1
|
Das BK, Chowdhury A, Chatterjee S, Tripathi NM, Pati B, Dutta S, Bandyopadhyay A. Harnessing a bis-electrophilic boronic acid lynchpin for azaborolo thiazolidine (ABT) grafting in cyclic peptides. Chem Sci 2024:d4sc04348k. [PMID: 39144456 PMCID: PMC11320178 DOI: 10.1039/d4sc04348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>103 M-1 s-1) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions. The ABT-crosslinked peptides are fairly stable in endogenous environments, but can provide the linear diazaborine peptides via treatment with α-nucleophiles. This efficient peptide crosslinking protocol was further extended for regioselective bicyclizations and engineering of α-helical structures. Finally, ABT-grafted peptides were exploited in biorthogonal conjugation, leading to highly effective intracellular delivery of an apoptotic peptide (KLA) in cancer cells. The mechanism of action by which ABT-grafted KLA peptide induces apoptosis was also explored.
Collapse
Affiliation(s)
- Basab Kanti Das
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Bibekananda Pati
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Soumit Dutta
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
2
|
Rong G, Zhou X, Hong J, Cheng Y. Reversible Assembly of Proteins and Phenolic Polymers for Intracellular Protein Delivery with Serum Stability. NANO LETTERS 2024; 24:5593-5602. [PMID: 38619365 DOI: 10.1021/acs.nanolett.4c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The design of intracellular delivery systems for protein drugs remains a challenge due to limited delivery efficacy and serum stability. Herein, we propose a reversible assembly strategy to assemble cargo proteins and phenolic polymers into stable nanoparticles for this purpose using a heterobifunctional adaptor (2-formylbenzeneboronic acid). The adaptor is easily decorated on cargo proteins via iminoboronate chemistry and further conjugates with catechol-bearing polymers to form nanoparticles via boronate diester linkages. The nanoparticles exhibit excellent serum stability in culture media but rapidly release the cargo proteins triggered by lysosomal acidity and GSH after endocytosis. In a proof-of-concept animal model, the strategy successfully transports superoxide dismutase to retina via intravitreal injection and efficiently ameliorates the oxidative stress and cellular damage in the retina induced by ischemia-reperfusion (I/R) with minimal adverse effects. The reversible assembly strategy represents a robust and efficient method to develop serum-stable systems for the intracellular delivery of biomacromolecules.
Collapse
Affiliation(s)
- Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Yiyun Cheng
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
3
|
Haggett JG, Domaille DW. ortho-Boronic Acid Carbonyl Compounds and Their Applications in Chemical Biology. Chemistry 2024; 30:e202302485. [PMID: 37967030 DOI: 10.1002/chem.202302485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.
Collapse
Affiliation(s)
- Jack G Haggett
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
- Quantitative Biology and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
4
|
Wan C, Zhang Y, Wang J, Xing Y, Yang D, Luo Q, Liu J, Ye Y, Liu Z, Yin F, Wang R, Li Z. Traceless Peptide and Protein Modification via Rational Tuning of Pyridiniums. J Am Chem Soc 2024; 146:2624-2633. [PMID: 38239111 DOI: 10.1021/jacs.3c11864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Herein, we report a versatile reaction platform for tracelessly cleavable cysteine-selective peptide/protein modification. This platform offers highly tunable and predictable conjugation and cleavage by rationally estimating the electron effect on the nucleophilic halopyridiniums. Cleavable peptide stapling, antibody conjugation, enzyme masking/de-masking, and proteome labeling were achieved based on this facile pyridinium-thiol-exchange protocol.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Xing
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
5
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
6
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
7
|
Manicardi A, Theppawong A, Van Troys M, Madder A. Proximity-Induced Ligation and One-Pot Macrocyclization of 1,4-Diketone-Tagged Peptides Derived from 2,5-Disubstituted Furans upon Release from the Solid Support. Org Lett 2023; 25:6618-6622. [PMID: 37656900 PMCID: PMC10510716 DOI: 10.1021/acs.orglett.3c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 09/03/2023]
Abstract
1,4-Dione-containing peptides are generated during the cleavage of 2,5-disubstituted furan-containing systems. The generated electrophilic systems then react with α-effect nucleophiles, following a Paal-Knorr-like mechanism, for the generation of macrocyclic peptides, occurring after simple resuspension of the crude peptide in water. Conveniently, the in situ generation of the electrophile from a stable furan ring avoids the complications associated with the synthesis of carbonyl-containing peptides. Detailed investigation of the reaction characteristics was first performed on supramolecular coiled-coil systems.
Collapse
Affiliation(s)
- Alex Manicardi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Atiruj Theppawong
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Reja RM, Chau B, Gao J. Diazaborine-Mediated Bicyclization of Native Peptides with Inducible Reversibility. Org Lett 2023; 25:4489-4492. [PMID: 37306633 PMCID: PMC10330595 DOI: 10.1021/acs.orglett.3c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multicyclic peptides are appealing candidates for peptide-based drug discovery. While various methods are developed for peptide cyclization, few allow multicyclization of native peptides. Herein we report a novel cross-linker DCA-RMR1, which elicits facile bicyclization of native peptides via N-terminus Cys-Cys cross-linking. The bicyclization is fast, affords quantitative conversion, and tolerates various side chain functionalities. Importantly, the resulting diazaborine linkage, while stable at a neutral pH, can readily reverse upon mild acidification to give pH-responsive peptides.
Collapse
Affiliation(s)
- Rahi M. Reja
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Brittney Chau
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| |
Collapse
|
9
|
Chatterjee S, Bandyopadhyay A. Cysteine-Selective Installation of Functionally Diverse Boronic Acid Probes on Peptides. Org Lett 2023; 25:2223-2227. [PMID: 36988909 DOI: 10.1021/acs.orglett.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The current methods for direct late-stage and residue-selective installation of a versatile boronic acid (BA) repertoire on peptides are inadequate for a wide range of applications. Here, we show the suitability and efficiency of thiol-ene radical click chemistry to install functionally versatile BA derivatives on numerous bioactive, native peptides. Our work highlights that the methodology is operationally simple and adaptable for applications with BA-modified peptides, such as cyclization, conjugation, and functional group alteration.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Anupam Bandyopadhyay - Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anupam Bandyopadhyay
- Anupam Bandyopadhyay - Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
10
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Tantipanjaporn A, Wong MK. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023; 28:molecules28031083. [PMID: 36770752 PMCID: PMC9953373 DOI: 10.3390/molecules28031083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The demand for creation of protein diversity and regulation of protein function through native protein modification and post-translational modification has ignited the development of selective chemical modification methods for peptides and proteins. Chemical bioconjugation offers selective functionalization providing bioconjugates with desired properties and functions for diverse applications in chemical biology, medicine, and biomaterials. The amino group existing at the lysine residue and N-terminus of peptides and proteins has been extensively studied in bioconjugation because of its good nucleophilicity and high surface exposure. Herein, we review the development of chemical methods for modification of the amino groups on lysine residue and N-terminus featuring excellent selectivity, mild reaction conditions, short reaction time, high conversion, biocompatibility, and preservation of protein integrity. This review is organized based on the chemoselectivity and site-selectivity of the chemical bioconjugation reagents to the amino acid residues aiming to provide guidance for the selection of appropriate bioconjugation methods.
Collapse
|
12
|
Bhatt Mitra J, Chatterjee S, Kumar A, Bandyopadhyay A, Mukherjee A. Integrating a covalent probe with ubiquicidin fragment enables effective bacterial infection imaging. RSC Med Chem 2022; 13:1239-1245. [PMID: 36325398 PMCID: PMC9579938 DOI: 10.1039/d2md00190j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
Developing potent and novel bacterial imaging agents remains formidable due to the rapid development of bacterial resistance. Ubiquicidin and its derivatives are the most studied antimicrobial peptides that bind to anionic membranes of a broad range of bacterial pathogens. Studies reveal that UBI (29-41) labeled with 99mTc and 68Ga could distinguish sterile inflammation from infection. A significant challenge that remains for cationic peptides is their poor salt tolerance. The present study deliberates the increment of UBI (29-41) peptide interaction with the bacterial membrane by incorporating 2-acetylphenylboronic acid (2-APBA) as a covalent probe and developing infection imaging probes with improved retention at the target. Given that both 99mTc-UBI (29-41) and 99mTc-UBI (29-41)-2-APBA peptide complexes are stable in serum over 16 h, 99mTc-UBI (29-41)-2-APBA shows enhanced uptake in S. aureus cells as compared to 99mTc-UBI (29-41). SPECT imaging in a mouse model of infection exhibited a higher target to non-target ratio after 2 h in the case of 99mTc-UBI (29-41)-2-APBA. The present study reveals a synergistic mechanism of target binding through covalent conjugation and non-covalent interaction, which could be a potential strategy for improving bacterial infection imaging. As a proof of concept, 99mTc-UBI (29-41)-2-APBA elicits our hypothesis by in vivo imaging of bacterial infection.
Collapse
Affiliation(s)
- Jyotsna Bhatt Mitra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC) Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai-400094 India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC) Mumbai 400085 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC) Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai-400094 India
| |
Collapse
|
13
|
Shen D, Jin W, Zhao Q, Wang M, Zhang B, Feng H, Wan W, Bai Y, Lyu H, Sun J, Zhang L, Liu Y. Covalent Solvatochromic Proteome Stress Sensor Based on the Schiff Base Reaction. Anal Chem 2022; 94:14143-14150. [PMID: 36194526 DOI: 10.1021/acs.analchem.2c01281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalent-type probes or sensors have been seldom reported for aggregated proteins. Herein, we reported a series of covalent solvatochromic probes to selectively modify and detect aggregated proteomes through the Schiff base reaction. Such covalent modification was discovered by serendipity using the P1 probe with an aldehyde functional group, exhibiting enhanced fluorescence intensity and unusually large blue shift upon protein aggregation. Supported by the biochemical and mass spectrometry results, we identified that this probe can modify the lysine residue of aggregated proteins selectively over folded ones via the Schiff base reaction. The generality of designing such a covalent-type probe was demonstrated in multiple probe scaffolds using different model proteins. Finally, we exploited the distinct solvatochromism of P1 after Schiff base linkage with aggregated proteins to visualize the distinct morphology of aggregated proteomes, as well as to quantify the polarity heterogeneity inside it. This work may intrigue the exploration of other chemical reaction types to covalently functionalize aggregated proteins that were difficult to analyze.
Collapse
Affiliation(s)
- Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Beirong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jialu Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
14
|
Zheng M, Chen FJ, Li K, Reja RM, Haeffner F, Gao J. Lysine-Targeted Reversible Covalent Ligand Discovery for Proteins via Phage Display. J Am Chem Soc 2022; 144:15885-15893. [PMID: 35976695 PMCID: PMC9440474 DOI: 10.1021/jacs.2c07375] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding via reversible covalent bond formation presents a novel and powerful mechanism to enhance the potency of synthetic inhibitors for therapeutically important proteins. Work on this front has yielded the anticancer drug bortezomib as well as the antisickling drug voxelotor. However, the rational design of reversible covalent inhibitors remains difficult even when noncovalent inhibitors are available as a scaffold. Herein, we report chemically modified phage libraries, both linear and cyclic, that incorporate 2-acetylphenylboronic acid (APBA) as a warhead to bind lysines via reversible iminoboronate formation. To demonstrate their utility, these APBA-presenting phage libraries were screened against sortase A of Staphylococcus aureus, as well as the spike protein of SARS-CoV-2. For both protein targets, peptide ligands were readily identified with single-digit micromolar potency and excellent specificity, enabling live-cell sortase inhibition and highly sensitive spike protein detection, respectively. Furthermore, our structure-activity studies unambiguously demonstrate the benefit of the APBA warhead for protein binding. Overall, this contribution shows for the first time that reversible covalent inhibitors can be developed via phage display for a protein of interest. The phage display platform should be widely applicable to proteins including those involved in protein-protein interactions.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Fa-Jie Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Kaicheng Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Rahi M. Reja
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Fredrik Haeffner
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
15
|
Ting CY, Kolbeck PT, Colombo R, Chakiath C, Rice M, Marelli M, Christie RJ. Cyclopentadiene as a Multifunctional Reagent for Normal- and Inverse-Electron Demand Diels-Alder Bioconjugation. Bioconjug Chem 2022; 33:1609-1619. [PMID: 35943835 DOI: 10.1021/acs.bioconjchem.2c00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optimizing the Diels-Alder (DA) reaction for aqueous coupling has resulted in practical methods to link molecules such as drugs and diagnostic agents to proteins. Both normal electron demand (NED) and inverse electron demand (IED) DA coupling schemes have been employed, but neither mechanism entails a common multipurpose reactive group. This report focuses on expanding the bioconjugation toolbox for cyclopentadiene through the identification of reactive groups that couple through NED or IED mechanisms in aqueous solution. Dienophiles and tetrazine derivatives were screened for reactivity and selectivity toward antibodies bearing cyclopentadiene amino acids to yield bioconjugates. Twelve NED dienophiles and four tetrazine-based IED substrates were identified as capable of practical biocoupling. Furthermore, tetrazine ligation to cyclopentadiene occurred at a rate of 3.3 ± 0.5 M-1 s-1 and was capable of bioorthogonal transformations, as evidenced by the selective protein labeling in serum. Finally, an antibody-drug conjugate (ADC)-bearing monomethyl auristatin E was prepared via tetrazine conjugation to cyclopentadiene. The resulting ADC was stable and demonstrated potent activity in vitro. These findings expand the utility of cyclopentadiene as a tool to couple entities to proteins via dual DA addition mechanisms.
Collapse
Affiliation(s)
- Cheng-Yueh Ting
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Paul T Kolbeck
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Raffaele Colombo
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Chacko Chakiath
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Megan Rice
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Marcello Marelli
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - R James Christie
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
16
|
Tan G, Wang Y, He Y, Miao G, Li Y, Wang X. Bioinspired poly(cation-π) micelles drug delivery platform for improving chemotherapy efficacy. J Control Release 2022; 349:486-501. [PMID: 35850378 DOI: 10.1016/j.jconrel.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Cation-π interactions widely exist in biological systems and play important roles in driving the self-assembly of biological molecules, stabilizing protein structures, and mediating molecular recognitions. Herein, a novel bioinspired poly(cation-π) micelles drug delivery platform is designed and constructed, based on the block copolymers with random cationic-aromatic sequences (amphiphilic cation-π polymer). Compared to the polymeric micelles formed by conventional amphiphilic block copolymers which are commonly limited to hydrophobic drugs loading, the engineered poly(cation-π) micelles can serve as a universal nanocarrier for a wide variety of hydrophobic and hydrophilic drugs with π-structure. It is found that due to the strong cation-π interactions integrated in the core of poly(cation-π) micelles, this nanosystem performs improved structural stability and higher drug loading capability. Especially, in the oxidation-responsive poly(cation-π) micelles as proof-of-concept, the process of stimuli-induced drug release is found significantly accelerated under the biologically relevant level of H2O2 in tumor microenvironment. Furthermore, the mechanism of cation-π interaction enhanced H2O2-sensitivity of poly(cation-π) micelles is proposed, and the improving anti-tumor efficacy is demonstrated in both in vitro and in vivo models. This work broadens the construction strategy of polymeric micelles and offers a universal drug delivery platform for efficient tumor chemotherapy.
Collapse
Affiliation(s)
- Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Yuejian He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Bell HJ, Malins LR. Peptide macrocyclisation via late-stage reductive amination. Org Biomol Chem 2022; 20:6250-6256. [PMID: 35621075 DOI: 10.1039/d2ob00782g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-component reductive amination approach to the synthesis of peptide macrocycles is reported which leverages the inherent reactivity of proteinogenic amine nucleophiles. Unprotected peptides bearing α-amine and side chain amine motifs undergo two-fold reductive amination reactions with 2,6-pyridinedialdehyde linkers in aqueous media to afford macrocyclic peptide products with backbone embedded pyridine motifs. Dialdehyde staples bearing valuable azide and alkyne handles also enable the post-cyclisation modification of peptides using copper-catalysed azide-alkyne cycloaddition (CuAAC) chemistry.
Collapse
Affiliation(s)
- Hayden J Bell
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Caillaud K, Ladavière C. Water‐soluble (poly)acylhydrazones: Syntheses and Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kilian Caillaud
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| | - Catherine Ladavière
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| |
Collapse
|
19
|
Nwajiobi O, Verma AK, Raj M. Rapid Arene Triazene Chemistry for Macrocyclization. J Am Chem Soc 2022; 144:4633-4641. [PMID: 35232021 DOI: 10.1021/jacs.2c00464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here, we report a novel rapid arene triazene strategy for the macrocyclization of peptides that generates an inbuilt chromophoric triazene moiety at the site of cyclization within a minute. The rapid arene triazene chemistry is chemoselective for secondary amines and p-amino phenylalanine. Importantly, the resulting triazene cyclic peptide is highly stable at neutral pH and under harsh conditions but rapidly responds to various external stimuli such as UV radiations and acidic conditions, resulting in the ring opening to generate the linear peptides in an unchanged form, which further cyclizes under neutral pH conditions. This method works with completely unprotected peptides and has been applied for the synthesis of 18- to 66-membered monocycles and bicycles with various amino acid compositions in one pot under neutral pH conditions. Due to the high stability of triazene cyclic peptides, the postcyclization modification was carried out with various functional groups. This rapid, macrocyclization strategy featuring a triazene scaffold, amenable to late-stage diversification and responsive to external stimuli, should find application in various fields of chemical biology, selective drug delivery, and identification of cyclic peptide hits after library screening.
Collapse
Affiliation(s)
- Ogonna Nwajiobi
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ashish Kumar Verma
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
20
|
Haggett JG, Han GS, Moser AR, Golzwarden JVA, Vyas S, Domaille DW. Diazaborines oxidize slowly with H 2O 2 but rapidly with peroxynitrite in aqueous buffer. Org Biomol Chem 2022; 20:995-999. [PMID: 35029270 DOI: 10.1039/d1ob01668g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and peroxynitrite (ONOO-) oxidize arylboronic acids to their corresponding phenols. When used in molecular imaging probes and in ROS-responsive molecules, however, simple arylboronic acids struggle to discriminate between H2O2 and ONOO- because of their fast rate of reaction with both ROS. Here, we show that diazaborines (DABs) react slowly with H2O2 but rapidly with peroxynitrite in an aqueous buffer. In addition to their slow reaction with H2O2, the immediate product of DAB oxidation with H2O2 and ONOO- can yield a kinetically trapped CN Z-isomer that slowly equilibrates with its E-isomer. Taken together, our work shows that diazaborines exhibit enhanced kinetic discrimination between H2O2 and ONOO- compared to arylboronic acids, opening up new opportunities for diazaborine-based tools in chemical biology.
Collapse
Affiliation(s)
- Jack G Haggett
- Department of Chemistry, Colorado School of Mines, Golden CO, USA.
| | - Gun Su Han
- Department of Chemistry, Colorado School of Mines, Golden CO, USA.
| | - Angela R Moser
- Department of Chemistry, Colorado School of Mines, Golden CO, USA.
| | | | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, Golden CO, USA.
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden CO, USA.
| |
Collapse
|
21
|
Tang KC, Cao J, Boatner LM, Li L, Farhi J, Houk KN, Spangle J, Backus KM, Raj M. Tunable Amine-Reactive Electrophiles for Selective Profiling of Lysine. Angew Chem Int Ed Engl 2022; 61:e202112107. [PMID: 34762358 PMCID: PMC10111338 DOI: 10.1002/anie.202112107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Proteome profiling by activated esters identified >9000 ligandable lysines but they are limited as covalent inhibitors due to poor hydrolytic stability. Here we report our efforts to design and discover a new series of tunable amine-reactive electrophiles (TAREs) for selective and robust labeling of lysine. The major challenges in developing selective probes for lysine are the high nucleophilicity of cysteines and poor hydrolytic stability. Our work circumvents these challenges by a unique design of the TAREs that form stable adducts with lysine and on reaction with cysteine generate another reactive electrophiles for lysine. We highlight that TAREs exhibit substantially high hydrolytic stability as compared to the activated esters and are non-cytotoxic thus have the potential to act as covalent ligands. We applied these alternative TAREs for the intracellular labeling of proteins in different cell lines, and for the selective identification of lysines in the human proteome on a global scale.
Collapse
Affiliation(s)
- Kuei-Chien Tang
- Present address: Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jian Cao
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa M Boatner
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
- Present address: Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Linwei Li
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Jonathan Farhi
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer Spangle
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
- Present address: Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Monika Raj
- Present address: Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
22
|
Tang K, Cao J, Boatner LM, Li L, Farhi J, Houk KN, Spangle J, Backus KM, Raj M. Tunable Amine‐Reactive Electrophiles for Selective Profiling of Lysine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuei‐Chien Tang
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Jian Cao
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
| | - Lisa M. Boatner
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
- Present address: Department of Biological Chemistry David Geffen School of Medicine UCLA Los Angeles CA 90095 USA
| | - Linwei Li
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
| | - Jonathan Farhi
- Department of Radiation Oncology Emory University Atlanta GA 30322 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
| | - Jennifer Spangle
- Department of Radiation Oncology Emory University Atlanta GA 30322 USA
| | - Keriann M. Backus
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
- Present address: Department of Biological Chemistry David Geffen School of Medicine UCLA Los Angeles CA 90095 USA
| | - Monika Raj
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| |
Collapse
|
23
|
Reja RM, Wang W, Lyu Y, Haeffner F, Gao J. Lysine-Targeting Reversible Covalent Inhibitors with Long Residence Time. J Am Chem Soc 2022; 144:1152-1157. [PMID: 35040658 PMCID: PMC8928449 DOI: 10.1021/jacs.1c12702] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report a new reversible lysine conjugation that features a novel diazaborine product and much slowed dissociation kinetics in comparison to the previously known iminoboronate chemistry. Incorporating the diazaborine-forming warhead RMR1 to a peptide ligand gives potent and long-acting reversible covalent inhibitors of the staphylococcal sortase. The efficacy of sortase inhibition is demonstrated via biochemical and cell-based assays. A comparative study of RMR1 and an iminoboronate-forming warhead highlights the significance and potential of modulating bond dissociation kinetics in achieving long-acting reversible covalent inhibitors.
Collapse
Affiliation(s)
- Rahi M. Reja
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, United States
| | - Wenjian Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, United States
| | - Yuhan Lyu
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, United States
| | - Fredrik Haeffner
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, United States
| |
Collapse
|
24
|
Maruyama K, Ishiyama T, Seki Y, Sakai K, Togo T, Oisaki K, Kanai M. Protein Modification at Tyrosine with Iminoxyl Radicals. J Am Chem Soc 2021; 143:19844-19855. [PMID: 34787412 DOI: 10.1021/jacs.1c09066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) of proteins are a biological mechanism for reversibly controlling protein function. Synthetic protein modifications (SPMs) at specific canonical amino acids can mimic PTMs. However, reversible SPMs at hydrophobic amino acid residues in proteins are especially limited. Here, we report a tyrosine (Tyr)-selective SPM utilizing persistent iminoxyl radicals, which are readily generated from sterically hindered oximes via single-electron oxidation. The reactivity of iminoxyl radicals with Tyr was dependent on the steric and electronic demands of oximes; isopropyl methyl piperidinium oxime 1f formed stable adducts, whereas the reaction of tert-butyl methyl piperidinium oxime 1o was reversible. The difference in reversibility between 1f and 1o, differentiated only by one methyl group, is due to the stability of iminoxyl radicals, which is partly dictated by the bond dissociation energy of oxime O-H groups. The Tyr-selective modifications with 1f and 1o proceeded under physiologically relevant, mild conditions. Specifically, the stable Tyr-modification with 1f introduced functional small molecules, including an azobenzene photoswitch, to proteins. Moreover, masking critical Tyr residues by SPM with 1o, and subsequent deconjugation triggered by the treatment with a thiol, enabled on-demand control of protein functions. We applied this reversible Tyr modification with 1o to alter an enzymatic activity and the binding affinity of a monoclonal antibody with an antigen upon modification/deconjugation. The on-demand ON/OFF switch of protein functions through Tyr-selective and reversible covalent-bond formation will provide unique opportunities in biological research and therapeutics.
Collapse
Affiliation(s)
- Katsuya Maruyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ishiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Seki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kentaro Sakai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takaya Togo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Tan Y, Wu J, Song L, Zhang M, Hipolito CJ, Wu C, Wang S, Zhang Y, Yin Y. Merging the Versatile Functionalities of Boronic Acid with Peptides. Int J Mol Sci 2021; 22:ijms222312958. [PMID: 34884766 PMCID: PMC8657650 DOI: 10.3390/ijms222312958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides inherently feature the favorable properties of being easily synthesized, water-soluble, biocompatible, and typically non-toxic. Thus, boronic acid has been widely integrated with peptides with the goal of discovering peptide ligands with novel biological activities, and this effort has led to broad applications. Taking the integration between boronic acid and peptide as a starting point, we provide an overview of the latest research advances and highlight the versatile and robust functionalities of boronic acid. In this review, we summarize the diverse applications of peptide boronic acids in medicinal chemistry and chemical biology, including the identification of covalent reversible enzyme inhibitors, recognition, and detection of glycans on proteins or cancer cell surface, delivery of siRNAs, development of pH responsive devices, and recognition of RNA or bacterial surfaces. Additionally, we discuss boronic acid-mediated peptide cyclization and peptide modifications, as well as the facile chemical synthesis of peptide boronic acids, which paved the way for developing a growing number of peptide boronic acids.
Collapse
Affiliation(s)
- Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Mengmeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Christopher John Hipolito
- Screening & Compound Profiling, Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (S.W.); (Y.Y.)
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
- Correspondence: (S.W.); (Y.Y.)
| |
Collapse
|
26
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid-Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021; 60:20301-20307. [PMID: 34272794 PMCID: PMC8457249 DOI: 10.1002/anie.202108885] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 11/11/2022]
Abstract
We introduce a new and highly efficient synthetic protocol towards multifunctional fluorescent cyclopeptides by solid-phase peptide macrocyclization via dipyrrin construction, with full scope of proteinogenic amino acids and different ring sizes. Various bicyclic peptides can be created by dipyrrin-based crosslinking and double dipyrrin-ring formation. The embedded dipyrrin can be either transformed to fluorescent BODIPY and then utilized as cancer-selective targeted protein imaging probe in vitro, or directly employed as a selective metal sensor in aqueous media. This work provides a valuable addition to the peptide macrocyclization toolbox, and a blueprint for the development of multifunctional dipyrrin linkers in cyclopeptides for a wide range of potential bioapplications.
Collapse
Affiliation(s)
- Yue Wu
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Waygen Thor
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Kaitlin Hao Yi Chan
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Xia Ma
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical TechnologyHong Kong Polytechnic UniversityHung HomHong Kong SARChina
| | - Nicholas J. Long
- Department of ChemistryImperial College London, Molecular Sciences Research HubLondonUK
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARChina
| |
Collapse
|
27
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid‐Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Wu
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Ho‐Fai Chau
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Kaitlin Hao Yi Chan
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Xia Ma
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Nicholas J. Long
- Department of Chemistry Imperial College London, Molecular Sciences Research Hub London UK
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| |
Collapse
|
28
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
29
|
Diez‐Castellnou M, Suo R, Marro N, Matthew SAL, Kay ER. Rapidly Adaptive All-covalent Nanoparticle Surface Engineering. Chemistry 2021; 27:9948-9953. [PMID: 33871124 PMCID: PMC8362155 DOI: 10.1002/chem.202101042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 01/01/2023]
Abstract
Emerging nanotechnologies demand the manipulation of nanoscale components with the same predictability and programmability as is taken for granted in molecular synthetic methodologies. Yet installing appropriately reactive chemical functionality on nanomaterial surfaces has previously entailed compromises in terms of reactivity scope, functionalization density, or both. Here, we introduce an idealized dynamic covalent nanoparticle building block for divergent and adaptive post-synthesis modification of colloidal nanomaterials. Acetal-protected monolayer-stabilized gold nanoparticles are prepared via operationally simple protocols and are stable to long-term storage. Tunable surface densities of reactive aldehyde functionalities are revealed on-demand, leading to a wide range of adaptive surface engineering options from one nanoscale synthon. Analytically tractable with molecular precision, interfacial reaction kinetics and dynamic surface constitutions can be probed in situ at the ensemble level. High functionalization densities combined with rapid equilibration kinetics enable environmentally adaptive surface constitutions and rapid nanoparticle property switching in response to simple chemical effectors.
Collapse
Affiliation(s)
| | - Rongtian Suo
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Nicolas Marro
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Saphia A. L. Matthew
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Euan R. Kay
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
30
|
Park SH, Jung H, Lee H, Kim TM, Cho JW, Jang WD, Hyun JY, Shin I. Cancer cell death using metabolic glycan labelling techniques. Chem Commun (Camb) 2021; 56:10650-10653. [PMID: 32870196 DOI: 10.1039/d0cc04474a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we describe a method for inducing cancer cell death, which relies on the use of a H2O2-responsive glycan metabolic precursor in conjunction with antibody-dependent cellular cytotoxicity (ADCC) or photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang F, Ullah A, Fan X, Xu Z, Zong R, Wang X, Chen G. Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation. J Control Release 2021; 333:107-128. [PMID: 33774119 DOI: 10.1016/j.jconrel.2021.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
An appropriate delivery system can improve the immune effects of antigens against various infections or tumors. Antigen-presenting cells (APCs) are specialized to capture and process antigens in vivo, which link the innate and adaptive immune responses. Functionalization of vaccine delivery systems with targeting moieties to APCs is a promising strategy for provoking potent immune responses. Additionally, the internalization and intracellular distribution of antigens are closely related to the initiation of downstream immune responses. With a deeper understanding of the intracellular microenvironment and the mechanisms of antigen presentation, vehicles designed to respond to endogenous and external stimuli can modulate antigen processing and presentation pathways, which are critical to the types of immune response. Here, an overview of extracellular targeting delivery of antigens to APCs and intracellular stimulus-responsiveness strategies is provided, which might be helpful for the rational design of vaccine delivery systems.
Collapse
Affiliation(s)
- Fei Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Xuelian Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhou Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rongling Zong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
32
|
Klass SH, Sofen LE, Hallberg ZF, Fiala TA, Ramsey AV, Dolan NS, Francis MB, Furst AL. Covalent capture and electrochemical quantification of pathogenic E. coli. Chem Commun (Camb) 2021; 57:2507-2510. [PMID: 33585846 PMCID: PMC9274617 DOI: 10.1039/d0cc08420d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pathogenic E. coli pose a significant threat to public health, as strains of this species cause both foodborne illnesses and urinary tract infections. Using a rapid bioconjugation reaction, we selectively capture E. coli at a disposable gold electrode from complex solutions and accurately quantify the pathogenic microbes using electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Sarah H Klass
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Laura E Sofen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zachary F Hallberg
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Tahoe A Fiala
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Nicholas S Dolan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
33
|
Groleau RR, James TD, Bull SD. The Bull-James assembly: Efficient iminoboronate complex formation for chiral derivatization and supramolecular assembly. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Wu Y, Williams J, Calder EDD, Walport LJ. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chem Biol 2021; 2:151-165. [PMID: 34458778 PMCID: PMC8341444 DOI: 10.1039/d0cb00167h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Jack Williams
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| |
Collapse
|
35
|
Lamba M, Goswami A, Bandyopadhyay A. A periodic development of BPA and BSH based derivatives in boron neutron capture therapy (BNCT). Chem Commun (Camb) 2021; 57:827-839. [DOI: 10.1039/d0cc06557a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A schematic representation of various judicious approaches for the synthesis of BPA and BSH modified compounds for effective BNCT.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry
- Indian Institute of Technology
- Birla Farms
- Ropar
- India
| | - Avijit Goswami
- Department of Chemistry
- Indian Institute of Technology
- Birla Farms
- Ropar
- India
| | | |
Collapse
|
36
|
António JPM, Faustino H, Gois PMP. A 2-formylphenylboronic acid (2FPBA)-maleimide crosslinker: a versatile platform for Cys-peptide-hydrazine conjugation and interplay. Org Biomol Chem 2021; 19:6221-6226. [PMID: 34198316 DOI: 10.1039/d1ob00917f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we describe the preparation of a heterobifunctional 2-formylphenylboronic acid (2-FPBA)-maleimide crosslinker and explore its versatility in the preparation of various bioconjugates. We demonstrate the straightforward attachment of hydrazine payloads to cysteine residues in peptides, as well as the crosslinking of different thiol-bearing peptides or payloads with N-terminal cysteine peptides. Importantly, the dynamic nature of the 2-FPBA handle enables an interplay between the thiazolidine and diazaborine forms, which allows obtaining various products controlled by (and in some cases independent of) the order of addition of the components.
Collapse
Affiliation(s)
- João P M António
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal. and Chimie ParisTech, PSL University, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal. and Association BLC3-Innovation and Technology Campus, Oliveira do Hospital, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
37
|
Hao L, Zhou Q, Piao Y, Zhou Z, Tang J, Shen Y. Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. J Control Release 2020; 330:362-371. [PMID: 33359484 DOI: 10.1016/j.jconrel.2020.12.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Albumin-based nanomedicines are important nanoplatforms for cancer drug delivery. The drugs are either physically encapsulated or covalently conjugated to albumin or albumin-based nanosystems. Physical encapsulation is advantageous due to requiring no chemical modification of drug molecules, but many drugs, for instance, camptothecin (CPT) and curcumin (CCM), though very hydrophobic, can't be loaded in or form nanoformulations with albumin. Herein, we demonstrate prodrugs readily binding to proteins via iminoboronates and forming nanoparticles for cancer drug delivery. CPT and CCM were functionalized with 2-acetylphenylboronic acid (2-APBA) to produce prodrugs CPT-SS-APBA and CCM- APBA. The prodrugs bound to bovine serum albumin (BSA) via formation of iminoboronates and the produced BSA/prodrug readily self-assembled into well-defined nanoparticles with high loading efficiency, improved colloidal stability, and much-improved pharmacokinetics. The nanoparticles effectively released drugs in the intracellular acidic environment or the cytosol rich in glutathione (GSH). In vivo, the nanoparticles showed enhanced anticancer efficacy compared with clinically used irinotecan or sorafenib in subcutaneous 4 T1 or HepG2 tumor models. This work demonstrates a versatile protein-binding prodrug platform applicable to protein-based drug formulations and even antibody-drug conjugates.
Collapse
Affiliation(s)
- Lingqiao Hao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Quan Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Ying Piao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.
| |
Collapse
|
38
|
Wang H, Guo Y, Wang C, Jiang X, Liu H, Yuan A, Yan J, Hu Y, Wu J. Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia. Biomaterials 2020; 269:120621. [PMID: 33383301 DOI: 10.1016/j.biomaterials.2020.120621] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia exists in most malignant tumors and often contributes to therapy resistance, especially for aerobic treatments such as photodynamic therapy (PDT) and radiotherapy. Here, we developed a novel light-controlled sustainable PDT in which light was used to help photosynthetic microorganisms (Chlorella) produce oxygen, and perfluorocarbon was used to enrich oxygen around the photosensitizer for sustained oxygen supply. After light stops, Chlorella further acts as an adjuvant to promote dendritic cell (DC) activation, promoting the antitumor immune response. We showed that sustainable PDT could continuously provide oxygen for photosensitizers and avoid PDT-induced local hypoxia. More importantly, sustainable PDT also promoted the activation of DCs and amplified the antitumor immune effects. Therefore, this novel strategy provides an effective but simple method for improving PDT in both tumor hypoxia and normoxia, and enhancing the antitumor immunity may be a new anti-resistance strategy for treating patients with advanced-stage cancer.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences of Nanjing University, Nanjing University, Nanjing, 210093, China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences of Nanjing University, Nanjing University, Nanjing, 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences of Nanjing University, Nanjing University, Nanjing, 210093, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Honghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences of Nanjing University, Nanjing University, Nanjing, 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences of Nanjing University, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jing Yan
- Department of Radiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences of Nanjing University, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences of Nanjing University, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China; Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China; Institute of Drug R&D, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
39
|
Chatterjee S, Anslyn EV, Bandyopadhyay A. Boronic acid based dynamic click chemistry: recent advances and emergent applications. Chem Sci 2020; 12:1585-1599. [PMID: 34163920 PMCID: PMC8179052 DOI: 10.1039/d0sc05009a] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Recently, reversible click reactions have found numerous applications in chemical biology, supramolecular chemistry, and biomedical applications. Boronic acid (BA)-mediated cis-diol conjugation is one of the best-studied reactions among them. An excellent understanding of the chemical properties and biocompatibility of BA-based compounds has inspired the exploration of novel chemistries using boron to fuel emergent sciences. This topical review focuses on the recent progress of iminoboronate and salicylhydroxamic-boronate constituted reversible click chemistries in the past decade. We highlight the mechanism of reversible kinetics and its applications in chemical biology, medicinal chemistry, biomedical devices, and material chemistry. This article also emphasizes the fundamental reactivity of these two conjugate chemistries with assorted nucleophiles at variable pHs, which is of utmost importance to any stimuli-responsive biological and material chemistry explorations.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| | - Eric V Anslyn
- Department of Chemistry, University of Texas 1 University Station A1590 Austin Texas 78712 USA
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| |
Collapse
|
40
|
Gong F, Yang N, Wang Y, Zhuo M, Zhao Q, Wang S, Li Y, Liu Z, Chen Q, Cheng L. Oxygen-Deficient Bimetallic Oxide FeWO X Nanosheets as Peroxidase-Like Nanozyme for Sensing Cancer via Photoacoustic Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003496. [PMID: 33107203 DOI: 10.1002/smll.202003496] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Indexed: 05/23/2023]
Abstract
Nanozymes with high catalytic activity and great stability have attracted increasing interests as the promising alternative to natural enzymes for applications in various fields. In this study, a new type of highly efficient peroxidase-like nanozymes based on FeWOX nanosheets (NSs) synthesized by a thermal-decomposition method is reported. Owing to the sheet-structure with maximized utilization of catalytic sites (Fe atoms and oxygen vacancies), such FeWOX NSs exert efficient enzyme activity to trigger catalytic decomposition of hydrogen peroxide (H2 O2 ) into hydroxyl radicals (•OH). A nanozyme-based ratio-metric nanoprobe is then fabricated by co-loading of 3,3,5,5-tetramethylbenzidine (TMB) and IR780 dye on FeWOX NSs to enable ratio-metric photoacoustic (PA) imaging of endogenous H2 O2 , as verified by imaging of the subcutaneous 4T1 xenograft tumor model and lipopolysaccharide (LPS)-induced inflammation model. Moreover, FeWOX NSs could also be employed as promising nanoagents for multimodal computed tomography (CT) and magnetic resonance (MR) imaging of tumors, due to the strong X-ray attenuation ability of W element and high MR contrast ability of Fe element, respectively. Importantly, FeWOX NSs with good biodegradability could be cleared out from the body without any significant biotoxicity. This work highlights bimetallic oxide FeWOX NSs as an enzyme-mimetic nanoplatform for imaging of the tumor microenvironment.
Collapse
Affiliation(s)
- Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yong Wang
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Mingpeng Zhuo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Qi Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Sheng Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215006, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215006, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
41
|
Russo R, Padanha R, Fernandes F, Veiros LF, Corzana F, Gois PMP. Engineering Boron Hot Spots for the Site-Selective Installation of Iminoboronates on Peptide Chains. Chemistry 2020; 26:15226-15231. [PMID: 32627856 DOI: 10.1002/chem.202002675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Indexed: 11/11/2022]
Abstract
Boronic acids (BAs) are a promising bioconjugation function to design dynamic materials as they can establish reversible covalent bonds with oxygen/nitrogen nucleophiles that respond to different pH, ROS, carbohydrates and glutathione levels. However, the dynamic nature of these bonds also limits the control over the stability and site-selectivity of the bioconjugation, which ultimately leads to heterogeneous conjugates with poor stability under physiological conditions. Here we disclose a new strategy to install BAs on peptide chains. In this study, a "boron hot spot" based on the 3-hydroxyquinolin-2(1H)-one scaffold was developed and upon installation on a peptide N-terminal cysteine, enables the site-selective formation of iminoboronates with 2-formyl-phenyl boronic acids (Ka of 58128±2 m-1 ). The reaction is selective in the presence of competing lysine ϵ-amino groups, and the resulting iminoboronates, displayed improved stability in buffers solutions and a cleavable profile in the presence of glutathione. Once developed, the methodology was used to prepare cleavable fluorescent conjugates with a laminin fragment, which enabled the validation of the 67LR receptor as a target to deliver cargo to cancer HT29 cells.
Collapse
Affiliation(s)
- Roberto Russo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rita Padanha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
42
|
Kelly M, Cambray S, McCarthy KA, Wang W, Geisinger E, Ortiz-Marquez J, van Opijnen T, Gao J. Peptide Probes of Colistin Resistance Discovered via Chemically Enhanced Phage Display. ACS Infect Dis 2020; 6:2410-2418. [PMID: 32786283 DOI: 10.1021/acsinfecdis.0c00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Colistin is an antibiotic of last resort used to treat infections caused by multidrug-resistant Gram-negative bacterial pathogens. The recent surge in reported cases of colistin-resistant infections urgently calls for fast and reliable diagnostic methods, which can be used for the facile detection and proper treatment of these challenging infections. A major mechanism of colistin resistance involves phosphoethanolamine (PE) modification of lipopolysaccharide (LPS), the molecular target of colistin. This LPS modification mechanism has been recently reported to be transferrable via a plasmid-carried mcr-1 gene, which is particularly concerning as it may readily confer colistin resistance to a wide array of bacterial pathogens. To develop molecular tools to allow facile detection of colistin resistance, we have herein enlisted a novel phage library that incorporates dynamic covalent warheads to recognize PE modifications on bacterial cells. Screening of this chemically modified phage library against colistin-resistant pathogens revealed a number of peptide probes that readily differentiate colistin-resistant bacterial strains from their colistin-susceptible counterparts. With a fluorophore label, these peptide probes selectively stain colistin-resistant bacteria at sub-to-low micromolar concentrations. The bacterial staining is minimally inhibited by the presence of serum proteins or even blood serum. Mechanistic studies indicate that our peptide probes bind colistin-resistant bacteria primarily by targeting PE-modified lipids. However, some species-specific features of the cell surface can also contribute to the peptides' association to bacterial cells. Further elucidation of such cell surface features may give molecular probes with improved species and strain specificity, which will enable bacterial infection diagnosis with high precision.
Collapse
Affiliation(s)
- Michael Kelly
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Samantha Cambray
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kelly A. McCarthy
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wenjian Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Juan Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
43
|
Reguera L, Rivera DG. Macrocyclic Iminopeptides Diversify To Better Target Proteins. ChemMedChem 2020; 15:1111-1112. [DOI: 10.1002/cmdc.202000261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/28/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Leslie Reguera
- Faculty of ChemistryUniversity of Havana, Zapata y G Havana 10400 Cuba
| | - Daniel G. Rivera
- Faculty of ChemistryUniversity of Havana, Zapata y G Havana 10400 Cuba
| |
Collapse
|
44
|
Guéret SM, Thavam S, Carbajo RJ, Potowski M, Larsson N, Dahl G, Dellsén A, Grossmann TN, Plowright AT, Valeur E, Lemurell M, Waldmann H. Macrocyclic Modalities Combining Peptide Epitopes and Natural Product Fragments. J Am Chem Soc 2020; 142:4904-4915. [PMID: 32058716 PMCID: PMC7307906 DOI: 10.1021/jacs.0c00269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
“Hot
loop” protein segments have variable structure
and conformation and contribute crucially to protein–protein
interactions. We describe a new hot loop mimicking modality, termed
PepNats, in which natural product (NP)-inspired structures are incorporated
as conformation-determining and -restricting structural elements into
macrocyclic hot loop-derived peptides. Macrocyclic PepNats representing
hot loops of inducible nitric oxide synthase (iNOS) and human agouti-related
protein (AGRP) were synthesized on solid support employing macrocyclization
by imine formation and subsequent stereoselective 1,3-dipolar cycloaddition
as key steps. PepNats derived from the iNOS DINNN hot loop and the
AGRP RFF hot spot sequence yielded novel and potent ligands of the
SPRY domain-containing SOCS box protein 2 (SPSB2) that binds to iNOS,
and selective ligands for AGRP-binding melanocortin (MC) receptors.
NP-inspired fragment absolute configuration determines the conformation
of the peptide part responsible for binding. These results demonstrate
that combination of NP-inspired scaffolds with peptidic epitopes enables
identification of novel hot loop mimics with conformationally constrained
and biologically relevant structure.
Collapse
Affiliation(s)
- Stéphanie M Guéret
- Department of Chemical Biology, AstraZeneca-Max Planck Institute Satellite Unit, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Sasikala Thavam
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Rodrigo J Carbajo
- Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0SL, United Kingdom
| | - Marco Potowski
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Göran Dahl
- Structure, Biophysics & Fragment Based Lead Generation, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Eric Valeur
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
45
|
Koo SM, Vendola AJ, Momm SN, Morken JP. Alkyl Group Migration in Ni-Catalyzed Conjunctive Coupling with C(sp 3) Electrophiles: Reaction Development and Application to Targets of Interest. Org Lett 2020; 22:666-669. [PMID: 31909622 PMCID: PMC7054899 DOI: 10.1021/acs.orglett.9b04453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic conjunctive cross-coupling reaction is developed that allows the construction of chiral organoboronic esters from alkylboron ate complexes and alkyl iodide electrophiles. The process occurs most efficiently with a Ni/Pybox-comprised catalyst and with an acenapthoquinone-derived boron ligand. Because of the broad functional group tolerance of this reaction, it can be a versatile tool for organic synthesis. Applications to the construction of (R)-coniine and (-)-indolizidine 209D are described.
Collapse
Affiliation(s)
- Seung Moh Koo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alex J. Vendola
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Sarah Noemi Momm
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
46
|
Biswas A, Ghosh T, Gavel PK, Das AK. PEG Functionalized Stimuli Responsive Self-Healable Injectable Dynamic Imino-boronate G-quadruplex Hydrogel for the Delivery of Doxorubicin. ACS APPLIED BIO MATERIALS 2020; 3:1052-1060. [DOI: 10.1021/acsabm.9b01034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ankan Biswas
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Pramod K. Gavel
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Apurba K. Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
47
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
48
|
Hu J, Hu Q, He X, Liu C, Kong Y, Cheng Y, Zhang Y. Stimuli-Responsive Hydrogels with Antibacterial Activity Assembled from Guanosine, Aminoglycoside, and a Bifunctional Anchor. Adv Healthc Mater 2020; 9:e1901329. [PMID: 31814315 DOI: 10.1002/adhm.201901329] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Indexed: 01/09/2023]
Abstract
Multistimuli-responsive hydrogels with specific functions have attracted great interest for biomedical applications; however, these smart hydrogels usually require the presynthesis of macromolecular building blocks with multiple ligands and the integration of bioactive cargoes into the gels. Here, a multistimuli-responsive hydrogel with potent antibacterial activity by a combination of supramolecular assembly and iminoboronate chemistry is reported. The hydrogel consists of all-small-molecule building blocks including aminoglycoside, guanosine, potassium ion, and a bifunctional anchor bearing both boronic acid and aldehyde groups. Guanosines form quadruplexes in the presence of potassium ions via supramolecular assembly, and the bifunctional anchor connects aminoglycosides, a class of potent antibiotics to cis-diol groups on quadruplexes via dynamic iminoboronate chemistry, yielding a smart hydrogel containing abundant antibiotics. The hydrogel is sensitive to multistimuli such as heat, acids, oxidants, glucose and crown ether, which promote the release of antibiotics from the gels. Moreover, the prepared hydrogels show potent antibacterial activities both in vitro and in vivo. The results provide a new option to prepare antibacterial hydrogels with multistimuli responsiveness via facile chemistry using all-small-molecule building blocks.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Qianyu Hu
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Xu He
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Cenxi Liu
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
| | - Yanlong Kong
- Department of OrthopaedicsFengxian Hospital Affiliated to Anhui University of Science and Technology Shanghai 201499 China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal University Shanghai 200241 P. R. China
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Yadong Zhang
- Department of OrthopaedicsFengxian Hospital Affiliated to Anhui University of Science and Technology Shanghai 201499 China
- Department of OrthopaedicsFengxian Hospital Affiliated to Southern Medical University Shanghai 201499 China
- Southern Medical University Guangdong 510515 P. R. China
| |
Collapse
|
49
|
Ballance WC, Qin EC, Chung HJ, Gillette MU, Kong H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials 2019; 217:119292. [PMID: 31279098 PMCID: PMC7081518 DOI: 10.1016/j.biomaterials.2019.119292] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases and disorders seriously impact memory and cognition and can become life-threatening. Current medical techniques attempt to combat these detrimental effects mainly through the administration of neuromedicine. However, drug efficacy is limited by rapid dispersal of the drugs to off-target sites while the site of administration is prone to overdose. Many neuropathological conditions are accompanied by excessive reactive oxygen species (ROS) due to the inflammatory response. Accordingly, ROS-responsive drug delivery systems have emerged as a promising solution. To guide intelligent and comprehensive design of ROS-responsive drug delivery systems, this review article discusses the two following topics: (1) the biology of ROS in both healthy and diseased nervous systems and (2) recent developments in ROS-responsive, drug delivery system design. Overall, this review article would assist efforts to make better decisions about designing ROS-responsive, neural drug delivery systems, including the selection of ROS-responsive functional groups.
Collapse
Affiliation(s)
- William C Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
50
|
Yu Y, Zhang L, Wang M, Yang Z, Lin L, Xiong Y, Xu Z, Wang J. H 2O 2/near-infrared light-responsive nanotheronostics for MRI-guided synergistic chemo/photothermal cancer therapy. Nanomedicine (Lond) 2019; 14:2189-2207. [PMID: 31411542 DOI: 10.2217/nnm-2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a H2O2/near-infrared (NIR) laser light-responsive nanoplatform (manganese-doped Prussian blue@polypyrrole [MnPB@PPy]) for synergistic chemo/photothermal cancer theranostics. Materials & methods: Doxorubicin (DOX) was loaded onto the surface of polypyrrole shells. The in vitro and in vivo MRI performance and anticancer effects of these nanoparticles (NPs) were evaluated. Results: The MnPB@PPy NPs could not only generate heat under NIR laser irradiation for cancer photothermal therapy but also act as an excellent MRI contrast agent. The loaded DOX could be triggered to release by both NIR light and H2O2 to enhance synergistic therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular cytotoxicity assays and in vivo treatment in a xenograft tumor model. Conclusion: The designed H2O2/NIR light-responsive MnPB@PPy-DOX NPs hold great potential for future biomedical applications.
Collapse
Affiliation(s)
- Yiming Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Li Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China.,Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | - Miao Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, PR China
| | - Zhe Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Leping Lin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Yuxuan Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, PR China
| |
Collapse
|