1
|
Katoch A, Mandal D. Computational Insights into Hydrogen Atom Transfer Mediators in C-H Activation Catalysis of Nonheme Fe(IV)O Complexes. J Phys Chem B 2024. [PMID: 39727200 DOI: 10.1021/acs.jpcb.4c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study presents a detailed density functional theory (DFT) investigation into the mechanism and energetics of C-H activations catalyzed by bioinspired Fe(IV)O complexes, particularly in the presence of N-hydroxy mediators. The findings show that these mediators significantly enhance the reactivity of the iron-oxo complex. The study examines three substrates with varying bond dissociation energies─ethylbenzene, cyclohexane, and cyclohexadiene─alongside the [Fe(IV)O(N4Py)]2+ complex. Mediators N-hydroxyphthalimide (NHPI) and N-hydroxyquinolinimide (NHQI) were chosen for their strong oxidative abilities. The results reveal that NO-H bond cleavage in N-hydroxy compounds occurs more readily than C-H bond cleavage in hydrocarbons, as supported by the Marcus cross-relation applied to H-abstraction. This leads to the rapid formation of aminoxyl radicals, which are more reactive than Fe(IV)O species, lowering the activation energy and enhancing the reaction rate. The C-H bond activation aligns with the Bell-Evans-Polanyi principle, correlating the activation energy with the substrate bond dissociation energy. The investigation reveals that the mediator pathway is favored both thermodynamically and kinetically. Additionally, distortion energy provides a compelling explanation for the observed reactivity trends, further highlighting NHQI's superior efficiency compared to NHPI. Additionally, quantum mechanical tunneling plays a significant role, as evidenced by the computed kinetic isotope effect, which matches experimental data.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, Punjab, India
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, Punjab, India
| |
Collapse
|
2
|
Chu DBK, González-Narváez DA, Meyer R, Nandy A, Kulik HJ. Ligand Many-Body Expansion as a General Approach for Accelerating Transition Metal Complex Discovery. J Chem Inf Model 2024; 64:9397-9412. [PMID: 39606954 DOI: 10.1021/acs.jcim.4c01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Methods that accelerate the evaluation of molecular properties are essential for chemical discovery. While some degree of ligand additivity has been established for transition metal complexes, it is underutilized in asymmetric complexes, such as the square pyramidal coordination geometries highly relevant to catalysis. To develop predictive methods beyond simple additivity, we apply a many-body expansion to octahedral and square pyramidal complexes and introduce a correction based on adjacent ligands (i.e., the cis interaction model). We first test the cis interaction model on adiabatic spin-splitting energies of octahedral Fe(II) complexes, predicting DFT-calculated values of unseen binary complexes to within an average error of 1.4 kcal/mol. Uncertainty analysis reveals the optimal basis, comprising the homoleptic and mer symmetric complexes. We next show that the cis model (i.e., the cis interaction model solved for the optimal basis) infers both DFT- and CCSD(T)-calculated model catalytic reaction energies to within 1 kcal/mol on average. The cis model predicts low-symmetry complexes with reaction energies outside the range of binary complex reaction energies. We observe that trans interactions are unnecessary for most monodentate systems but can be important for some combinations of ligands, such as complexes containing a mixture of bidentate and monodentate ligands. Finally, we demonstrate that the cis model may be combined with Δ-learning to predict CCSD(T) reaction energies from exhaustively calculated DFT reaction energies and the same fraction of CCSD(T) reaction energies needed for the cis model, achieving around 30% of the error from using the CCSD(T) reaction energies in the cis model alone.
Collapse
Affiliation(s)
- Daniel B K Chu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David A González-Narváez
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralf Meyer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Bac S, Mallikarjun Sharada S. Quantum effects in CH activation with [Cu 2O 2] 2+ complexes. Phys Chem Chem Phys 2024; 26:28819-28827. [PMID: 39535026 DOI: 10.1039/d4cp02929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We investigate the mechanism of primary alkane CH bond activation with dioxo-dicopper ([Cu2O2]2+) complexes, which serve as model catalysts for enzymes capable of activating CH bonds under mild conditions. As large H/D kinetic isotope effects (KIEs) are observed in enzymes and their synthetic mimics, we employ density functional theory along with variational transition-state theory with multidimensional tunneling to estimate reaction rate coefficients. By systematically varying ligand electrophilicity and substrate chain length, we examine trends in rate coefficients and kinetic isotope effects for the two proposed CH activation pathways - one-step oxo-insertion and two-step radical recombination. Although larger tunneling transmission coefficients are obtained for the radical pathway, the oxo-insertion mechanism yields higher rate coefficients on account of lower activation barriers. The question of the preferred CH activation mechanism, however, remains open: excellent agreement is observed between the predicted and known experimental KIE results for the radical pathway, while calculated Hammett slopes for the oxo-insertion pathway closely mirror experiments.
Collapse
Affiliation(s)
- Selin Bac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Katoch A, Mandal D. Impact of carboxylate ligation on the C-H activation reactivity of a non-heme Fe(IV)O complex: a computational investigation. Dalton Trans 2024; 53:15264-15272. [PMID: 39222036 DOI: 10.1039/d4dt02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A comprehensive DFT investigation has been presented to predict how a carboxylate-rich macrocycle would affect the reactivity of a non-heme Fe(IV)O complex towards C-H activation. The popular non-heme iron oxo complex [FeIV(O)(N4Py)]2+, (N4Py = N,N-(bis(2-pyridyl)methyl)N-bis(2-pyridylmethyl)amine) (1), has been selected here as the primary compound. It is transformed to the compound [FeIV(O)(nBu-P2DA)], where nBu-P2DA = N-(1',1'-bis(2-pyridyl)pentyl)iminodiacetate (2) after the replacement of two pyridine donors of N4Py with carboxylate groups. Two other complexes, namely 3 and 4, have been predicted sequentially substituting nitrogen with the carboxylate groups. Ethylbenzene and dihydrotoluene were chosen as substrates. In terms of C-H activation reactivity, an interesting pattern emerges: as the carboxylate group becomes more equatorially enriched, the reactivity increases, following the trend 1 < 2 < 3 < 4. This also aligns with available experimental reports related to complexes 1 and 2. Fe(IV)O complexes exhibit two-state reactivity (triplet and quintet), whereas the quintet state is more favourable due to the stabilization of the transition states through exchange interactions involving a greater number of unpaired electrons. A detailed analysis of the factors influencing reactivity has been performed, including distortion energy (which decreases for the transition state with the addition of carboxylate groups), the triplet-quintet oxidant energy gap (which consistently decreases as carboxylate group enrichment increases), steric factors, and quantum mechanical tunneling. This investigation provides a detailed explanation of the observed outcomes and predicts the higher reactivity of carboxylate-enriched Fe(IV)O complexes. After potential experimental verification, this could lead to the development of new, optimal catalysts for C-H activation.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| |
Collapse
|
5
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
7
|
Kumar M, Gupta MK, Ansari M, Ansari A. C-H bond activation by high-valent iron/cobalt-oxo complexes: a quantum chemical modeling approach. Phys Chem Chem Phys 2024; 26:4349-4362. [PMID: 38235511 DOI: 10.1039/d3cp05866b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-valent metal-oxo species serve as key intermediates in the activation of inert C-H bonds. Here, we present a comprehensive DFT analysis of the parameters that have been proposed as influencing factors in modeled high-valent metal-oxo mediated C-H activation reactions. Our approach involves utilizing DFT calculations to explore the electronic structures of modeled FeIVO (species 1) and CoIVO ↔ CoIII-O˙ (species 2), scrutinizing their capacity to predict improved catalytic activity. DFT and DLPNO-CCSD(T) calculations predict that the iron-oxo species possesses a triplet as the ground state, while the cobalt-oxo has a doublet as the ground state. Furthermore, we have investigated the mechanistic pathways for the first C-H bond activation, as well as the desaturation of the alkanes. The mechanism was determined to be a two-step process, wherein the first hydrogen atom abstraction (HAA) represents the rate-limiting step, involving the proton-coupled electron transfer (PCET) process. However, we found that the second HAA step is highly exothermic for both species. Our calculations suggest that the iron-oxo species (Fe-O = 1.672 Å) exhibit relatively sluggish behavior compared to the cobalt-oxo species (Co-O = 1.854 Å) in C-H bond activation, attributed to a weak metal-oxygen bond. MO, NBO, and deformation energy analysis reveal the importance of weakening the M-O bond in the cobalt species, thereby reducing the overall barrier to the reaction. This catalyst was found to have a C-H activation barrier relatively smaller than that previously reported in the literature.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Mursaleem Ansari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
8
|
Katoch A, Mandal D. High-valent nonheme Fe(IV)O/Ru(IV)O complexes catalyze C-H activation reactivity and hydrogen tunneling: a comparative DFT investigation. Dalton Trans 2024; 53:2386-2394. [PMID: 38214597 DOI: 10.1039/d3dt03155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A comprehensive density functional theory investigation has been presented towards the comparison of the C-H activation reactivity between high-valent iron-oxo and ruthenium-oxo complexes. A total of four compounds, e.g., [Ru(IV)O(tpy-dcbpy)] (1), [Fe(IV)O(tpy-dcbpy)] (1'), [Ru(IV)O(TMCS)] (2), and [Fe(IV)O(TMCS)] (2'), have been considered for this investigation. The macrocyclic ligand framework tpy(dcbpy) implies tpy = 2,2':6',2''-terpyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine, and TMCS is TMC with an axially tethered -SCH2CH2 group. Compounds 1 and 2' are experimentally synthesized standard complexes with Ru and Fe, whereas compounds 1' and 2 were considered to keep the macrocycle intact when switching the central metal atom. Three reactants including benzyl alcohol, ethyl benzene, and dihydroanthracene were selected as substrates for C-H activation. It is noteworthy to mention that Fe(IV)O complexes exhibit higher reactivity than those of their Ru(IV)O counterparts. Furthermore, regardless of the central metal, the complex featuring a tpy-dcbpy macrocycle demonstrates higher reactivity than that of TMCS. Here, a thorough analysis of the reactivity-controlling characteristics-such as spin state, steric factor, distortion energy, energy of the electron acceptor orbital, and quantum mechanical tunneling-was conducted. Fe(IV)O exhibits the exchanged enhanced two-state-reactivity with the quintet reactive state, whereas Ru(IV)O has only a triplet reactive state. Both the distortion energy and acceptor orbital energy are low in the case of Fe(IV)O supporting its higher reactivity. All the investigated C-H activation processes involve a significant contribution from hydrogen tunneling, which is more pronounced in the case of Ru, although it cannot alter the reactivity pattern. Furthermore, it has also been found that, independent of the central metal, aliphatic hydroxylation is always preferable to aromatic hydroxylation. Overall, this work is successful in establishing and investigating the cause of enzymes' natural preference for Fe over Ru as a cofactor for C-H activation enzymes.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| |
Collapse
|
9
|
Levine DS, Jacobson LD, Bochevarov AD. Large Computational Survey of Intrinsic Reactivity of Aromatic Carbon Atoms with Respect to a Model Aldehyde Oxidase. J Chem Theory Comput 2023; 19:9302-9317. [PMID: 38085599 DOI: 10.1021/acs.jctc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Aldehyde oxidase (AOX) and other related molybdenum-containing enzymes are known to oxidize the C-H bonds of aromatic rings. This process contributes to the metabolism of pharmaceutical compounds and, therefore, is of vital importance to drug pharmacokinetics. The present work describes an automated computational workflow and its use for the prediction of intrinsic reactivity of small aromatic molecules toward a minimal model of the active site of AOX. The workflow is based on quantum chemical transition state searches for the underlying single-step oxidation reaction, where the automated protocol includes identification of unique aromatic C-H bonds, creation of three-dimensional reactant and product complex geometries via a templating approach, search for a transition state, and validation of reaction end points. Conformational search on the reactants, products, and the transition states is performed. The automated procedure has been validated on previously reported transition state barriers and was used to evaluate the intrinsic reactivity of nearly three hundred heterocycles commonly found in approved drug molecules. The intrinsic reactivity of more than 1000 individual aromatic carbon sites is reported. Stereochemical and conformational aspects of the oxidation reaction, which have not been discussed in previous studies, are shown to play important roles in accurate modeling of the oxidation reaction. Observations on structural trends that determine the reactivity are provided and rationalized.
Collapse
Affiliation(s)
- Daniel S Levine
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| | - Leif D Jacobson
- Schrödinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| | - Art D Bochevarov
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| |
Collapse
|
10
|
Qiu G, Schreiner PR. The Intrinsic Barrier Width and Its Role in Chemical Reactivity. ACS CENTRAL SCIENCE 2023; 9:2129-2137. [PMID: 38033803 PMCID: PMC10683502 DOI: 10.1021/acscentsci.3c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Chemical reactions are in virtually all cases understood and explained on the basis of depicting the molecular potential energy landscape, i.e., the change in atomic positions vs the free-energy change. With such landscapes, the features of the reaction barriers solely determine chemical reactivities. The Marcus dissection of the barrier height (activation energy) on such a potential into the thermodynamically independent (intrinsic) and the thermodynamically dependent (Bell-Evans-Polanyi) contributions successfully models the interplay of reaction rate and driving force. This has led to the well-known and ubiquitously used reactivity paradigm of "kinetic versus thermodynamic control". However, an analogous dissection concept regarding the barrier width is absent. Here we define and outline the concept of intrinsic barrier width and the driving force effect on the barrier width and report experimental as well as theoretical studies to demonstrate their distinct roles. We present the idea of changing the barrier widths of conformational isomerizations of some simple aromatic carboxylic acids as models and use quantum mechanical tunneling (QMT) half-lives as a read-out for these changes because QMT is particularly sensitive to barrier widths. We demonstrate the distinct roles of the intrinsic and the thermodynamic contributions of the barrier width on QMT half-lives. This sheds light on resolving conflicting trends in chemical reactivities where barrier widths are relevant and allows us to draw some important conclusions about the general relevance of barrier widths, their qualitative definition, and the consequences for more complete descriptions of chemical reactions.
Collapse
Affiliation(s)
- Guanqi Qiu
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
11
|
Lewis TWR, Mastin EM, Theis ZC, Okafor SU, Gutierrez MG, Bellert DJ. Two state reactivity (TSR) and hydrogen tunneling reaction kinetics measured in the Co + mediated decomposition of CH 3CHO. Phys Chem Chem Phys 2023; 25:23477-23490. [PMID: 37646145 DOI: 10.1039/d2cp05042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The electronic structure of a transition metal atom allows it to act as a catalytic active site by providing lower energy alternative pathways in chemical transformations. We have identified and kinetically characterized three such pathways in the title reaction. One is an adiabatic pathway that occurs on a single potential energy surface described within the Born-Oppenheimer approximation. A second pathway opens microseconds into the reaction as a portion of the reacting population competitively transitions from triplet to singlet multiplicity to circumvent energetic barriers on the triplet surface. These pathways are single- and two-state reactive (SSR and TSR) where the Co+ cation mediates an oxidative addition/reductive elimination sequence of the CH3CHO molecule. The third observed reaction pathway is the aldehyde hydrogen tunneling through an Eyring barrier to form high-spin products. First-order rate constants for the adiabatic and nonadiabatic energy lowered pathways, and the hydrogen tunneling pathway, are each measured using the single photon initiated dissociative rearrangement reaction (SPIDRR) experimental technique. We believe that this is the first experimental study where such disparate dynamic features (SSR, TSR, and H-tunneling) are disentangled in a system's chemistry, attributing specific rate constant values to each effect and quantifying the various competitions. Moreover, multi-reference CASSCF/CASPT2 calculations indicate that structures with covalent Co-H bonds are present exclusively along the excited singlet surface. This phenomenon significantly reduces these structures' energy relative to their triplet counterparts, thus enabling the surface crossing and spin inversion that cause the observed two-state reactivity.
Collapse
Affiliation(s)
| | - Evan M Mastin
- Baylor University, 1311 S 5th St, Waco, TX 76706, USA.
| | | | | | | | | |
Collapse
|
12
|
Zhang S, Wen W, Xia X, Ouyang W, Mai BX, Adrian L, Schüürmann G. Insight into the Mechanism Underlying Dehalococcoides mccartyi Strain CBDB1-Mediated B 12-Dependent Aromatic Reductive Dehalogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37428517 DOI: 10.1021/acs.est.3c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Anaerobic bacteria transform aromatic halides through reductive dehalogenation. This dehalorespiration is catalyzed by the supernucleophilic coenzyme vitamin B12, cob(I)alamin, in reductive dehalogenases. So far, the underlying inner-sphere electron transfer (ET) mechanism has been discussed controversially. In the present study, all 36 chloro-, bromo-, and fluorobenzenes and full-size cobalamin are analyzed at the quantum chemical density functional theory level with respect to a wide range of theoretically possible inner-sphere ET mechanisms. The calculated reaction free energies within the framework of CoI···X (X = F, Cl, and Br) attack rule out most of the inner-sphere pathways. The only route with feasible energetics is a proton-coupled two-ET mechanism that involves a B12 side-chain tyrosine (modeled by phenol) as a proton donor. For 12 chlorobenzenes and 9 bromobenzenes with experimental data from Dehalococcoides mccartyi strain CBDB1, the newly proposed PC-TET mechanism successfully discriminates 16 of 17 active from 4 inactive substrates and correctly predicts the observed regiospecificity to 100%. Moreover, fluorobenzenes are predicted to be recalcitrant in agreement with experimental findings. Conceptually, based on the Bell-Evans-Polanyi principle, the computational approach provides novel mechanistic insights and may serve as a tool for predicting the energetic feasibility of reductive aromatic dehalogenation.
Collapse
Affiliation(s)
- Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lorenz Adrian
- UFZ Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, Berlin 13355, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09596, Germany
| |
Collapse
|
13
|
Schlachta TP, Kühn FE. Cyclic iron tetra N-heterocyclic carbenes: synthesis, properties, reactivity, and catalysis. Chem Soc Rev 2023; 52:2238-2277. [PMID: 36852959 DOI: 10.1039/d2cs01064j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cyclic iron tetracarbenes are an emerging class of macrocyclic iron N-heterocyclic carbene (NHC) complexes. They can be considered as an organometallic compound class inspired by their heme analogs, however, their electronic properties differ, e.g. due to the very strong σ-donation of the four combined NHCs in equatorial coordination. The ligand framework of iron tetracarbenes can be readily modified, allowing fine-tuning of the structural and electronic properties of the complexes. The properties of iron tetracarbene complexes are discussed quantitatively and correlations are established. The electronic nature of the tetracarbene ligand allows the isolation of uncommon iron(III) and iron(IV) species and reveals a unique reactivity. Iron tetracarbenes are successfully applied in C-H activation, CO2 reduction, aziridination and epoxidation catalysis and mechanisms as well as decomposition pathways are described. This review will help researchers evaluate the structural and electronic properties of their complexes and target their catalyst properties through ligand design.
Collapse
Affiliation(s)
- Tim P Schlachta
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Fritz E Kühn
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstraße 4, 85748 Garching, Germany.
| |
Collapse
|
14
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
15
|
Field MJ, Oyala PH, Green MT. 17O Electron Nuclear Double Resonance Analysis of Compound I: Inverse Correlation between Oxygen Spin Population and Electron Donation. J Am Chem Soc 2022; 144:19272-19283. [PMID: 36240444 DOI: 10.1021/jacs.2c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the activation of inert C-H bonds by metal-oxo complexes has been widely studied, important questions remain, particularly regarding the role of oxygen spin population (i.e., unpaired electrons on the oxo ligand) in facilitating C-H bond cleavage. In order to shed light on this issue, we have utilized 17O electron nuclear double resonance spectroscopy to measure the oxygen spin populations of three compound I intermediates in heme enzymes with different reactivities toward C-H bonds: chloroperoxidase, cytochrome P450, and a selenolate (selenocysteinyl)-ligated cytochrome P450. The experimental data suggest an inverse correlation between oxygen spin population and electron donation from the axial ligand. We have explored the implications of this result using a Hückel-type molecular orbital model and constrained density functional theory calculations. These investigations have allowed us to examine the relationship between oxygen spin population, oxygen charge, electron donation from the axial ligand, and reactivity.
Collapse
Affiliation(s)
- Mackenzie J Field
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| |
Collapse
|
16
|
Kaur L, Mandal D. Role of "S" Substitution on C-H Activation Reactivity of Iron(IV)-Oxo Cyclam Complexes: a Computational Investigation. Inorg Chem 2022; 61:14582-14590. [PMID: 36069431 DOI: 10.1021/acs.inorgchem.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A comprehensive density functional theory (DFT) investigation has been presented in this article to address the role of equatorial sulfur ligation in C-H activation. A non-heme iron-oxo compound with four nitrogen atoms constituting the equatorially connected macrocyclic framework (represented as N4) [Fe(IV)═O(THC)(CH3CN)]2+(THC = 1,4,8,11-tetrahydro1,4,8,11-tetraazacyclotetradecane) has been considered as the base compound. Other complexes have been anticipated by the sequential replacement of this nitrogen by sulfur, that is, N4, N3S1, N2S2, N1S3, and S4. Counterions, as always, have been considered to avoid the self-interaction error in DFT. Generally, the anti-conformers (with respect to equatorial N-H and Fe═O) turned out to be the most stable. It was found that with the enrichment of the equatorial sulfur atom, reactivity increases successively, that is, we get the trend N4 < N3S1 < N2S2 < N1S3 < S4. Our investigations have also verified the available experimental results where it has been reported that N2S2 is more reactive than N4 in their mixed conformation. In search of insights into this typical pattern of reactivity, the interplay of several factors has been recognized, such as the distortion energy which decreases for the transition states with the addition of sulfur; the spin density on the oxygen atom which increases implying that the radical character of abstractor increases on sulfur ligation; the energy of the electron acceptor orbital (the lowest unoccupied molecular orbital (σz2*)) which decreases continuously with the sulfur substitution; and the triplet-quintet oxidant energy gap which decreases consistently with S enrichment in the equatorial position. The computational predictions reported here, if further validated by experiments, will definitely encourage the synthesis of sulfur-ligated bio-inspired complexes instead of the ones constituting nitrogen exclusively.
Collapse
Affiliation(s)
- Lovleen Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
17
|
Mirzanejad A, Varganov SA. The role of the intermediate triplet state in iron-catalyzed multi-state C-H activation. Phys Chem Chem Phys 2022; 24:20721-20727. [PMID: 36018581 DOI: 10.1039/d2cp02733j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient activation and functionalization of the C-H bond under mild conditions are of a great interest in chemical synthesis. We investigate the previously proposed spin-accelerated activation of the C(sp2)-H bond by a Fe(II)-based catalyst to clarify the role of the intermediate triplet state in the reaction mechanism. High-level electronic structure calculations on a small model of a catalytic system utilizing the coupled cluster with the single, double, and perturbative triple excitations [CCSD(T)] are used to select the density functional for the full-size model. Our analysis indicates that the previously proposed two-state quintet-singlet reaction pathway is unlikely to be efficient due to a very weak spin-orbit coupling between these two spin states. We propose a more favorable multi-state quintet-triplet-singlet reaction pathway and discuss the importance of the intermediate triplet state. This triplet state facilitates a spin-accelerated reaction mechanism by strongly coupling to both quintet and singlet states. Our calculations show that the C-H bond activation through the proposed quintet-triplet-singlet reaction pathway is more thermodynamically favorable than the single-state quintet and two-state singlet-quintet mechanisms.
Collapse
Affiliation(s)
- Amir Mirzanejad
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA.
| | - Sergey A Varganov
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA.
| |
Collapse
|
18
|
Lewis TWR, Mastin EM, Theis ZC, Gutierrez MG, Bellert DJ. Measurement of time dependent product branching ratios indicates two-state reactivity in metal mediated chemical reactions. Phys Chem Chem Phys 2022; 24:2300-2308. [PMID: 35015007 DOI: 10.1039/d1cp05473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For several decades, the influence of Two State Reactivity (TSR) has been implicated in a host of reactions, but has lacked a stand-alone, definitive experimental kinetic signature identifying its occurrence. Here, we demonstrate that the measurement of a temporally dependent product branching ratio is indicative of spin inversion and is a kinetic signature of TSR. This is caused by products exiting different hypersurfaces with different rates and relative exothermicities. The composite measurement of product intensities with the same mass but with different multiplicities yield biexponential temporal dependences with the sampled product ratio changing in time. These measurements are made using the single photon initiated dissociative rearrangement reaction (SPIDRR) technique which identifies TSR but further determines the kinetic parameters for reaction along the original ground electronic surface in competition with spin inversion and its consequent TSR.
Collapse
Affiliation(s)
- Tucker W R Lewis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Evan M Mastin
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Zachry C Theis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Michael G Gutierrez
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Darrin J Bellert
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| |
Collapse
|
19
|
Munshi S, Sinha A, Yiga S, Banerjee S, Singh R, Hossain MK, Haukka M, Valiati AF, Huelsmann RD, Martendal E, Peralta R, Xavier F, Wendt OF, Paine TK, Nordlander E. Hydrogen-atom and oxygen-atom transfer reactivities of iron(IV)-oxo complexes of quinoline-substituted pentadentate ligands. Dalton Trans 2022; 51:870-884. [PMID: 34994361 DOI: 10.1039/d1dt03381f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of iron(II) complexes with the general formula [FeII(L2-Qn)(L)]n+ (n = 1, L = F-, Cl-; n = 2, L = NCMe, H2O) have been isolated and characterized. The X-ray crystallographic data reveals that metal-ligand bond distances vary with varying ligand field strengths of the sixth ligand. While the complexes with fluoride, chloride and water as axial ligand are high spin, the acetonitrile-coordinated complex is in a mixed spin state. The steric bulk of the quinoline moieties forces the axial ligands to deviate from the Fe-Naxial axis. A higher deviation/tilt is noted for the high spin complexes, while the acetonitrile coordinated complex displays least deviation. This deviation from linearity is slightly less in the analogous low-spin iron(II) complex [FeII(L1-Qn)(NCMe)]2+ of the related asymmetric ligand L1-Qn due to the presence of only one sterically demanding quinoline moiety. The two iron(II)-acetonitrile complexes [FeII(L2-Qn)(NCMe)]2+ and [FeII(L1-Qn)(NCMe)]2+ generate the corresponding iron(IV)-oxo species with higher thermal stability of the species supported by the L1-Qn ligand. The crystallographic and spectroscopic data for [FeIV(O)(L1-Qn)](ClO4)2 bear resemblance to other crystallographically characterized S = 1 iron(IV)-oxo complexes. The hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactivities of both the iron(IV)-oxo complexes were investigated, and a Box-Behnken multivariate optimization of the parameters for catalytic oxidation of cyclohexane by [FeII(L2-Qn)(NCMe)]2+ using hydrogen peroxide as the terminal oxidant is presented. An increase in the average Fe-N bond length in [FeII(L1-Qn)(NCMe)]2+ is also manifested in higher HAT and OAT rates relative to the other reported complexes of ligands based on the N4Py framework. The results reported here confirm that the steric influence of the ligand environment is of critical importance for the reactivity of iron(IV)-oxo complexes, but additional electronic factors must influence the reactivity of iron-oxo complexes of N4Py derivatives.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Arup Sinha
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| | - Solomon Yiga
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Reena Singh
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Md Kamal Hossain
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Box 35, FI-400 14, Jyväskylä, Finland
| | - Andrei Felipe Valiati
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Ricardo Dagnoni Huelsmann
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Edmar Martendal
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Rosely Peralta
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Fernando Xavier
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Ola F Wendt
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Tapan K Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
20
|
Zhang J, Lee YM, Seo MS, Kim Y, Lee E, Fukuzumi S, Nam W. Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom transfer (HAT) of metal-oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes have yet to be...
Collapse
|
21
|
Mandal D, Katoch A. Effect of Substituent on C-H Activation Catalysed by a nonheme Fe(IV)O Complex: A Computational Investigation of Reactivity and Hydrogen Tunneling. Dalton Trans 2022; 51:11641-11649. [DOI: 10.1039/d2dt01529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A density functional theory investigation has been presented here to address the C-H activation reactivity and the influence of quantum mechanical tunneling catalyzed by a non-heme iron(IV)-Oxo complex viz. [FeIVOdpaq-X]+...
Collapse
|
22
|
Truong PT, Miller SG, McLaughlin Sta Maria EJ, Bowring MA. Large Isotope Effects in Organometallic Chemistry. Chemistry 2021; 27:14800-14815. [PMID: 34347912 DOI: 10.1002/chem.202102189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/24/2023]
Abstract
The kinetic isotope effect (KIE) is key to understanding reaction mechanisms in many areas of chemistry and chemical biology, including organometallic chemistry. This ratio of rate constants, kH /kD , typically falls between 1-7. However, KIEs up to 105 have been reported, and can even be so large that reactivity with deuterium is unobserved. We collect here examples of large KIEs across organometallic chemistry, in catalytic and stoichiometric reactions, along with their mechanistic interpretations. Large KIEs occur in proton transfer reactions such as protonation of organometallic complexes and clusters, protonolysis of metal-carbon bonds, and dihydrogen reactivity. C-H activation reactions with large KIEs occur with late and early transition metals, photogenerated intermediates, and abstraction by metal-oxo complexes. We categorize the mechanistic interpretations of large KIEs into the following three types: (a) proton tunneling, (b) compound effects from multiple steps, and (c) semi-classical effects on a single step. This comprehensive collection of large KIEs in organometallics provides context for future mechanistic interpretation.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | - Sophia G Miller
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | | | - Miriam A Bowring
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| |
Collapse
|
23
|
van Leest N, de Zwart FJ, Zhou M, de Bruin B. Controlling Radical-Type Single-Electron Elementary Steps in Catalysis with Redox-Active Ligands and Substrates. JACS AU 2021; 1:1101-1115. [PMID: 34467352 PMCID: PMC8385710 DOI: 10.1021/jacsau.1c00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
24
|
Salamone M, Galeotti M, Romero-Montalvo E, van Santen JA, Groff BD, Mayer JM, DiLabio GA, Bietti M. Bimodal Evans-Polanyi Relationships in Hydrogen Atom Transfer from C(sp 3)-H Bonds to the Cumyloxyl Radical. A Combined Time-Resolved Kinetic and Computational Study. J Am Chem Soc 2021; 143:11759-11776. [PMID: 34309387 PMCID: PMC8343544 DOI: 10.1021/jacs.1c05566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/11/2022]
Abstract
The applicability of the Evans-Polanyi (EP) relationship to HAT reactions from C(sp3)-H bonds to the cumyloxyl radical (CumO•) has been investigated. A consistent set of rate constants, kH, for HAT from the C-H bonds of 56 substrates to CumO•, spanning a range of more than 4 orders of magnitude, has been measured under identical experimental conditions. A corresponding set of consistent gas-phase C-H bond dissociation enthalpies (BDEs) spanning 27 kcal mol-1 has been calculated using the (RO)CBS-QB3 method. The log kH' vs C-H BDE plot shows two distinct EP relationships, one for substrates bearing benzylic and allylic C-H bonds (unsaturated group) and the other one, with a steeper slope, for saturated hydrocarbons, alcohols, ethers, diols, amines, and carbamates (saturated group), in line with the bimodal behavior observed previously in theoretical studies of reactions promoted by other HAT reagents. The parallel use of BDFEs instead of BDEs allows the transformation of this correlation into a linear free energy relationship, analyzed within the framework of the Marcus theory. The ΔG⧧HAT vs ΔG°HAT plot shows again distinct behaviors for the two groups. A good fit to the Marcus equation is observed only for the saturated group, with λ = 58 kcal mol-1, indicating that with the unsaturated group λ must increase with increasing driving force. Taken together these results provide a qualitative connection between Bernasconi's principle of nonperfect synchronization and Marcus theory and suggest that the observed bimodal behavior is a general feature in the reactions of oxygen-based HAT reagents with C(sp3)-H donors.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Eduardo Romero-Montalvo
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Jeffrey A. van Santen
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Benjamin D. Groff
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Gino A. DiLabio
- Department
of Chemistry, The University of British
Columbia, 3247 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
25
|
Liu ZY, Wei YC, Chou PT. Correlation between Kinetics and Thermodynamics for Excited-State Intramolecular Proton Transfer Reactions. J Phys Chem A 2021; 125:6611-6620. [PMID: 34308634 DOI: 10.1021/acs.jpca.1c04192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Finding the relation between thermodynamics and kinetics for a reaction is of fundamental importance. Here, the thermodynamics and kinetics correlation of excited-state intramolecular proton transfer (ESIPT) was investigated by the TD-DFT calculation under the CAM-B3LYP/6-311+G** level. We choose the family 2-(2'-aminophyenyl)benzothiazole and its amino derivatives as paradigms, which all possess the NH-type intramolecular hydrogen bond (H-bond), and investigate the corresponding ESIPT reaction. The H-bond strength can be systematically tuned, so both activation energy ΔG‡ and free energy difference between proton transfer tautomer (T*, product) and normal species (N*, reactant) ΔGT*-N* can be varied. To minimize the environmental interference such as solvent external H-bond and polarity perturbation, a nonpolar solvent such as cyclohexane is chosen as a bath with a polarizable continuum solvation model for the calculation. As a result, the comprehensive computational approach reveals a linear relationship between ΔGT*-N* and ΔG‡, which can be expressed as ΔG‡ = ΔG0 + αΔGT*-N*. The fundamental insight is reminiscent of the Bell-Evans-Polanyi (BEP) principle where α represents the character of the position of the transition state along the proton motion coordinate. In other words, the more exergonic the ESIPT reaction is, the faster the proton transfer rate can be observed. To verify that such a correlation is not a sporadic event, another ESIPT family with an -OH proton, 1-hydroxy-11H-benzo[b]fluoren-11-one and its derivatives, was also investigated and proved to follow the BEP principle as well. Unlike the quantum mechanics description of proton transfer where either proton tunneling is dominant or solute/solvent is coupled in ESIPT, this work demonstrates that reaction kinetics and thermodynamics are strongly correlated within the same class of ESIPT molecules with an intrinsic barrier free from solvent perturbation, being faster with the more exergonic reaction.
Collapse
Affiliation(s)
- Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| |
Collapse
|
26
|
Deutscher J, Gerschel P, Warm K, Kuhlmann U, Mebs S, Haumann M, Dau H, Hildebrandt P, Apfel UP, Ray K. A bioinspired oxoiron(IV) motif supported on a N 2S 2 macrocyclic ligand. Chem Commun (Camb) 2021; 57:2947-2950. [PMID: 33621306 DOI: 10.1039/d1cc00250c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.
Collapse
Affiliation(s)
- Jennifer Deutscher
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Philipp Gerschel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Uwe Kuhlmann
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Haumann
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Ulf-Peter Apfel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany and Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
27
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C-H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021; 60:6752-6756. [PMID: 33348460 PMCID: PMC7985879 DOI: 10.1002/anie.202015896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 11/12/2022]
Abstract
S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).
Collapse
Affiliation(s)
- Katrin Warm
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Alice Paskin
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Uwe Kuhlmann
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC)Stiftstraße 34–3645470MülheimGermany
| | - Marcel Swart
- Institut de Química Computacional i CatàlisiUniversitat de GironaCampus Montilivi (Ciències)Maria Aurèlia Capmany i Farnés, 6917003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Michael Haumann
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Holger Dau
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Peter Hildebrandt
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Kallol Ray
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
28
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C−H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Alice Paskin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Uwe Kuhlmann
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC) Stiftstraße 34–36 45470 Mülheim Germany
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi Universitat de Girona Campus Montilivi (Ciències) Maria Aurèlia Capmany i Farnés, 69 17003 Girona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Michael Haumann
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
29
|
Liu N, Chen X, Jin L, Yang YF, She YB. A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Org Chem Front 2021. [DOI: 10.1039/d0qo01442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The favourable radical rebound pathway is NCO-rebound from the Mn(TMP)(NCO)2 complex due to the stronger trans effect of the axial ligand NCO and the electron-donating aryl substituents on the porphyrin ligand.
Collapse
Affiliation(s)
- Ning Liu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Xiahe Chen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Liyuan Jin
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Yun-Fang Yang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Yuan-Bin She
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| |
Collapse
|
30
|
Das A, Hessin C, Ren Y, Desage-El Murr M. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chem Soc Rev 2020; 49:8840-8867. [PMID: 33107878 DOI: 10.1039/d0cs00914h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
31
|
Anand M, Rohr B, Statt MJ, Nørskov JK. Scaling Relationships and Volcano Plots in Homogeneous Catalysis. J Phys Chem Lett 2020; 11:8518-8526. [PMID: 32931282 DOI: 10.1021/acs.jpclett.0c01991] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Scaling relations and volcano plots are widely used in heterogeneous catalysis. In this Perspective, we discuss the prospects and challenges associated with the application of similar concepts in homogeneous catalysis using examples from the literature that have appeared recently.
Collapse
Affiliation(s)
- Megha Anand
- Department of Physics, Technical University of Denmark, Fysikvej Building 311, 2800 Kongens Lyngby, Denmark
| | - Brian Rohr
- Department of Chemical Engineering, SUNCAT Center for Surface Science and Catalysis, Stanford University, 443 Via Ortega, Stanford, California 94035, United States
| | - Michael J Statt
- Department of Chemical Engineering, SUNCAT Center for Surface Science and Catalysis, Stanford University, 443 Via Ortega, Stanford, California 94035, United States
| | - Jens K Nørskov
- Department of Physics, Technical University of Denmark, Fysikvej Building 311, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
32
|
Gericke R, Doyle LM, Farquhar ER, McDonald AR. Oxo-Free Hydrocarbon Oxidation by an Iron(III)-Isoporphyrin Complex. Inorg Chem 2020; 59:13952-13961. [PMID: 32955871 DOI: 10.1021/acs.inorgchem.0c01618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-halides that perform proton coupled electron-transfer (PCET) oxidation are an important new class of high-valent oxidant. In investigating metal-dihalides, we reacted [FeIII(Cl)(T(OMe)PP)] (1, T(OMe)PP = meso-tetra(4-methoxyphenyl)porphyrinyl) with (dichloroiodo)benzene. An FeIII-meso-chloro-isoporphyrin complex [FeIII(Cl)2(T(OMe)PP-Cl)] (2) was obtained. 2 was characterized by electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies and mass spectrometry with support from computational analyses. 2 was reacted with a series of hydrocarbon substrates. The measured kinetic data exhibited a nonlinear behavior, whereby the oxidation followed a hydrogen-atom-transfer (HAT) PCET mechanism. The meso-chlorine atom was identified as the HAT agent. In one case, a halogenated product was identified by mass spectrometry. Our findings demonstrate that oxo-free hydrocarbon oxidation with heme systems is possible and show the potential for iron-dihalides in oxidative hydrocarbon halogenation.
Collapse
Affiliation(s)
- Robert Gericke
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Lorna M Doyle
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Erik R Farquhar
- National Synchrotron Light Source II, Brookhaven National Laboratory, Case Western Reserve University Center for Synchrotron Biosciences, Upton, New York 11973, United States
| | - Aidan R McDonald
- School of Chemistry, College Green, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
33
|
Jaglan R, Mandal D. The role of potential energy surface in quantum mechanical tunneling: A computational perspective. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Mondal P, McDonald AR. Phenol Oxidation by a Nickel(III)-Fluoride Complex: Exploring the Influence of the Proton Accepting Ligand in PCET Oxidation. Chemistry 2020; 26:10083-10089. [PMID: 32567726 DOI: 10.1002/chem.202002135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Indexed: 11/05/2022]
Abstract
In order to gain insight into the influence of the H+ -accepting terminal ligand in high-valent oxidant mediated proton coupled electron transfer (PCET) reactions, the reactivity of a high valent nickel-fluoride complex [NiIII (F)(L)] (2, L=N,N'-(2,6-dimethylphenyl)-2,6-pyridinecarboxamidate) with substituted phenols was explored. Analysis of kinetic data from these reactions (Evans-Polanyi, Hammett, and Marcus plots, and KIE measurements) and the formed products show that 2 reacted with electron rich phenols through a hydrogen atom transfer (HAT, or concerted PCET) mechanism and with electron poor phenols through a stepwise proton transfer/electron transfer (PT/ET) reaction mechanism. The analogous complexes [NiIII (Z)(L)] (Z=Cl, OCO2 H, O2 CCH3 , ONO2 ) reacted with all phenols through a HAT mechanism. We explore the reason for a change in mechanism with the highly basic fluoride ligand in 2. Complex 2 was also found to react one to two orders of magnitude faster than the corresponding analogous [NiIII (Z)(L)] complexes. This was ascribed to a high bond dissociation free energy value associated with H-F (135 kcal mol-1 ), which is postulated to be the product formed from PCET oxidation by 2 and is believed to be the driving force for the reaction. Our findings show that high-valent metal-fluoride complexes represent a class of highly reactive PCET oxidants.
Collapse
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin, 2, Ireland
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin, 2, Ireland
| |
Collapse
|
35
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
36
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020; 59:13044-13050. [DOI: 10.1002/anie.202004639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
37
|
Roy L. Theoretical Identification of the Factors Governing the Reactivity of C-H Bond Activation by Non-Heme Iron(IV)-Oxo Complexes. Chempluschem 2020; 84:893-906. [PMID: 31943994 DOI: 10.1002/cplu.201900178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/30/2019] [Indexed: 11/06/2022]
Abstract
Selective functionalization of C-H bonds provides a straightforward approach to a large variety of well-defined derivatives. High-valent mononuclear iron(IV)-oxo complexes are proposed to carry out these C-H activation reactions in enzymes or in biomimetic syntheses. In this Minireview, we aim to highlight the features that delineate the distinct reactivity of non-heme oxo-iron(IV) motifs to cleave strong C-H bonds in hydrocarbons, primarily focusing on the hydrogen atom transfer (HAT) process. We describe how the structural and electronic properties of supporting ligands modulate the oxidative property of the iron(IV)-oxo complexes. Furthermore, we highlight the decisive role played by spin-state in these biomimetic reactions. We also discuss how tunneling and external perturbations like electric field influence the transfer of hydrogen atoms. Lastly, we emphasize how computations could work as a practical guide to sketch and develop synthetic models with greater efficacy.
Collapse
Affiliation(s)
- Lisa Roy
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, Odisha, India
| |
Collapse
|
38
|
Affiliation(s)
- Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9090401 Israel
| |
Collapse
|
39
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
40
|
Feldt M, Martín-Fernández C, Harvey JN. Energetics of non-heme iron reactivity: can ab initio calculations provide the right answer? Phys Chem Chem Phys 2020; 22:23908-23919. [DOI: 10.1039/d0cp04401f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We use a variety of computational methods to characterize and compare the hydrogen atom transfer (HAT) and epoxidation reaction pathways for oxidation of cyclohexene by an iron(iv)-oxo complex.
Collapse
Affiliation(s)
- Milica Feldt
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| | - Carlos Martín-Fernández
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| | - Jeremy N. Harvey
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
41
|
Unjaroen D, Gericke R, Lovisari M, Nelis D, Mondal P, Pirovano P, Twamley B, Farquhar ER, McDonald AR. High-Valent d 7 Ni III versus d 8 Cu III Oxidants in PCET. Inorg Chem 2019; 58:16838-16848. [PMID: 31804808 DOI: 10.1021/acs.inorgchem.9b03101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygenases have been postulated to utilize d4 FeIV and d8 CuIII oxidants in proton-coupled electron transfer (PCET) hydrocarbon oxidation. In order to explore the influence the metal ion and d-electron count can hold over the PCET reactivity, two metastable high-valent metal-oxygen adducts, [NiIII(OAc)(L)] (1b) and [CuIII(OAc)(L)] (2b), L = N,N'-(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamidate, were prepared from their low-valent precursors [NiII(OAc)(L)]- (1a) and [CuII(OAc)(L)]- (2a). The complexes 1a/b-2a/b were characterized using nuclear magnetic resonance, Fourier transform infrared, electron paramagnetic resonance, X-ray diffraction, and absorption spectroscopies and mass spectrometry. Both complexes were capable of activating substrates through a concerted PCET mechanism (hydrogen atom transfer, HAT, or concerted proton and electron transfer, CPET). The reactivity of 1b and 2b toward a series of para-substituted 2,6-di-tert-butylphenols (p-X-2,6-DTBP; X = OCH3, C(CH3)3, CH3, H, Br, CN, NO2) was studied, showing similar rates of reaction for both complexes. In the oxidation of xanthene, the d8 CuIII oxidant displayed a small increase in the rate constant compared to that of the d7 NiIII oxidant. The d8 CuIII oxidant was capable of oxidizing a large family of hydrocarbon substrates with bond dissociation enthalpy (BDEC-H) values up to 90 kcal/mol. It was previously observed that exchanging the ancillary anionic donor ligand in such complexes resulted in a 20-fold enhancement in the rate constant, an observation that is further enforced by comparison of 1b and 2b to the literature precedents. In contrast, we observed only minor differences in the rate constants upon comparing 1b to 2b. It was thus concluded that in this case the metal ion has a minor impact, while the ancillary donor ligand yields more kinetic control over HAT/CPET oxidation.
Collapse
Affiliation(s)
- Duenpen Unjaroen
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Robert Gericke
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Marta Lovisari
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Daniel Nelis
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Prasenjit Mondal
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Paolo Pirovano
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II , Brookhaven National Laboratory II , Upton , New York 11973 , United States
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| |
Collapse
|
42
|
Wang Q, Chen X, Li G, Chen Q, Yang YF, She YB. Computational Exploration of Chiral Iron Porphyrin-Catalyzed Asymmetric Hydroxylation of Ethylbenzene Where Stereoselectivity Arises from π-π Stacking Interaction. J Org Chem 2019; 84:13755-13763. [PMID: 31599588 DOI: 10.1021/acs.joc.9b01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism and origins of stereoselectivity of chiral iron porphyrin-catalyzed asymmetric hydroxylation of ethylbenzene were explored with density functional theory. The hydrogen atom abstraction is the rate- and stereoselectivity-determining step. In good agreement with experimental results, the formation of the (R)-1-phenylethanol product is found to be the most favorable pathway. The transition state of hydrogen atom abstraction which leads to the (S)-1-phenylethanol product is unfavorable by 1.7 kcal/mol compared to the corresponding transition state which leads to the (R)-1-phenylethanol product. Enantioselectivity arises from an attractive π-π stacking interaction between the phenyl group of ethylbenzene substrate and the naphthyl group of the porphyrin ligand.
Collapse
Affiliation(s)
- Qunmin Wang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Xiahe Chen
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Guijie Li
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Qidong Chen
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Yun-Fang Yang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Yuan-Bin She
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| |
Collapse
|
43
|
Ehudin MA, Quist DA, Karlin KD. Enhanced Rates of C-H Bond Cleavage by a Hydrogen-Bonded Synthetic Heme High-Valent Iron(IV) Oxo Complex. J Am Chem Soc 2019; 141:12558-12569. [PMID: 31318198 PMCID: PMC6734939 DOI: 10.1021/jacs.9b01253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Secondary coordination sphere interactions are critical in facilitating the formation, stabilization, and enhanced reactivity of high-valent oxidants required for essential biochemical processes. Herein, we compare the C-H bond oxidizing capabilities of spectroscopically characterized synthetic heme iron(IV) oxo complexes, F8Cmpd-II (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a 2,6-lutidinium triflate (LutH+) Lewis acid adduct involving ferryl O-atom hydrogen-bonding, F8Cmpd-II(LutH+). Second-order rate constants utilizing C-H and C-D substrates were obtained by UV-vis spectroscopic monitoring, while products were characterized and quantified by EPR spectroscopy and gas chromatography (GC). With xanthene, F8Cmpd-II(LutH+) reacts 40 times faster (k2 = 14.2 M-1 s-1; -90 °C) than does F8Cmpd-II, giving bixanthene plus xanthone and the heme product [F8FeIIIOH2]+. For substrates with greater C-H bond dissociation energies (BDEs) F8Cmpd-II(LutH+) reacts with the second order rate constants k2(9,10-dihydroanthracene; DHA) = 0.485 M-1 s-1 and k2(fluorene) = 0.102 M-1 s-1 (-90 °C); by contrast, F8Cmpd-II is unreactive toward these substrates. For xanthene vs xanthene-(d2), large, nonclassical deuterium kinetic isotope effects are roughly estimated for both F8Cmpd-II and F8Cmpd-II(LutH+). The deuterated H-bonded analog, F8Cmpd-II(LutD+), was also prepared; for the reaction with DHA, an inverse KIE (compared to F8Cmpd-II(LutH+)) was observed. This work originates/inaugurates experimental investigation of the reactivity of authentic H-bonded heme-based FeIV═O compounds, critically establishing the importance of oxo H-bonding (or protonation) in heme complexes and enzyme active sites.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
44
|
Phung QM, Martín-Fernández C, Harvey JN, Feldt M. Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes. J Chem Theory Comput 2019; 15:4297-4304. [DOI: 10.1021/acs.jctc.9b00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| | | | - Jeremy N. Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| | - Milica Feldt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| |
Collapse
|
45
|
Bae SH, Li XX, Seo MS, Lee YM, Fukuzumi S, Nam W. Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)–Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. J Am Chem Soc 2019; 141:7675-7679. [DOI: 10.1021/jacs.9b02272] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seong Hee Bae
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
46
|
Mittra K, Green MT. Reduction Potentials of P450 Compounds I and II: Insight into the Thermodynamics of C-H Bond Activation. J Am Chem Soc 2019; 141:5504-5510. [PMID: 30892878 DOI: 10.1021/jacs.9b00242] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a mixed experimental/theoretical determination of the bond strengths and redox potentials that define the ground-state thermodynamics for C-H bond activation in cytochrome P450 catalysis. Using redox titrations with [Ir(IV)Cl6]2-, we have determined the compound II/ferric (or Fe(IV)OH/Fe(III)OH2) couple and its associated D(O-H)Ferric bond strength in CYP158. Knowledge of this potential as well as the compound II/ferric (or Fe(IV)O/Fe(III)OH) reduction potential in horseradish peroxidase and the two-electron compound I/ferric (or Fe(IV)O(Por•)/Fe(III)OH2(Por)) reduction potential in aromatic peroxidase has allowed us to gauge the accuracy of theoretically determined bond strengths. Using the restricted open shell (ROS) method as proposed by Wright and co-workers, we have obtained O-H bond strengths and associated redox potentials for charge-neutral H-atom reductions of these iron(IV)-hydroxo and -oxo porphyrin species that are within 1 kcal/mol of experimentally determined values, suggesting that the ROS method may provide accurate values for the P450-II O-H bond strength and P450-I reduction potential. The efforts detailed here indicate that the ground-state thermodynamics of C-H bond activation in P450 are best described as follows: E0'Comp-I = 1.22 V (at pH 7, vs NHE) with D(O-H)Comp-II = 95 kcal/mol and E0'Comp-II = 0.99 V (at pH 7, vs NHE) with D(O-H)Ferric = 90 kcal/mol.
Collapse
Affiliation(s)
- Kaustuv Mittra
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
47
|
Zhou C, Gagliardi L, Truhlar DG. Multiconfiguration Pair-Density Functional Theory for Iron Porphyrin with CAS, RAS, and DMRG Active Spaces. J Phys Chem A 2019; 123:3389-3394. [DOI: 10.1021/acs.jpca.8b12479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
48
|
Feldt M, Phung QM, Pierloot K, Mata RA, Harvey JN. Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. J Chem Theory Comput 2019; 15:922-937. [PMID: 30605326 DOI: 10.1021/acs.jctc.8b00963] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a large variety of studies, the coupled-cluster method with singles, doubles, and perturbative triples (CCSD(T)) is used as a reference for benchmarking the performance of density functional theory (DFT) functionals. In the case of open-shell species, this theory can be applied in different forms depending on the restricted or unrestricted treatment of spin. In this study, we show that these different approaches can produce results which deviate by ∼5 kcal/mol for different species on the potential energy surfaces. This was demonstrated for a simple model of the C-H activation carried out by non-heme iron enzymes. Assessing the limits of CCSD(T) prior to its use as a general benchmark tool is warranted. This was done using higher-order coupled-cluster calculations as well as multiconfigurational second-order perturbation theory (CASPT2), since iron-oxo species present some multireference character. Furthermore, we tested two different implementations of the local coupled-cluster method and compared them to the CCSD(T) results, showing that even though these novel approaches are promising, without further developments they appear not to be suitable for describing two-state reactivity of the system investigated in the current study. Additionally, we implemented and assessed the performance of the hotspot approach for the local unrestricted CCSD(T) scheme which aims at reducing the pair error for systems containing transition metals.
Collapse
Affiliation(s)
- Milica Feldt
- Department of Chemistry , KU Leuven , Celestijnenlaan 200f, Box 2404, 3001 Leuven , Belgium
| | - Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200f, Box 2404, 3001 Leuven , Belgium
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200f, Box 2404, 3001 Leuven , Belgium
| | - Ricardo A Mata
- Institut für Physikalische Chemie , Universität Göttingen , Tammannstrasse 6 , D-37077 Göttingen , Germany
| | - Jeremy N Harvey
- Department of Chemistry , KU Leuven , Celestijnenlaan 200f, Box 2404, 3001 Leuven , Belgium
| |
Collapse
|
49
|
Ashley DC, Mukherjee S, Jakubikova E. Designing air-stable cyclometalated Fe(ii) complexes: stabilization via electrostatic effects. Dalton Trans 2019; 48:374-378. [DOI: 10.1039/c8dt04402c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Substitution of EWGs onto the cyclometelated iron complexes electrostatically stabilizes the Fe(ii) center while still preserving the increased ligand field strength.
Collapse
Affiliation(s)
| | | | - Elena Jakubikova
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
50
|
Wu H, Zhao T, Hu X. Friedel-Crafts Reaction of N,N-Dimethylaniline with Alkenes Catalyzed by Cyclic Diaminocarbene-Gold(I) Complex. Sci Rep 2018; 8:11449. [PMID: 30061755 PMCID: PMC6065310 DOI: 10.1038/s41598-018-29854-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022] Open
Abstract
In general, Friedel-Crafts reaction is incompatible with amines due to the Lewis acidity of the catalysts. Recently, we reported that cyclic diaminocarbene-Gold(I) can be used as catalyst for the Friedel-Crafts alkylation between aromatic amines and alkenes. Herein, a systematically theoretical research was performed on this rare Friedel-Crafts reaction. The adopted calculation method is accurate enough to reproduce the crystal structure of the catalyst. It was found that the reactions followed the electrophilic aromatic substitution mechanism. The gold cation can activate the C=C double bond and generate the electrophilic group which can be attacked by the aromatic ring. The para-product is more energy favorable which agrees well with the experimental results. The reaction of α-methylstyrene follows the Markovnikov rule, and the activation energy to generate the branched product of methylstyrene is lower than that producing the linear product. However, the reaction of butanone follows the anti-Markovnikov rule, and the activation energy to generate the branched product of butanone is higher than that producing the linear product. These calculation results reveal the mechanism of this new Friedel-Crafts reaction. It can well explain the high para-selectivity and the substrate-dependent of the product structures in the experiment.
Collapse
Affiliation(s)
- Hangzhi Wu
- High School Affiliated to Nanjing Normal University, Nanjing, P. R. China
| | - Tianxiang Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|