumulation potential. With growing environmental concerns over heavy metal ion pollution, there is an urgent need to develop efficient detection methods for safeguarding public health and the environment. Various materials, including polymers, nanomaterials, and porous substances, have been used for heavy metal ion detection and have shown promising performance for different scenarios. However, each of these materials has certain limitations as probes. Metal halide perovskites (MHPs), known for their exceptional optoelectronic properties and high structural and chemical tunability, have gained great attention in applications such as photovoltaics and LEDs. Yet, their potential as metal ion probes remains rarely explored. This review assesses MHPs as prospective materials for heavy metal ion detection, taking their structure, chemical properties, and responses to external stimuli into consideration. Three key detection mechanisms-cation exchange (CE), electron transfer (ET), and fluorescence resonance energy transfer (FRET), are explored to understand how metal ions trigger fluorescence changes on perovskites, enabling their detection. Finally, current avenues of developing perovskite probes are discussed, which include exploration of lead-free perovskites to mitigate environmental concerns arising from lead leakage and the pursuit of achieving high-sensitivity and stable detection in aqueous media, summarizing the existing and promising strategies in this field.
Collapse
Affiliation(s)
- Ke Tang
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuetian Chen
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Dai L, Wu F, Xiao Y, Liu Q, Meng M, Xi R, Yin Y. Template-Free Self-Assembly of Hollow Microtubular Covalent Organic Frameworks for Oral Delivery of Insulin. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17891-17903. [PMID: 38546545 DOI: 10.1021/acsami.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Covalent organic frameworks (COFs) have demonstrated versatile application potential since their discovery. Although the structure of COFs is orderly arranged, the synthesis of controllable macrostructures still faces challenges. Herein, we report, to our knowledge, the first template-free self-assembled COF-18 Å hollow microtubule (MT-COF-18 Å) structure and its use for insulin delivery that exhibits high loading capacity, gastroresistance, and glucose-responsive properties. The hollow MT-COF-18 Å was achieved by a template-free method benefiting from the mixed solvents of mesitylene and dioxane. The formation mechanism and morphology changes with insulin loading and release were observed. In Caco-2 cells, the transferrin-coated system demonstrated enhanced insulin cellular uptake and transcellular transport, which indicated great potential for oral applications. Additionally, the composites presented sustained glycemic control and effective insulin blood concentrations without noticeable toxicity in diabetic rats. This work shows that hollow microtubular COFs hold great promise in loading and delivery of biomolecules.
Collapse
Affiliation(s)
- Lihui Dai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fang Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yi Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
34
|
Li D, Wang Y, Deng W, Wang D. Efficient and selective capture of various mercury species from water using an exfoliated thiocellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171063. [PMID: 38373452 DOI: 10.1016/j.scitotenv.2024.171063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The primary challenge in mercury (Hg) adsorbents for large-scale practical applications is to achieve the balance between performance and economy. This work attempts to address this issue by synthesizing an exfoliated thiocellulose (CU-SH) with high thiol density and hierarchical porosity using in-situ ligands grafting combined with chemical stripping. The prepared CU-SH shows remarkable physical stability and chemical resistance, and the micron sized fiber is conducive to separation from water. Hg(II) adsorption tests in water demonstrate that CU-SH has broad working pH range (1-12), fast kinetics (0.64 g/(mg‧min)), high adsorption capacity (652.9 mg/g), outstanding selectivity (Kd = 6.2 × 106 mg/L), and excellent reusability (R > 95 % after 20 cycles). Importantly, CU-SH exhibits good resistance to various coexisting ions and organic matter, and can efficiently remove Hg(II) from different real water. CU-SH can be made into a Point of Use (POU) device for continuous and efficient removal of Hg(II) from drinking water. 0.1 g CU-SH filled device can purify 3.2 L of Hg(II) (0.5 ppm) contaminated tap water before the breakthrough point of 2 ppb. Moreover, CU-SH also reveals good adsorption affinity for Hg-dissolved organic matter complexes (Hg(II)-DOM) in water, chloro(phenyl)mercury (PMC) in organic media and Hg0 vapor in air, suggesting the great practical potential of CU-SH.
Collapse
Affiliation(s)
- Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanying Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
35
|
Wang Y, Ran XQ, Yang C, Qian HL, Yan XP. Size-Dependent Deformation and Competition H-Bond Site-Induced Individual Fluorescence Response of a Single-Crystal Three-Dimensional Covalent Organic Framework. Anal Chem 2024; 96:5608-5614. [PMID: 38534147 DOI: 10.1021/acs.analchem.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Understanding the individual fluorescence response mechanism of covalent organic frameworks (COFs) at a single-crystal level is of great significance for the rational design of COF-based microsensors but unreachable because all previous COF-based sensors are performed with average fluorescence response behavior of various sized polycrystalline COFs. Herein, we design to explore the fluorescence response of a monodisperse single-crystal COF and further reveal the individual heterogeneity of the response mechanism. Three-dimensional single-crystal COF-301 (SCOF-301) with an intramolecular H-bond-induced excited-state intramolecular proton-transfer effect is selected as a proof-of-concept SCOF. With ethanol, benzene, and ammonia as model analytes, three different deformation and competition H-bond site-induced fluorescence response mechanisms related to crystal size are revealed. Small single particles of SCOF-301 (SSCOF-301) exhibit a more flexible structure, leading to the dominant role of deformation in the fluorescence response of small-sized SSCOF-301. The decreasing flexibility of SSCOF-301 with the increase of crystal size results in involvement of competition of the H-bond site to the fluorescence response besides deformation. Further increase of the crystal size makes the large-sized SSCOF-301 difficult to deform; thus, the competition of the H-bond site dominates the fluorescence response. This work provides a deep understanding of the individual fluorescence response mechanism of COFs to guide the design of a functional COF sensor with suitable size and mechanism for different structural analytes.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Zhang W, Xiang S, Han Y, Wang H, Deng Y, Bian P, Bando Y, Golberg D, Weng Q. Phospholipid-inspired alkoxylation induces crystallization and cellular uptake of luminescent COF nanocarriers. Biomaterials 2024; 306:122503. [PMID: 38359508 DOI: 10.1016/j.biomaterials.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The porous nature and structural variability of covalent organic frameworks (COFs) make them preferred for drug loading and delivery applications. However, most COF materials suffer from poor luminescent properties and inefficiency for cell uptake. Herein, we experimentally demonstrate the crucial role of long alkoxy chains in the synthesis of crystalline COF nanostructures with high cellular uptake efficiency. After luminescence integration through band engineering, the semiconducting COF exhibits an optical bandgap of 2.05 eV, an emission wavelength of 632 nm, a high quantum yield of 37 %, and excellent fluorescence stability (100 % at 3 h). Such excellent optical properties of the designed COF nanocarriers enable quantitative evaluations of cellular uptake and visual tracking of drug delivery. It was demonstrated that the cellular uptake efficiency was enhanced by orders of magnitude for the COF after the introduction of long n-octyloxy chains, which firstly delivered the anticancer camptothecin (CPT) to cell lysosomes, and then underwent "endo/lysosomal escape" to induce cell apoptosis. In vivo assay evidenced a significant enhancement in the therapeutic effect with a 96 % inhibition of tumor growth after 14 days of treatment. This progress sheds light on designing cutting-edge drug delivery nanosystems based on COF materials with integrated diagnostic and therapeutic functions.
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Shuo Xiang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Yuxin Han
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Haiyan Wang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Yuxian Deng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Panpan Bian
- Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, PR China.
| | - Yoshio Bando
- Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales, 2500, Australia; Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, QLD, Australia; Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305, Japan
| | - Qunhong Weng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China.
| |
Collapse
|
37
|
Mao XL, Cai YJ, Luo QX, Liu X, Jiang QQ, Zhang CR, Zhang L, Liang RP, Qiu JD. Europium(III) Functionalized Covalent Organic Framework as Sensitive and Selective Fluorescent Switch for Detection of Uranium. Anal Chem 2024; 96:5037-5045. [PMID: 38477697 DOI: 10.1021/acs.analchem.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Uranium poses severe health risks due to its radioactivity and chemical toxicity if released into the environment. Therefore, there is an urgent demand to develop sensing materials in situ monitoring of uranium with high sensitivity and stability. In this work, a fluorescent Eu3+-TFPB-Bpy is synthesized by grafting Eu3+ cation onto TFPB-Bpy covalent organic framework (COF) synthesized through Schiff base condensation of monomers 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 5,5'-diamino-2,2'-bipyridine (Bpy). The fluorescence of Eu3+-TFPB-Bpy is enhanced compared with that of TFPB-Bpy, which is originated from the intramolecular rotations of building blocks limited by the bipyridine units of TFPB-Bpy coordinated with Eu3+. More significantly, Eu3+-TFPB-Bpy is a highly efficient probe for sensing UO22+ in aqueous solution with the luminescence intensity efficiently amplified by complexation of UO22+ with Eu3+. The turn-on sensing capability was derived from the resonance energy transfer occurring from UO22+ to the Eu3+-TFPB-Bpy. The developed probe displayed desirable linear range from 5 nM to 5 μM with good selectivity and rapid response time (2 s) for UO22+ in mining wastewater. This strategy provides a vivid illustration for designing luminescence lanthanide COF hybrid materials with applications in environmental monitoring.
Collapse
Affiliation(s)
- Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
38
|
Sajid H. Effect of interlayer slipping on the geometric, thermal and adsorption properties of 2D covalent organic frameworks: a comprehensive review based on computational modelling studies. Phys Chem Chem Phys 2024; 26:8577-8603. [PMID: 38421236 DOI: 10.1039/d4cp00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers, consisting of 2D-planar sheets stacked together perpendicularly via noncovalent forces. Since their discovery, 2D-COFs have attracted extensive attention for optoelectronic and adsorption applications. Owing to the layer stacking nature of 2D COFs, various new slipped structures that are energetically favourable can be designed. These interlayer slipped structures are actively responsible for tuning (mostly enhancing) the optoelectronic properties, thermal properties, and mechanical strength of 2D COFs. This review summarizes the effect of interlayer slipping on the energetic stability, electronic behaviour and gas adsorption properties of 2D layered COFs, which is explained through computational modelling simulations. Since computational modelling offers a deep insight into electronic behaviour at the atomic scale, which is potentially impossible through experimental techniques, the introduction and role of computational techniques in such studies have also been described.
Collapse
Affiliation(s)
- Hasnain Sajid
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
39
|
Wu X, Tang X, Zhang K, Harrod C, Li R, Wu J, Yang X, Zheng S, Fan J, Zhang W, Li X, Cai S. Tuning the Topology of Two-Dimensional Covalent Organic Frameworks through Site-Selective Synthetic Strategy. Chemistry 2024; 30:e202303781. [PMID: 38196025 DOI: 10.1002/chem.202303781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.
Collapse
Affiliation(s)
- Xueying Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chelsea Harrod
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Rui Li
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xi Yang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Xinle Li
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| |
Collapse
|
40
|
Sharma A, Eadi SB, Noothalapati H, Otyepka M, Lee HD, Jayaramulu K. Porous materials as effective chemiresistive gas sensors. Chem Soc Rev 2024; 53:2530-2577. [PMID: 38299314 DOI: 10.1039/d2cs00761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemiresistive gas sensors (CGSs) have revolutionized the field of gas sensing by providing a low-power, low-cost, and highly sensitive means of detecting harmful gases. This technology works by measuring changes in the conductivity of materials when they interact with a testing gas. While semiconducting metal oxides and two-dimensional (2D) materials have been used for CGSs, they suffer from poor selectivity to specific analytes in the presence of interfering gases and require high operating temperatures, resulting in high signal-to-noise ratios. However, nanoporous materials have emerged as a promising alternative for CGSs due to their high specific surface area, unsaturated metal actives, and density of three-dimensional inter-connected conductive and pendant functional groups. Porous materials have demonstrated excellent response and recovery times, remarkable selectivity, and the ability to detect gases at extremely low concentrations. Herein, our central emphasis is on all aspects of CGSs, with a primary focus on the use of porous materials. Further, we discuss the basic sensing mechanisms and parameters, different types of popular sensing materials, and the critical explanations of various mechanisms involved throughout the sensing process. We have provided examples of remarkable performance demonstrated by sensors using these materials. In addition to this, we compare the performance of porous materials with traditional metal-oxide semiconductors (MOSs) and 2D materials. Finally, we discussed future aspects, shortcomings, and scope for improvement in sensing performance, including the use of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous organic polymers (POPs), as well as their hybrid counterparts. Overall, CGSs using porous materials have the potential to address a wide range of applications, including monitoring water quality, detecting harmful chemicals, improving surveillance, preventing natural disasters, and improving healthcare.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
- Korea Sensor Lab, Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea
| | - Kolleboyina Jayaramulu
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
41
|
Qiang L, Bai H, Li XY, Yang HL, Gong CB, Tang Q. A Visible Light Responsive Smart Covalent Organic Framework with a Bridged Azobenzene Backbone. Macromol Rapid Commun 2024; 45:e2300506. [PMID: 38134364 DOI: 10.1002/marc.202300506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Condensation of 3,3'-diamino-2,2'-ethylene-bridged azobenzene with 1,2,4,5-tetrakis-(4-formylphenyl) benzene produces a visible light responsive porous 2D covalent organic framework, COF-bAzo-TFPB, with a large surface area, good crystallinity, and thermal and chemical stability. The results demonstrate that the elaborated designed linker can make azo unit on the COF-bAzo-TFPB skeleton undergo reversible photoisomerization. This work expands the application scope of covalent organic frameworks in photo-controlled release, uptake of guest molecules, dynamic photoswitching, and UV-sensitive functions.
Collapse
Affiliation(s)
- Liang Qiang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Hao Bai
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Xin-Yi Li
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Hai-Lin Yang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-Bin Gong
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qian Tang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
42
|
Ilyas F, Fazal H, Ahmed M, Iqbal A, Ishaq M, Jabeen M, Butt M, Farid S. Advances in ionic liquids as fluorescent sensors. CHEMOSPHERE 2024; 352:141434. [PMID: 38401867 DOI: 10.1016/j.chemosphere.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Ionic liquids (ILs) are a class of liquid salts with characteristics such as a low melting point, an ionic nature, non-volatility, and tunable properties. Because of their adaptability, they have a significant influence in the field of fluorescence. This paper reviews the primary literature on the use of ILs in fluorescence sensing technologies. The kind of target material is utilized to classify the fluorescence sensors made with the use of ILs. They include using ILs as probes for metals, nitro explosives, small organic compounds, anions, and gases. The efficacy of an IL-based fluorescence sensor depends on the precise design to guarantee specificity, sensitivity, and a consistent reaction to the desired analyte. The precise method can differ depending on the chemical properties of the IL, the choice of fluorophore, and the interactions with the analyte. Overall, the viability of the aforementioned materials for chemical analysis is evaluated, and prospective possibilities for further development are identified.
Collapse
Affiliation(s)
- Farva Ilyas
- Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China; Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hira Fazal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhktiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-97 187, Luleå, Sweden
| | - Asma Iqbal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Maher Jabeen
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Madiha Butt
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sumbal Farid
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
43
|
Yang Y, Zhang C, Cao D, Song Y, Chen S, Song Y, Wang F, Wang G, Yuan Y. Design and preparation of fluorescent covalent organic frameworks for biological sensing. Chem Commun (Camb) 2024; 60:2605-2612. [PMID: 38334456 DOI: 10.1039/d4cc00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Covalent organic frameworks (COFs) are a new class of functional solids featuring several fantastic structural characteristics, including a great diversity of building units and cross-linking patterns, precise integration of building blocks, and adjustable topology of porous architecture. In addition to the above features, some COF samples are constructed with high-density conjugated fragments, which have unique potential advantages in fluorescence imaging, and thus may have great potential applications in bioimaging. Herein, this article summarizes the recent progress in the design and preparation of fluorescent covalent organic frameworks. We investigate the systemic correlation between the structural qualities of COF networks and biological sensors. Finally, the significant advantages, major challenges, and future opportunities of fluorescent covalent organic frameworks are discussed for the development of next-generation porous materials for sensing applications.
Collapse
Affiliation(s)
- Yajie Yang
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130012, China
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Cheng Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Doudou Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Yingbo Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Shusen Chen
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Yan Song
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Fengju Wang
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, P. R. China.
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
44
|
Hu HC, Wang ZP, Liang L, Du XY, Li T, Feng J, Xiao TT, Jin ZM, Ding SY, Liu Q, Lu LQ, Xiao WJ, Wang W. Bottom-Up Construction of Ni(II)-Incorporated Covalent Organic Framework for Metallaphotoredox Catalysis. Chemistry 2024; 30:e202303476. [PMID: 38065837 DOI: 10.1002/chem.202303476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 12/30/2023]
Abstract
The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.
Collapse
Affiliation(s)
- Hai-Chao Hu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Lin Liang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xin-Yu Du
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Tian-Tian Xiao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ze-Ming Jin
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
45
|
Wu Y, Wang R, Kim Y. Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38329718 DOI: 10.1021/acsami.3c17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions. Here, we summarize the representative COF-based SACs and their wide application in clean energy devices and conversion reactions, such as hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, and oxygen evolution reaction. Based on their catalysis conditions, these reactions are categorized into photocatalyzed and electrocatalyzed reactions. We also summarize their design strategies, including heteroatom inclusion, donor-acceptor pairs, pore engineering, interface engineering, etc. Although COF-based SACs are promising, more efforts, such as linkage engineering, functional groups, ionization, multifunctional sites for cocatalyzed systems, etc., could improve them to be the ideal SAC materials. At the end, we provide our perspectives on where the field will proceed in the next 5 years.
Collapse
Affiliation(s)
- Yurong Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| |
Collapse
|
46
|
Pu ZF, She WZ, Li RS, Wen QL, Wu BC, Li CH, Ling J, Cao Q. Morphology regulation of isomeric covalent organic frameworks for high selective light scattering detection of lead. J Colloid Interface Sci 2024; 655:953-962. [PMID: 37951734 DOI: 10.1016/j.jcis.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Isomerism is an essential and ubiquitous phenomenon in organic chemistry, yet it is rarely observed in covalent organic frameworks (COFs). Herein, we synthesized two framework-isomeric COFs (BATD-Dma-COF-K and BATD-Dma-COF-R) and found for the first time that the light scattering signal of the COFs can be used for the analytical detection of lead ion. By using solvothermal and room temperature solvent synthesis methods, controlling different synthesis conditions, and introducing regulators to increase the energy difference between different products, the product with the lowest energy could be synthesized under specific conditions. This method could control the morphology of the synthesized COF and realize the precise synthesis of framework-isomeric COF by changing the experimental conditions. The structures of the two framework-isomeric COFs were characterized and confirmed by a series of analytical methods. Based on the principle that lead ions coordinate with N and O on the surface of two skeletal isomers BATD-Dma-COFs to enhance the light scattering signal of the COFs, a light scattering probe was developed by BATD-Dma-COF for the detection of metal lead ion in water samples. Lead ion concentration in the range from 2.0 to 250.0 μM had a good linear relationship with the light scattering intensity increase of the COFs with detection limit as low as 0.8397 μM by BATD-Dma-COF-K and 0.9207 μM by BATD-Dma-COF-R.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Wen-Zhi She
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bi-Chao Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Chun-Hua Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
| |
Collapse
|
47
|
Wang Y, Deng Y, Xia H, Zhang R, Liu J, Zhang H, Sun Y, Zhang Z, Lu X. Superhydrophilic Triazine-Based Covalent Organic Frameworks via Post-Modification of FeOOH Clusters for Boosted Photocatalytic Performance. SMALL METHODS 2024; 8:e2300163. [PMID: 37316981 DOI: 10.1002/smtd.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Indexed: 06/16/2023]
Abstract
The triazine-based covalent organic frameworks (tCOF), an intriguing subtype of COFs, are expected as highly promising photocatalysts for various photocatalytic applications owing to their fully conjugated structures and nitrogen-rich skeletons. However, the inherent hydrophobicity and fast recombination of photoexcited electron-hole pairs are two main factors hindering the application of tCOF in practical photocatalytic reactions. Here, a post-synthetic modification strategy to fabricate superhydrophilic tCOF-based photocatalysts is demonstrated by in situ growing FeOOH clusters on TaTz COF (TaTz-FeOOH) for efficient photocatalytic oxidation of various organic pollutants. The strong polar FeOOH endows TaTz-FeOOH with good hydrophilic properties. The well-defined heterogeneous interface between FeOOH and TaTz allows the photoelectrons generated by TaTz to be consumed by Fe (III) to transform into Fe (II), synergistically promoting the separation of holes and the generation of free radicals. Compared with the unmodified TaTz, the optimized TaTz-FeOOH (1%) shows excellent photocatalytic performance, where the photocatalytic degrade rate (k) of rhodamine B is increased by about 12 times, and the degradation rate is maintained at 99% after 5 cycles, thus achieving efficient removal of quinolone antibiotics from water. This study provides a new avenue for the development of COF-based hydrophilic functional materials for a wide range of practical applications.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Hong Xia
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
48
|
Chen Y, He Q, Liu Y, Wang Q, He C, Liu S. Size-controllable synthesis of large-size spherical 3D covalent organic frameworks as efficient on-line solid-phase extraction sorbents coupled to HPLC. Anal Chim Acta 2024; 1287:342061. [PMID: 38182368 DOI: 10.1016/j.aca.2023.342061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Covalent organic frameworks (COFs) have found promising applications in separation fields due to their large surface area and high adsorption capacity, but the exiting COFs can not be directly used as the packing materials of on-line solid-phase extraction (SPE) coupled to HPLC and HPLC because their nano/submicron size or irregular shapes might cause ultrahigh column back pressure and low column efficiency. To synthesize the large-size spherical COFs larger than 3 μm as sorbents might be able to address these problems, however it is still a great challenge till now. RESULTS In this work, two large-size spherical 3D COFs (COF-320 and COF-300) were size-controllably synthesized within 10-90 μm via a two-step strategy. These two spherical COFs showed large surface area, fine crystallinity, good chemical/mechanical stability, and good reproducibility. As an application case, when used as the on-line SPE sorbents coupled to HPLC, the large-size spherical COF-320 displayed high binding capacity for bisphenol F (Qmax of 452.49 mg/g), low column back pressure (6-8 psi at flow rate of 1 mL/min), and good reusability (at least 30 cycles). The developed on-line-SPE-HPLC-UV method presented good analytical performance with enrichment factor of 667 folds, linear range of 1.0-400 ng/mL, limit of detection (LOD, S/N = 3) of 0.3 ng/mL, limit of quantification (LOQ, S/N = 10) of 1.0 ng/mL, and recoveries of 100.3-103.2 % (RSDs of 2.0-3.5 %) and 95.2-97.0 % (RSDs of 4.3-5.6 %) for tap water and lake water samples, respectively. SIGNIFICANCE This is the first case to synthesize the large-size spherical COFs within 10-90 μm, and this work made it possible to directly use COFs as the filling materials of on-line SPE coupled to HPLC and HPLC. The developed analytical method can be potentially applied to the rapid and sensitive detection of trace bisphenol F in environmental water samples.
Collapse
Affiliation(s)
- Ying Chen
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Qiong He
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Yuyang Liu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Chiyang He
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, United States
| |
Collapse
|
49
|
Yuan M, Ma F, Chen L, Li B, Dai X, Shu J, He L, Chen J, Lin S, Xie G, Chai Z, Wang S. Hydrogen Isotope Effect Endows a Breakthrough in Photoluminescent Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1250-1256. [PMID: 38189233 DOI: 10.1021/jacs.3c10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Luminescent covalent organic frameworks (LCOFs) have emerged as indispensable candidates in various applications due to their greater tunable emitting properties and structural robustness compared to small molecule emitters. An unsolved issue in this area is developing highly luminescent LCOFs of which the nonradiative quenching pathways were suppressed as much as possible. Here, a robust aminal-linked COF (DD-COF) possessing perdeuterated light-emitting monomers was designed and synthesized. The solid-state photoluminescence quantum yield of the DD-COF reaches 81%, significantly outcompeting all state-of-the-art LCOFs reported so far. The exceptional luminescent efficiency is attributed to the inhibition of different pathways of nonradiative decay, especially from bond vibrations where only substitution by a heavier isotope with a lower zero-point vibration frequency works. Furthermore, the prepared deuterated COF not only boosts higher photostability under UV irradiation but also enables superior fluorescence sensing performance for iodine detection compared to nondeuterated COF.
Collapse
Affiliation(s)
- Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuyin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baoyu Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Shu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shujing Lin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guohua Xie
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
50
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|