1
|
Saruyama M, Takahata R, Sato R, Matsumoto K, Zhu L, Nakanishi Y, Shibata M, Nakatani T, Fujinami S, Miyazaki T, Takenaka M, Teranishi T. Pseudomorphic amorphization of three-dimensional superlattices through morphological transformation of nanocrystal building blocks. Chem Sci 2024; 15:2425-2432. [PMID: 38362422 PMCID: PMC10866345 DOI: 10.1039/d3sc05085h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Nanocrystal (NC) superlattices (SLs) have been widely studied as a new class of functional mesoscopic materials with collective physical properties. The arrangement of NCs in SLs governs the collective properties of SLs, and thus investigations of phenomena that can change the assembly of NC constituents are important. In this study, we investigated the dynamic evolution of NC arrangements in three-dimensional (3D) SLs, specifically the morphological transformation of NC constituents during the direct liquid-phase synthesis of 3D NC SLs. Electron microscopy and synchrotron-based in situ small angle X-ray scattering experiments revealed that the transformation of spherical Cu2S NCs in face-centred-cubic 3D NC SLs into anisotropic disk-shaped NCs collapsed the original ordered close-packed structure. The random crystallographic orientation of spherical Cu2S NCs in starting SLs also contributed to the complete disordering of the NC array via random-direction anisotropic growth of NCs. This work demonstrates that an understanding of the anisotropic growth kinetics of NCs in the post-synthesis modulation of NC SLs is important for tuning NC array structures.
Collapse
Affiliation(s)
- Masaki Saruyama
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Ryo Takahata
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Kenshi Matsumoto
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Lingkai Zhu
- Graduate School of Science, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Motoki Shibata
- Office of Society-Academia Collaboration for Innovation, Kyoto University Yoshida-Honmachi Kyoto 606-8501 Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Tomotaka Nakatani
- Office of Society-Academia Collaboration for Innovation, Kyoto University Yoshida-Honmachi Kyoto 606-8501 Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - So Fujinami
- Office of Society-Academia Collaboration for Innovation, Kyoto University Yoshida-Honmachi Kyoto 606-8501 Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Tsukasa Miyazaki
- Office of Society-Academia Collaboration for Innovation, Kyoto University Yoshida-Honmachi Kyoto 606-8501 Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
- Graduate School of Science, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| |
Collapse
|
2
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
3
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202207301. [DOI: 10.1002/anie.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Estrader
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| |
Collapse
|
4
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Estrader
- CNRS: Centre National de la Recherche Scientifique LPCNO FRANCE
| | | | - Bruno Chaudret
- CNRS: Centre National de la Recherche Scientifique LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) 135 Avenue de Rangueil 31077 Toulouse FRANCE
| |
Collapse
|
5
|
Subnanometric Cu clusters on atomically Fe-doped MoO 2 for furfural upgrading to aviation biofuels. Nat Commun 2022; 13:2591. [PMID: 35546157 PMCID: PMC9095587 DOI: 10.1038/s41467-022-30345-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Single cluster catalysts (SCCs) are considered as versatile boosters in heterogeneous catalysis due to their modifiable single cluster sites and supports. In this work, we report subnanometric Cu clusters dispersed on Fe-doped MoO2 support for biomass-derived furfural upgrading. Systematical characterizations suggest uniform Cu clusters (composing four Cu atoms in average) are homogeneously immobilized on the atomically Fe-doped ultrafine MoO2 nanocrystals (Cu4/Fe0.3Mo0.7O2@C). The atomic doping of Fe into MoO2 leads to significantly modified electronic structure and consequently charge redistribution inside the supported Cu clusters. The as-prepared Cu4/Fe0.3Mo0.7O2@C shows superior catalytic performance in the oxidative coupling of furfural with C3~C10 primary/secondary alcohols to produce C8~C15 aldehydes/ketones (aviation biofuel intermediates), outperforming the conventionally prepared counterparts. DFT calculations and control experiments are further carried out to interpret the structural and compositional merits of Cu4/Fe0.3Mo0.7O2@C in the oxidative coupling reaction, and elucidate the reaction pathway and related intermediates.
Collapse
|
6
|
Fang L, Seifert S, Winans RE, Li T. Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106017. [PMID: 35142037 DOI: 10.1002/smll.202106017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Nanostructured materials with high surface area and low coordinated atoms present distinct intrinsic properties from their bulk counterparts. However, nanomaterials' nucleation/growth mechanism during the synthesis process and the changes of the nanomaterials in the working state are still not thoroughly studied. As two indispensable methods, X-ray absorption spectroscopy (XAS) provides nanomaterials' electronic structure and coordination environment, while small-angle X-ray scattering (SAXS) offers structural properties and morphology information. A combination of in situ/operando XAS and SAXS provides high temporal and spatial resolution to monitor the evolution of nanomaterials. This review gives a brief introduction to in situ/operando SAXS/XAS cells. In addition, the application of in situ/operando XAS and SAXS in preparing nanomaterials and studying changes of working nanomaterials are summarized.
Collapse
Affiliation(s)
- Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Soenke Seifert
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Randall E Winans
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
7
|
Nakagawa F, Saruyama M, Takahata R, Sato R, Matsumoto K, Teranishi T. In Situ Control of Crystallinity of 3D Colloidal Crystals by Tuning the Growth Kinetics of Nanoparticle Building Blocks. J Am Chem Soc 2022; 144:5871-5877. [DOI: 10.1021/jacs.1c12456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fumiko Nakagawa
- Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryo Takahata
- Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryota Sato
- Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kenshi Matsumoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
8
|
Wang Y, Coppel Y, Lepetit C, Marty JD, Mingotaud C, Kahn ML. Anisotropic growth of ZnO nanoparticles driven by the structure of amine surfactants: the role of surface dynamics in nanocrystal growth. NANOSCALE ADVANCES 2021; 3:6088-6099. [PMID: 36133935 PMCID: PMC9418458 DOI: 10.1039/d1na00566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 05/15/2023]
Abstract
Herein, we elucidate the key role of amine surfactants in the controlled anisotropic growth of ZnO nanoparticles that is achieved under mild conditions by organometallic hydrolysis. The structuring influence of alkyl substituents on the nitrogen atom of amines is jointly analyzed theoretically by DFT modeling, and experimentally by multinuclear NMR (1H, 13C and 17O) spectroscopy. We demonstrate that in initial steps leading to the growth of colloidal ZnO particles, the nature of molecular species that are involved in the solution strongly depends on the structure of the amine surfactant. By using tertiary, secondary or primary amines, no or weak adducts between the amine and zinc, or stable adducts, or adduct oligomers were identified, respectively. Afterwards, following the course of the reaction, the dynamic behavior of the amines on the grown ZnO nanocrystal surfaces is also strongly correlated with their structure. We identified that in the presence of tertiary, secondary or primary amines, no significant [Zn⋯N] adsorption, or surface adsorption with notable surface mobility, or a very strong adsorption is achieved, respectively. The last case, primary amines, significantly involves the structuring of a hydrogen bonding network. Therefore, such surface dynamic behavior has a predominant role in driving the nanocrystal growth, and orienting the ZnO material final morphology. By forming hydrogen bonds at the nanoparticle surface during the growth process, primary amines specifically lead to the formation of nanorods. Conversely, isotropic nanoparticles and aggregates are obtained when secondary and tertiary amines are used, respectively. These findings shed light on the role of weak surface interactions, herein H-bonding, that rule the growth of nano-objects and are as such crucial to identify, study, and control for achieving progress in nanoscience.
Collapse
Affiliation(s)
- Yinping Wang
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Christine Lepetit
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination, CNRS, UPR-8241 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
9
|
Mille N, Faure S, Estrader M, Yi D, Marbaix J, De Masi D, Soulantica K, Millán A, Chaudret B, Carrey J. A setup to measure the temperature-dependent heating power of magnetically heated nanoparticles up to high temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:054905. [PMID: 34243261 DOI: 10.1063/5.0038912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Magnetic heating, namely, the use of heat released by magnetic nanoparticles (MNPs) excited with a high-frequency magnetic field, has so far been mainly used for biological applications. More recently, it has been shown that this heat can be used to catalyze chemical reactions, some of them occurring at temperatures up to 700 °C. The full exploitation of MNP heating properties requires the knowledge of the temperature dependence of their heating power up to high temperatures. Here, a setup to perform such measurements is described based on the use of a pyrometer for high-temperature measurements and on a protocol based on the acquisition of cooling curves, which allows us to take into account calorimeter losses. We demonstrate that the setup permits to perform measurements under a controlled atmosphere on solid state samples up to 550 °C. It should in principle be able to perform measurements up to 900 °C. The method, uncertainties, and possible artifacts are described and analyzed in detail. The influence on losses of putting under vacuum different parts of the calorimeter is measured. To illustrate the setup possibilities, the temperature dependence of heating power is measured on four samples displaying very different behaviors. Their heating power increases or decreases with temperature, displaying temperature sensibilities ranging from -2.5 to +4.4% K-1. This setup is useful to characterize the MNPs for magnetically heated catalysis applications and to produce data that will be used to test models permitting to predict the temperature dependence of MNP heating power.
Collapse
Affiliation(s)
- N Mille
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - S Faure
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - M Estrader
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - D Yi
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - J Marbaix
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - D De Masi
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - K Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - A Millán
- Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - B Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - J Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| |
Collapse
|
10
|
Sarnello E, Lu Z, Seifert S, Winans RE, Li T. Design and Characterization of ALD-Based Overcoats for Supported Metal Nanoparticle Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Zheng Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Randall E. Winans
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
11
|
Mantella V, Castilla-Amorós L, Buonsanti R. Shaping non-noble metal nanocrystals via colloidal chemistry. Chem Sci 2020; 11:11394-11403. [PMID: 34094381 PMCID: PMC8162465 DOI: 10.1039/d0sc03663c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Non-noble metal nanocrystals with well-defined shapes have been attracting increasingly more attention in the last decade as potential alternatives to noble metals, by virtue of their earth abundance combined with intriguing physical and chemical properties relevant for both fundamental studies and technological applications. Nevertheless, their synthesis is still primitive when compared to noble metals. In this contribution, we focus on third row transition metals Mn, Fe, Co, Ni and Cu that are recently gaining interest because of their catalytic properties. Along with providing an overview on the state-of-the-art, we discuss current synthetic strategies and challenges. Finally, we propose future directions to advance the synthetic development of shape-controlled non-noble metal nanocrystals in the upcoming years.
Collapse
Affiliation(s)
- Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne CH-1950 Sion Switzerland
| | - Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne CH-1950 Sion Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
12
|
Ramamoorthy RK, Yildirim E, Barba E, Roblin P, Vargas JA, Lacroix LM, Rodriguez-Ruiz I, Decorse P, Petkov V, Teychené S, Viau G. The role of pre-nucleation clusters in the crystallization of gold nanoparticles. NANOSCALE 2020; 12:16173-16188. [PMID: 32701100 DOI: 10.1039/d0nr03486j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The syntheses of metal nanoparticles by reduction in apolar solvents in the presence of long chain surfactants have proven to be extremely effective in the control of the particle size and shape. Nevertheless, the elucidation of the nucleation/growth mechanism is not straightforward because of the multiple roles played by surfactants. The nucleation stage, in particular, is very difficult to describe precisely and requires in situ and time-resolved techniques. Here, relying on in situ small angle X-ray scattering (SAXS), X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HE-XRD), we propose that ultra-small gold particles prepared by reduction of gold chloride in a solution of oleylamine (OY) in hexane with triisopropylsilane do not follow a classical nucleation process but result from pre-nucleation clusters (PNCs). These PNCs contain Au(iii) and Au(i) precursors; they are almost stable in size during the induction stage, as shown by SAXS, prior to undergoing a very fast shrinkage during the nucleation stage. The gold speciation as a function of time deduced from the XAS spectra has been analyzed through multi-step reaction pathways comprising both highly reactive species, involved in the nucleation and growth stages, and poorly reactive species acting as a reservoir for the reactive species. The duration of the induction period is related to the reactivity of the gold precursors, which is tuned by the coordination of OY to the gold complexes, while the nucleation stage was found to depend on the size and reactivity of the PNCs. The role of the PNCs in determining the final particle size and structure is also discussed in relation to previous studies. The multiple roles of OY, as the solubilizing agent of the gold salt, the ligand of the gold complexes determining both the size of the PNCs and the reactivity of the gold precursors, and finally the capping agent of the final gold particles as oleylammonium chloride, have been clearly established. This work opens new perspectives to synthesize metal NPs via metal-organic PNCs and to define new synthesis routes for nanoparticles that may present structure and morphologies different from those obtained by the classical nucleation routes.
Collapse
Affiliation(s)
- Raj Kumar Ramamoorthy
- Université de Toulouse, Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France. and Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS Toulouse, France. and Fédération de Recherche FERMaT, Université de Toulouse, CNRS, INP, INSA, UPS, Toulouse, France
| | - Ezgi Yildirim
- Université de Toulouse, Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| | - Enguerrand Barba
- Université de Toulouse, Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS Toulouse, France.
| | - Jorge A Vargas
- Department of Physics, Central Michigan University, Mt. Pleasant, MI-48858, USA and Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad esq. Paseo de la Bufa s/n, Zacatecas, Mexico
| | - Lise-Marie Lacroix
- Université de Toulouse, Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS Toulouse, France.
| | - Philippe Decorse
- Université de Paris, ITODYS UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, MI-48858, USA
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS Toulouse, France.
| | - Guillaume Viau
- Université de Toulouse, Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| |
Collapse
|
13
|
Ramamoorthy RK, Viola A, Grindi B, Peron J, Gatel C, Hytch M, Arenal R, Sicard L, Giraud M, Piquemal JY, Viau G. One-Pot Seed-Mediated Growth of Co Nanoparticles by the Polyol Process: Unraveling the Heterogeneous Nucleation. NANO LETTERS 2019; 19:9160-9169. [PMID: 31756108 DOI: 10.1021/acs.nanolett.9b04584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The one-step seed-mediated synthesis is widely used for the preparation of ferromagnetic metal nanoparticles (NPs) since it offers a good control of particle morphology. Nevertheless, this approach suffers from a lack of mechanistic studies because of the difficulties of following in real time the heterogeneous nucleation and predicting structure effects with seeds that are generated in situ. Here, we propose a complete scheme of the heteronucleation process involved in one-pot seed-mediated syntheses of cobalt nanoparticles in liquid polyols, relying on geometrical phase analysis (GPA) of high-resolution high-angle annular dark field (HAADF)-STEM images and in situ measurements of the molecular hydrogen evolution. Cobalt particles of different shapes (rods, platelets, or hourglass-like particles) were grown by reducing cobalt carboxylate in liquid polyols in the presence of iridium or ruthenium chloride as the nucleating agent. A reaction scheme was established by monitoring the H2 evolution resulting from the decomposition of metal hydrides, formed in situ by β-elimination of metal alkoxides, and from the polyol dehydrogenation, catalytically activated by the metal particles. This is a very good probe for both the noble metal nucleation and the heterogeneous nucleation of cobalt, showing a good separation of these two steps. Ir and Ru seeds with a size in the range 1-2 nm were found exactly in the center of the cobalt particles, whatever the cobalt particle shape, and high-resolution images revealed an epitaxial growth of the hcp Co on fcc Ir or hcp Ru seeds. The microstructure analysis around the seeds made evident two different ways of relaxing the lattice mismatch between the seeds and the cobalt, with the presence of dislocations around the Ir seeds and compression zones of the cobalt lattice near the Ru seeds. The relationship between the nature of the nucleating agent, the reaction steps, and the microstructure is discussed.
Collapse
Affiliation(s)
- Raj Kumar Ramamoorthy
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets , 135 Avenue de Rangueil , F-31077 Cedex 4 Toulouse , France
| | - Arnaud Viola
- Université de Paris , ITODYS, CNRS, UMR 7086 , 15 rue J.-A. de Baïf , F-75013 Paris , France
| | - Bilel Grindi
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets , 135 Avenue de Rangueil , F-31077 Cedex 4 Toulouse , France
| | - Jennifer Peron
- Université de Paris , ITODYS, CNRS, UMR 7086 , 15 rue J.-A. de Baïf , F-75013 Paris , France
| | - Christophe Gatel
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS , 29 rue Jeanne Marvig , B.P. 94347, 31055 Toulouse , France
| | - Martin Hytch
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES-CNRS , 29 rue Jeanne Marvig , B.P. 94347, 31055 Toulouse , France
| | - Raul Arenal
- Laboratorio de microscopias avanzadas (LMA) , Instituto de Nanociencia de Aragon (INA) , U. Zaragoza, C/Mariano Esquillor s/n , 50018 Zaragoza , Spain
- ARAID Foundation , 50018 Zaragoza , Spain
- Instituto de Ciencias de Materiales Aragon , CSIC-U. Zaragoza , 50009 Zaragoza , Spain
| | - Lorette Sicard
- Université de Paris , ITODYS, CNRS, UMR 7086 , 15 rue J.-A. de Baïf , F-75013 Paris , France
| | - Marion Giraud
- Université de Paris , ITODYS, CNRS, UMR 7086 , 15 rue J.-A. de Baïf , F-75013 Paris , France
| | - Jean-Yves Piquemal
- Université de Paris , ITODYS, CNRS, UMR 7086 , 15 rue J.-A. de Baïf , F-75013 Paris , France
| | - Guillaume Viau
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets , 135 Avenue de Rangueil , F-31077 Cedex 4 Toulouse , France
| |
Collapse
|
14
|
Strach M, Mantella V, Pankhurst JR, Iyengar P, Loiudice A, Das S, Corminboeuf C, van Beek W, Buonsanti R. Insights into Reaction Intermediates to Predict Synthetic Pathways for Shape-Controlled Metal Nanocrystals. J Am Chem Soc 2019; 141:16312-16322. [PMID: 31542922 DOI: 10.1021/jacs.9b06267] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding nucleation phenomena is crucial across all branches of physical and natural sciences. Colloidal nanocrystals are among the most versatile and tunable synthetic nanomaterials. While huge steps have been made in their synthetic development, synthesis by design is still impeded by the lack of knowledge of reaction mechanisms. Here, we report on the investigation of the reaction intermediates in high temperature syntheses of copper nanocrystals by a variety of techniques, including X-ray absorption at a synchrotron source using a customized in situ cell. We reveal unique insights into the chemical nature of the reaction intermediates and into their role in determining the final shape of the metal nanocrystals. Overall, this study highlights the importance of understanding the chemistry behind nucleation as a key parameter to predict synthetic pathways for shape-controlled nanocrystals.
Collapse
Affiliation(s)
- Michal Strach
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - James R Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| | - Shubhajit Das
- Laboratory for Computational Molecular Design (LCMD), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Wouter van Beek
- The Swiss-Norwegian Beamline (SNBL)-ESRF CS40220 , 38043 Grenoble Cedex 9, France
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering , École Polytechnique Fédérale de Lausanne , CH-1950 Sion , Switzerland
| |
Collapse
|
15
|
Kale SS, Asensio JM, Estrader M, Werner M, Bordet A, Yi D, Marbaix J, Fazzini PF, Soulantica K, Chaudret B. Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00437h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic nanoparticles have been used as heating agents in CO2 methanation under continuous flow catalyzed by nickel nanoparticles (Ni/SiRAlOx).
Collapse
|
16
|
Harmel J, Peres L, Estrader M, Berliet A, Maury S, Fécant A, Chaudret B, Serp P, Soulantica K. hcp
‐Co Nanowires Grown on Metallic Foams as Catalysts for Fischer–Tropsch Synthesis. Angew Chem Int Ed Engl 2018; 57:10579-10583. [DOI: 10.1002/anie.201804932] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/07/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Justine Harmel
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
- LCC-CNRSUniversité de Toulouse, CNRS, INPT Toulouse France
| | - Laurent Peres
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| | - Marta Estrader
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| | - Adrien Berliet
- IFP Energies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Sylvie Maury
- IFP Energies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Antoine Fécant
- IFP Energies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Bruno Chaudret
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| | - Philippe Serp
- LCC-CNRSUniversité de Toulouse, CNRS, INPT Toulouse France
| | - Katerina Soulantica
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
17
|
Harmel J, Peres L, Estrader M, Berliet A, Maury S, Fécant A, Chaudret B, Serp P, Soulantica K. hcp
‐Co Nanowires Grown on Metallic Foams as Catalysts for Fischer–Tropsch Synthesis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justine Harmel
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
- LCC-CNRSUniversité de Toulouse, CNRS, INPT Toulouse France
| | - Laurent Peres
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| | - Marta Estrader
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| | - Adrien Berliet
- IFP Energies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Sylvie Maury
- IFP Energies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Antoine Fécant
- IFP Energies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Bruno Chaudret
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| | - Philippe Serp
- LCC-CNRSUniversité de Toulouse, CNRS, INPT Toulouse France
| | - Katerina Soulantica
- LPCNOUniversité de ToulouseCNRSINSAUPS 135 avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
18
|
Wu L, Fournier AP, Willis JJ, Cargnello M, Tassone CJ. In Situ X-ray Scattering Guides the Synthesis of Uniform PtSn Nanocrystals. NANO LETTERS 2018; 18:4053-4057. [PMID: 29812947 DOI: 10.1021/acs.nanolett.8b02024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Compared to monometallic nanocrystals (NCs), bimetallic ones often exhibit superior properties due to their wide tunability in structure and composition. A detailed understanding of their synthesis at the atomic scale provides crucial knowledge for their rational design. Here, exploring the Pt-Sn bimetallic system as an example, we study in detail the synthesis of PtSn NCs using in situ synchrotron X-ray scattering. We show that when Pt(II) and Sn(IV) precursors are used, in contrast to a typical simultaneous reduction mechanism, the PtSn NCs are formed through an initial reduction of Pt(II) to form Pt NCs, followed by the chemical transformation from Pt to PtSn. The kinetics derived from the in situ measurements shows fast diffusion of Sn into the Pt lattice accompanied by reordering of these atoms into intermetallic PtSn structure within 300 s at the reaction temperature (∼280 °C). This crucial mechanistic understanding enables the synthesis of well-defined PtSn NCs with controlled structure and composition via a seed-mediated approach. This type of in situ characterization can be extended to other multicomponent nanostructures to advance their rational synthesis for practical applications.
Collapse
Affiliation(s)
- Liheng Wu
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
- Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Amanda P Fournier
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Joshua J Willis
- Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States
- SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States
| | - Matteo Cargnello
- Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States
- SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
19
|
Harmel J, Berliet A, Dembélé K, Marcelot C, Gay AS, Ersen O, Maury S, Fécant A, Chaudret B, Serp P, Soulantica K. A Seed-Mediated Approach for the Preparation of Modified Heterogeneous Catalysts. ChemCatChem 2018. [DOI: 10.1002/cctc.201701860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justine Harmel
- LPCNO, Université de Toulouse; CNRS; INSA; UPS; 135 avenue de Rangueil 31077 Toulouse France
- LCC, CNRS-UPR 8241, ENSIACET; Université de Toulouse; Toulouse France
| | - Adrien Berliet
- IFP Energies Nouvelles; Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Kassiogé Dembélé
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); 23 rue du Loess 67034 Strasbourg France
| | - Cécile Marcelot
- LPCNO, Université de Toulouse; CNRS; INSA; UPS; 135 avenue de Rangueil 31077 Toulouse France
- CEMES-CNRS; 29 rue Jeanne Marvig, B.P. 94347 31055 Toulouse France
| | - Anne-Sophie Gay
- IFP Energies Nouvelles; Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS); 23 rue du Loess 67034 Strasbourg France
| | - Sylvie Maury
- IFP Energies Nouvelles; Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Antoine Fécant
- IFP Energies Nouvelles; Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Bruno Chaudret
- LPCNO, Université de Toulouse; CNRS; INSA; UPS; 135 avenue de Rangueil 31077 Toulouse France
| | - Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET; Université de Toulouse; Toulouse France
| | - Katerina Soulantica
- LPCNO, Université de Toulouse; CNRS; INSA; UPS; 135 avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
20
|
Liu Y, Li Q, Si R, Li GD, Li W, Liu DP, Wang D, Sun L, Zhang Y, Zou X. Coupling Sub-Nanometric Copper Clusters with Quasi-Amorphous Cobalt Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606200. [PMID: 28128868 DOI: 10.1002/adma.201606200] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/08/2016] [Indexed: 05/25/2023]
Abstract
Superefficient water-splitting materials comprising sub-nanometric copper clusters and quasi-amorphous cobalt sulfide supported on copper foam are reported. While working together at both the anode and cathode sides of an alkaline electrolyzer, this material gives a catalytic output of overall water splitting comparable with the Pt/C-IrO2 -coupled electrolyzer.
Collapse
Affiliation(s)
- Yipu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qiuju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Guo-Dong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Da-Peng Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Dejun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, 116023, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|