1
|
Figueroa Blanco DR, Vidossich P, De Vivo M. Correct Nucleotide Selection Is Confined at the Binding Site of Polymerase Enzymes. J Chem Inf Model 2024; 64:5285-5294. [PMID: 38901009 DOI: 10.1021/acs.jcim.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
DNA polymerases (Pols) add incoming nucleotides (deoxyribonucleoside triphosphate (dNTPs)) to growing DNA strands, a crucial step for DNA synthesis. The insertion of correct (vs incorrect) nucleotides relates to Pols' fidelity, which defines Pols' ability to faithfully replicate DNA strands in a template-dependent manner. We and others have demonstrated that reactant alignment and correct base pairing at the Pols catalytic site are crucial structural features to fidelity. Here, we first used equilibrium molecular simulations to demonstrate that the local dynamics at the protein-DNA interface in the proximity of the catalytic site is different when correct vs incorrect dNTPs are bound to polymerase β (Pol β). Formation and dynamic stability of specific interatomic interactions around the incoming nucleotide influence the overall binding site architecture. This explains why certain Pols' mutants can affect the local catalytic environment and influence the selection of correct vs incorrect nucleotides. In particular, this is here demonstrated by analyzing the interaction network formed by the residue R283, whose mutant R283A has an experimentally measured lower capacity of differentiating correct (G:dCTP) vs incorrect (G:dATP) base pairing in Pol β. We also used alchemical free-energy calculations to quantify the G:dCTP →G:dATP transformation in Pol β wild-type and mutant R283A. These results correlate well with the experimental trend, thus corroborating our mechanistic insights. Sequence and structural comparisons with other Pols from the same family suggest that these findings may also be valid in similar enzymes.
Collapse
Affiliation(s)
- David Ricardo Figueroa Blanco
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
2
|
Maghsoud Y, Roy A, Leddin EM, Cisneros GA. Effects of the Y432S Cancer-Associated Variant on the Reaction Mechanism of Human DNA Polymerase κ. J Chem Inf Model 2024; 64:4231-4249. [PMID: 38717969 PMCID: PMC11181361 DOI: 10.1021/acs.jcim.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Human DNA polymerases are vital for genetic information management. Their function involves catalyzing the synthesis of DNA strands with unparalleled accuracy, which ensures the fidelity and stability of the human genomic blueprint. Several disease-associated mutations and their functional impact on DNA polymerases have been reported. One particular polymerase, human DNA polymerase kappa (Pol κ), has been reported to be susceptible to several cancer-associated mutations. The Y432S mutation in Pol κ, associated with various cancers, is of interest due to its impact on polymerization activity and markedly reduced thermal stability. Here, we have used computational simulations to investigate the functional consequences of the Y432S using classical molecular dynamics (MD) and coupled quantum mechanics/molecular mechanics (QM/MM) methods. Our findings suggest that Y432S induces structural alterations in domains responsible for nucleotide addition and ternary complex stabilization while retaining structural features consistent with possible catalysis in the active site. Calculations of the minimum energy path associated with the reaction mechanism of the wild type (WT) and Y432S Pol κ indicate that, while both enzymes are catalytically competent (in terms of energetics and the active site's geometries), the cancer mutation results in an endoergic reaction and an increase in the catalytic barrier. Interactions with a third magnesium ion and environmental effects on nonbonded interactions, particularly involving key residues, contribute to the kinetic and thermodynamic distinctions between the WT and mutant during the catalytic reaction. The energetics and electronic findings suggest that active site residues favor the catalytic reaction with dCTP3- over dCTP4-.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Arkanil Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Ciardullo G, Parise A, Prejanò M, Marino T. Viral RNA Replication Suppression of SARS-CoV-2: Atomistic Insights into Inhibition Mechanisms of RdRp Machinery by ddhCTP. J Chem Inf Model 2024; 64:1593-1604. [PMID: 38412057 DOI: 10.1021/acs.jcim.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The nonstructural protein 12, known as RNA-dependent RNA polymerase (RdRp), is essential for both replication and repair of the viral genome. The RdRp of SARS-CoV-2 has been used as a promising candidate for drug development since the inception of the COVID-19 spread. In this work, we performed an in silico investigation on the insertion of the naturally modified pyrimidine nucleobase ddhCTP into the SARS-CoV-2 RdRp active site, in a comparative analysis with the natural one (CTP). The modification in ddhCTP involves the removal of the 3'-hydroxyl group that prevents the addition of subsequent nucleotides into the nascent strand, acting as an RNA chain terminator inhibitor. Quantum mechanical investigations helped to shed light on the mechanistic source of RdRp activity on the selected nucleobases, and comprehensive all-atom simulations provided insights about the structural rearrangements occurring in the active-site region when inorganic pyrophosphate (PPi) is formed. Subsequently, the intricate pathways for the release of PPi, the catalytic product of RdRp, were investigated using Umbrella Sampling simulations. The results are in line with the available experimental data and contribute to a more comprehensive point of view on such an important viral enzyme.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Angela Parise
- Consiglio Nazionale Delle Ricerche (CNR)-IOM C/O International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Mario Prejanò
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| |
Collapse
|
4
|
Genna V, Iglesias-Fernández J, Reyes-Fraile L, Villegas N, Guckian K, Seth P, Wan B, Cabrero C, Terrazas M, Brun-Heath I, González C, Sciabola S, Villalobos A, Orozco M. Controlled sulfur-based engineering confers mouldability to phosphorothioate antisense oligonucleotides. Nucleic Acids Res 2023; 51:4713-4725. [PMID: 37099382 PMCID: PMC10250214 DOI: 10.1093/nar/gkad309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/27/2023] Open
Abstract
Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.
Collapse
Affiliation(s)
- Vito Genna
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- NBD | Nostrum Biodiscovery, Baldiri Reixac 10, Barcelona 08028, Spain
| | | | - Laura Reyes-Fraile
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Nuria Villegas
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | - Punit Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Brad Wan
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cristina Cabrero
- Instituto de Química Física Rocasolano, C/ Serrano 119, Madrid 28006, Spain
| | - Montserrat Terrazas
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Carlos González
- Instituto de Química Física Rocasolano, C/ Serrano 119, Madrid 28006, Spain
| | | | | | - Modesto Orozco
- Mechanisms of Diseases, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
5
|
Das CK, Gupta A, Nair NN. Probing the general base for DNA polymerization in telomerase: a molecular dynamics investigation. Phys Chem Chem Phys 2023; 25:14147-14157. [PMID: 37162325 DOI: 10.1039/d3cp00521f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Telomerase is an RNA-dependent DNA polymerase that plays a role in the maintenance of the 3' end of the eukaryotic chromosome, known as a telomere, by catalyzing the DNA polymerization reaction in cancer and embryonic stem cells. The detailed molecular details of the DNA polymerization by telomerase, especially the general base for deprotonating the terminal 3'-hydroxyl, which triggers the chemical reaction, remain elusive. We conducted a computational investigation using hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations to probe the detailed mechanism of the reaction. Our simulations started with the telomerase:RNA:DNA:dNTP ternary complex, and by using enhanced sampling QM/MM MD simulations, we probed the general base involved directly in the polymerization. We report the participation of an aspartate (Asp344) coordinated to Mg and an active site water molecule, jointly acting as a base during nucleic acid addition. The Asp344 residue remains transiently protonated during the course of the reaction, and later it deprotonates by transferring its proton to the water at the end of the reaction.
Collapse
Affiliation(s)
- Chandan Kumar Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Abhinav Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
6
|
Kubař T, Elstner M, Cui Q. Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines. Annu Rev Biophys 2023; 52:525-551. [PMID: 36791746 PMCID: PMC10810093 DOI: 10.1146/annurev-biophys-111622-091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy. Using several recent examples, we illustrate the value and limitations of QM/MM methodologies for both ground and excited states, as well as strategies for calibrating them in specific applications. We conclude with brief comments on several areas that can benefit from further efforts to make QM/MM analyses more quantitative and applicable to increasingly complex biological problems.
Collapse
Affiliation(s)
- T Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany;
| | - M Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany;
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany;
| | - Q Cui
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Sinha S, Pindi C, Ahsan M, Arantes PR, Palermo G. Machines on Genes through the Computational Microscope. J Chem Theory Comput 2023; 19:1945-1964. [PMID: 36947696 PMCID: PMC10104023 DOI: 10.1021/acs.jctc.2c01313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Macromolecular machines acting on genes are at the core of life's fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of "machines on genes", focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications. As this review unfolds, advanced computational methods describe the biophysical function that is unseen through experimental techniques, accomplishing the power of the "computational microscope", an expression coined by Klaus Schulten to highlight the extraordinary capability of computer simulations. Pushing the frontiers of computational biophysics toward a pragmatic representation of large multimegadalton biomolecular complexes is instrumental in bridging the gap between experimentally obtained macroscopic observables and the molecular principles playing at the microscopic level. This understanding will help harness molecular machines for medical, pharmaceutical, and biotechnological purposes.
Collapse
Affiliation(s)
- Souvik Sinha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Chinmai Pindi
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Mohd Ahsan
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Pablo R. Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
8
|
Geronimo I, Vidossich P, De Vivo M. On the Role of Molecular Conformation of the 8-Oxoguanine Lesion in Damaged DNA Processing by Polymerases. J Chem Inf Model 2023; 63:1521-1528. [PMID: 36825471 PMCID: PMC10015460 DOI: 10.1021/acs.jcim.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A common and insidious DNA damage is 8-oxoguanine (8OG), bypassed with low catalytic efficiency and high error frequency by polymerases (Pols) during DNA replication. This is a fundamental process with far-reaching implications in cell function and diseases. However, the molecular determinants of how 8OG exactly affects the catalytic efficiency of Pols remain largely unclear. By examining ternary deoxycytidine triphosphate/DNA/Pol complexes containing the 8OG damage, we found that 8OG consistently adopts different conformations when bound to Pols, compared to when in isolated DNA. Equilibrium molecular dynamics and metadynamics free energy calculations quantified that 8OG is in the lowest energy conformation in isolated DNA. In contrast, 8OG adopts high-energy conformations often characterized by intramolecular steric repulsion when bound to Pols. We show that the 8OG conformation can be regulated by mutating Pol residues interacting with the 8OG phosphate group. These findings propose the 8OG conformation as a factor in Pol-mediated processing of damaged DNA.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
9
|
Munafò F, Nigro M, Brindani N, Manigrasso J, Geronimo I, Ottonello G, Armirotti A, De Vivo M. Computer-aided identification, synthesis, and biological evaluation of DNA polymerase η inhibitors for the treatment of cancer. Eur J Med Chem 2023; 248:115044. [PMID: 36621139 DOI: 10.1016/j.ejmech.2022.115044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
In cancer cells, Pol η allows DNA replication and cell proliferation even in the presence of chemotherapeutic drug-induced damages, like in the case of platinum-containing drugs. Inhibition of Pol η thus represents a promising strategy to overcome drug resistance and preserve the effectiveness of chemotherapeutic drugs. Here, we report the discovery of a novel class of Pol ƞ inhibitors, with 35 active close analogs. Compound 21 (ARN24964) stands out as the best inhibitor, with an IC50 value of 14.7 μM against Pol η and a good antiproliferative activity when used in combination with cisplatin - with a synergistic effect in three different cancer cell lines (A375, A549, OVCAR3). Moreover, it is characterized by a favorable drug-like profile in terms of its aqueous kinetic solubility, plasma and metabolic stability. Thus, ARN24964 is a promising compound for further structure-based drug design efforts toward developing drugs to solve or limit the issue of drug resistance to platinum-containing drugs in cancer patients.
Collapse
Affiliation(s)
- Federico Munafò
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Michela Nigro
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Nicoletta Brindani
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Jacopo Manigrasso
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Inacrist Geronimo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Giuliana Ottonello
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
10
|
Bignon E, Monari A. Modeling the Enzymatic Mechanism of the SARS-CoV-2 RNA-Dependent RNA Polymerase by DFT/MM-MD: An Unusual Active Site Leading to High Replication Rates. J Chem Inf Model 2022; 62:4261-4269. [PMID: 35982544 PMCID: PMC9437665 DOI: 10.1021/acs.jcim.2c00802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Viral infection relies on the hijacking of cellular machineries to enforce the reproduction of the infecting virus and its subsequent diffusion. In this context, the replication of the viral genome is a key step performed by specific enzymes, i.e., polymerases. The replication of SARS-CoV-2, the causative agent of the COVID-19 pandemics, is based on the duplication of its RNA genome, an action performed by the viral RNA-dependent RNA polymerase. In this contribution, by using highly demanding DFT/MM-MD computations coupled to 2D-umbrella sampling techniques, we have determined the chemical mechanisms leading to the inclusion of a nucleotide in the nascent viral RNA strand. These results highlight the high efficiency of the polymerase, which lowers the activation free energy to less than 10 kcal/mol. Furthermore, the SARS-CoV-2 polymerase active site is slightly different from those usually found in other similar enzymes, and in particular, it lacks the possibility to enforce a proton shuttle via a nearby histidine. Our simulations show that this absence is partially compensated by lysine whose proton assists the reaction, opening up an alternative, but highly efficient, reactive channel. Our results present the first mechanistic resolution of SARS-CoV-2 genome replication at the DFT/MM-MD level and shed light on its unusual enzymatic reactivity paving the way for the future rational design of antivirals targeting emerging RNA viruses.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Université
de Paris, CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
11
|
Arba M, Paradis N, Wahyudi ST, Brunt DJ, Hausman KR, Lakernick PM, Singh M, Wu C. Unraveling the binding mechanism of the active form of Remdesivir to RdRp of SARS-CoV-2 and designing new potential analogues: Insights from molecular dynamics simulations. Chem Phys Lett 2022; 799:139638. [PMID: 35475235 PMCID: PMC9020840 DOI: 10.1016/j.cplett.2022.139638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
The binding of the active form of Remdesivir (RTP) to RNA-dependent RNA Polymerase (RdRp) of SARS-CoV-2 was studied using molecular dynamics simulation. The RTP maintained the interactions observed in the experimental cryo-EM structure. Next, we designed new analogues of RTP, which not only binds to the RNA primer strand in a similar pose as that of RTP, but also binds more strongly than RTP does as predicted by MM-PBSA binding energy. This suggest that these analogues might be able to covalently link to the primer strand as RTP, but their 3' modification would terminate the primer strand growth.
Collapse
Affiliation(s)
- Muhammad Arba
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia
| | - Nicholas Paradis
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Setyanto T Wahyudi
- Department of Physics, Faculty of Mathematic and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Dylan J Brunt
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Katherine R Hausman
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Phillip M Lakernick
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Mursalin Singh
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| |
Collapse
|
12
|
Feltes BC, Menck CFM. Current state of knowledge of human DNA polymerase eta protein structure and disease-causing mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108436. [PMID: 35952573 DOI: 10.1016/j.mrrev.2022.108436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/29/2022] [Accepted: 07/31/2022] [Indexed: 01/01/2023]
Abstract
POLη, encoded by the POLH gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis polymerases. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme photosensitivity and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells. Since POLη is key vital enzyme for cell survival, and mutations in this protein are related to aggressive diseases, understanding its structure is crucial for biomedical sciences, primarily due to its similarities with other Y-family polymerases and its potential as a targeted therapy-drug for tumors. This work provides an up-to-date review on structural aspects of the human POLη: from basic knowledge about critical residues and protein domains to its mutant variants, posttranslational modifications, and our current understanding of therapeutic molecules that target POLη. Thus, this review provides lessons about POLη's structure and gathers critical discussions and hypotheses that may contribute to understanding this protein's vital roles within the cells.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil; Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
13
|
Aranda J, Wieczór M, Terrazas M, Brun-Heath I, Orozco M. Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2. CHEM CATALYSIS 2022; 2:1084-1099. [PMID: 35465139 PMCID: PMC9016896 DOI: 10.1016/j.checat.2022.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023]
Abstract
We combine molecular dynamics, statistical mechanics, and hybrid quantum mechanics/molecular mechanics simulations to describe mechanistically the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp). Our study analyzes the binding mode of both natural triphosphate substrates as well as remdesivir triphosphate (the active form of drug), which is bound preferentially over ATP by RdRp while being poorly recognized by human RNA polymerase II (RNA Pol II). A comparison of incorporation rates between natural and antiviral nucleotides shows that remdesivir is incorporated more slowly into the nascent RNA compared with ATP, leading to an RNA duplex that is structurally very similar to an unmodified one, arguing against the hypothesis that remdesivir is a competitive inhibitor of ATP. We characterize the entire mechanism of reaction, finding that viral RdRp is highly processive and displays a higher catalytic rate of incorporation than human RNA Pol II. Overall, our study provides the first detailed explanation of the replication mechanism of RdRp.
Collapse
Affiliation(s)
- Juan Aranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Milosz Wieczór
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicine, Universitat de Barcelona, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Galvani F, Scalvini L, Rivara S, Lodola A, Mor M. Mechanistic Modeling of Monoglyceride Lipase Covalent Modification Elucidates the Role of Leaving Group Expulsion and Discriminates Inhibitors with High and Low Potency. J Chem Inf Model 2022; 62:2771-2787. [PMID: 35580195 PMCID: PMC9198976 DOI: 10.1021/acs.jcim.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inhibition of monoglyceride
lipase (MGL), also known as monoacylglycerol
lipase (MAGL), has emerged as a promising approach for treating neurological
diseases. To gain useful insights in the design of agents with balanced
potency and reactivity, we investigated the mechanism of MGL carbamoylation
by the reference triazole urea SAR629 (IC50 = 0.2 nM) and
two recently described inhibitors featuring a pyrazole (IC50 = 1800 nM) or a 4-cyanopyrazole (IC50 = 8 nM) leaving
group (LG), using a hybrid quantum mechanics/molecular mechanics (QM/MM)
approach. Opposite to what was found for substrate 2-arachidonoyl-sn-glycerol (2-AG), covalent modification of MGL by azole
ureas is controlled by LG expulsion. Simulations indicated that changes
in the electronic structure of the LG greatly affect reaction energetics
with triazole and 4-cyanopyrazole inhibitors following a more accessible
carbamoylation path compared to the unsubstituted pyrazole derivative.
The computational protocol provided reaction barriers able to discriminate
between MGL inhibitors with different potencies. These results highlight
how QM/MM simulations can contribute to elucidating structure–activity
relationships and provide insights for the design of covalent inhibitors.
Collapse
Affiliation(s)
- Francesca Galvani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy.,Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| |
Collapse
|
15
|
Geronimo I, Vidossich P, De Vivo M. Local Structural Dynamics at the Metal-Centered Catalytic Site of Polymerases is Critical for Fidelity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
16
|
Manigrasso J, De Vivo M, Palermo G. Controlled Trafficking of Multiple and Diverse Cations Prompts Nucleic Acid Hydrolysis. ACS Catal 2021; 11:8786-8797. [PMID: 35145762 DOI: 10.1021/acscatal.1c01825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent in crystallo reaction intermediates have detailed how nucleic acid hydrolysis occurs in the RNA ribonuclease H1 (RNase H1), a fundamental metalloenzyme involved in maintaining the human genome. At odds with the previous characterization, these in crystallo structures unexpectedly captured multiple metal ions (K+ and Mg2+) transiently bound in the vicinity of the two-metal-ion active site. Using multi-microsecond all-atom molecular dynamics and free-energy simulations, we investigated the functional implications of the dynamic exchange of multiple K+ and Mg2+ ions at the RNase H1 reaction center. We found that such ions are timely positioned at non-overlapping locations near the active site, at different stages of catalysis, being crucial for both reactants' alignment and leaving group departure. We also found that this cation trafficking is tightly regulated by variations of the solution's ionic strength and is aided by two conserved second-shell residues, E188 and K196, suggesting a mechanism for the cations' recruitment during catalysis. These results indicate that controlled trafficking of multi-cation dynamics, opportunely prompted by second-shell residues, is functionally essential to the complex enzymatic machinery of the RNase H1. These findings revise the current knowledge on the RNase H1 catalysis and open new catalytic possibilities for other similar metalloenzymes including, but not limited to, CRISPR-Cas9, group II intron ribozyme and the human spliceosome.
Collapse
Affiliation(s)
- Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy.,Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, CA 52512, United States.,Department of Chemistry, University of California Riverside, Riverside, CA 52512, United States
| |
Collapse
|
17
|
Bolnykh V, Rossetti G, Rothlisberger U, Carloni P. Expanding the boundaries of ligand–target modeling by exascale calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
- Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital Aachen RWTH Aachen University Aachen Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS‐5/INM‐9) “Computational Biomedicine” Forschungszentrum Jülich Jülich Germany
- JARA‐Institute INM‐11 “Molecular Neuroscience and Neuroimaging” Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
18
|
Chim N, Meza RA, Trinh AM, Yang K, Chaput JC. Following replicative DNA synthesis by time-resolved X-ray crystallography. Nat Commun 2021; 12:2641. [PMID: 33976175 PMCID: PMC8113479 DOI: 10.1038/s41467-021-22937-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
The mechanism of DNA synthesis has been inferred from static structures, but the absence of temporal information raises longstanding questions about the order of events in one of life's most central processes. Here we follow the reaction pathway of a replicative DNA polymerase using time-resolved X-ray crystallography to elucidate the order and transition between intermediates. In contrast to the canonical model, the structural changes observed in the time-lapsed images reveal a catalytic cycle in which translocation precedes catalysis. The translocation step appears to follow a push-pull mechanism where the O-O1 loop of the finger subdomain acts as a pawl to facilitate unidirectional movement along the template with conserved tyrosine residues 714 and 719 functioning as tandem gatekeepers of DNA synthesis. The structures capture the precise order of critical events that may be a general feature of enzymatic catalysis among replicative DNA polymerases.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Roman A Meza
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Anh M Trinh
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kefan Yang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Department of Chemistry, University of California, Irvine, CA, USA. .,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
19
|
Geronimo I, Vidossich P, Donati E, Vivo M. Computational investigations of polymerase enzymes: Structure, function, inhibition, and biotechnology. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Elisa Donati
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Marco Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
20
|
Lai R, Cui Q. What Does the Brønsted Slope Measure in the Phosphoryl Transfer Transition State? ACS Catal 2020; 10:13932-13945. [PMID: 34567831 DOI: 10.1021/acscatal.0c03764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural and energetic features of phosphate and phosphonate hydrolysis in Protein Phosphatase-1 (PP1) and water are studied using quantum mechanical (QM) cluster models. The calculations are able to reproduce observed kinetic isotope effects and capture several key trends in the experimental Brønsted plots: the β l g values are rather different for phosphate and phosphonate ester hydrolysis in solution but are similar in PP1. Detailed analyses of structure, charge distribution and bond order of computed transition states support the general conclusion from experimental study that phosphoryl transfer transition states are different for the two classes of substrates in solution but similar in PP1. On the other hand, the microscopic models also highlight notable differences between the phosphate and phosphonate transition states, which are manifested in not only structure but also kinetic isotope effects. Overall, we find that while β l g / β E Q , l g generally correlates with the partial charge on leaving group oxygen and the fractional bond order of the breaking P- O l g bond, the precise mapping between β l g / β E Q , l g and P- O l g bond order in the transition state is difficult due largely to the cross talk between breaking and forming P-O bonds. Therefore, further supporting previous analyses of limitations of free energy relations, our results suggest that while free energy relation is a valuable tool for probing the nature of transition state, a quantitative mapping of β l g and β l g / β E Q , l g values to structure or charge in the transition state should be conducted with great care.
Collapse
Affiliation(s)
- Rui Lai
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215
| |
Collapse
|
21
|
Vidossich P, Castañeda Moreno LE, Mota C, de Sanctis D, Miscione GP, De Vivo M. Functional Implications of Second-Shell Basic Residues for dUTPase DR2231 Enzymatic Specificity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pietro Vidossich
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luis Eduardo Castañeda Moreno
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
| | - Cristiano Mota
- ESRF The European Synchrotron, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Daniele de Sanctis
- ESRF The European Synchrotron, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Gian Pietro Miscione
- COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de Los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
22
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
23
|
Patil PR, Vithani N, Singh V, Kumar A, Prakash B. A revised mechanism for (p)ppGpp synthesis by Rel proteins: The critical role of the 2'-OH of GTP. J Biol Chem 2020; 295:12851-12867. [PMID: 32719004 DOI: 10.1074/jbc.ra120.013636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Indexed: 11/06/2022] Open
Abstract
Bacterial Rel proteins synthesize hyperphosphorylated guanosine nucleotides, denoted as (p)ppGpp, which by inhibiting energy requiring molecular pathways help bacteria to overcome the depletion of nutrients in its surroundings. (p)ppGpp synthesis by Rel involves transferring a pyrophosphate from ATP to the oxygen of 3'-OH of GTP/GDP. Initially, a conserved glutamate at the active site was believed to generate the nucleophile necessary to accomplish the reaction. Later this role was alluded to a Mg2+ ion. However, no study has unequivocally established a catalytic mechanism for (p)ppGpp synthesis. Here we present a revised mechanism, wherein for the first time we explore a role for 2'-OH of GTP and show how it is important in generating the nucleophile. Through a careful comparison of substrate-bound structures of Rel, we illustrate that the active site does not discriminate GTP from dGTP, for a substrate. Using biochemical studies, we demonstrate that both GTP and dGTP bind to Rel, but only GTP (but not dGTP) can form the product. Reactions performed using GTP analogs substituted with different chemical moieties at the 2' position suggest a clear role for 2'-OH in catalysis by providing an indispensable hydrogen bond; preliminary computational analysis further supports this view. This study elucidating a catalytic role for 2'-OH of GTP in (p)ppGpp synthesis allows us to propose different mechanistic possibilities by which it generates the nucleophile for the synthesis reaction. This study underscores the selection of ribose nucleotides as second messengers and finds its roots in the old RNA world hypothesis.
Collapse
Affiliation(s)
- Pratik Rajendra Patil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Neha Vithani
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Balaji Prakash
- Department of Molecular Nutrition, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
24
|
Nikoomanzar A, Vallejo D, Yik EJ, Chaput JC. Programmed Allelic Mutagenesis of a DNA Polymerase with Single Amino Acid Resolution. ACS Synth Biol 2020; 9:1873-1881. [PMID: 32531152 DOI: 10.1021/acssynbio.0c00236] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most DNA polymerase libraries sample unknown portions of mutational space and are constrained by the limitations of random mutagenesis. Here we describe a programmed allelic mutagenesis (PAM) strategy to comprehensively evaluate all possible single-point mutations in the entire catalytic domain of a replicative DNA polymerase. By applying the PAM strategy with ultrafast high-throughput screening, we show how DNA polymerases can be mapped for allelic mutations that exhibit enhanced activity for unnatural nucleic acid substrates. We suggest that comprehensive missense mutational scans may aid the discovery of specificity determining residues that are necessary for reprogramming the biological functions of natural DNA polymerases.
Collapse
Affiliation(s)
- Ali Nikoomanzar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Derek Vallejo
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Eric J. Yik
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
- Department of Chemistry, University of California, Irvine, California 92697-3958, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
25
|
Manigrasso J, Chillón I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M. Visualizing group II intron dynamics between the first and second steps of splicing. Nat Commun 2020; 11:2837. [PMID: 32503992 PMCID: PMC7275048 DOI: 10.1038/s41467-020-16741-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at different stages of catalysis. Here, we employ enzymatic assays, X-ray crystallography, and molecular simulations to resolve the spatiotemporal location and function of conformational changes occurring between the first and the second step of splicing. We show that the first residue of the highly-conserved catalytic triad is protonated upon 5’-splice-site scission, promoting a reversible structural rearrangement of the active site (toggling). Protonation and active site dynamics induced by the first step of splicing facilitate the progression to the second step. Our insights into the mechanism of group II intron splicing parallels functional data on the spliceosome, thus reinforcing the notion that these evolutionarily-related molecular machines share the same enzymatic strategy. Group II introns are self-splicing ribozymes. Here, the authors employ enzymatic assay, X-ray crystallography and molecular dynamics simulations to show that protonation of the group II intron catalytic triad plays an important role for the transition from the first to the second step of splicing.
Collapse
Affiliation(s)
- Jacopo Manigrasso
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Vito Genna
- Department of Structural and Computational Biology, Institute for Research in Biomedicine (IRB), Parc Científic de Barcelona, C/ Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Srinivas Somarowthu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT, 06511, USA.,Department of Chemistry, Yale University, New Haven, CT, 06511, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
26
|
Bolnykh V, Olsen JMH, Meloni S, Bircher MP, Ippoliti E, Carloni P, Rothlisberger U. MiMiC: Multiscale Modeling in Computational Chemistry. Front Mol Biosci 2020; 7:45. [PMID: 32266290 PMCID: PMC7100372 DOI: 10.3389/fmolb.2020.00045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT the Arctic University of Norway, Tromsø, Norway
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Ferrara, Italy
| | - Martin P Bircher
- Computational and Soft Matter Physics, University of Vienna, Vienna, Austria
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Molecular Neuroscience and Neuroimaging, Institute of Neuroscience and Medicine (JARA INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Molecular Neuroscience and Neuroimaging, Institute of Neuroscience and Medicine (JARA INM-11), Forschungszentrum Jülich, Jülich, Germany.,Department of Physics and Universitätsklinikum Aachen, RWTH Aachen University, Aachen, Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Smith MR, Alnajjar KS, Hoitsma NM, Sweasy JB, Freudenthal BD. Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β. J Biol Chem 2020; 295:1613-1622. [PMID: 31892517 PMCID: PMC7008369 DOI: 10.1074/jbc.ra119.011569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/29/2019] [Indexed: 01/07/2023] Open
Abstract
During oxidative stress, inflammation, or environmental exposure, ribo- and deoxyribonucleotides are oxidatively modified. 8-Oxo-7,8-dihydro-2'-guanosine (8-oxo-G) is a common oxidized nucleobase whose deoxyribonucleotide form, 8-oxo-dGTP, has been widely studied and demonstrated to be a mutagenic substrate for DNA polymerases. Guanine ribonucleotides are analogously oxidized to r8-oxo-GTP, which can constitute up to 5% of the rGTP pool. Because ribonucleotides are commonly misinserted into DNA, and 8-oxo-G causes replication errors, we were motivated to investigate how the oxidized ribonucleotide is utilized by DNA polymerases. To do this, here we employed human DNA polymerase β (pol β) and characterized r8-oxo-GTP insertion with DNA substrates containing either a templating cytosine (nonmutagenic) or adenine (mutagenic). Our results show that pol β has a diminished catalytic efficiency for r8-oxo-GTP compared with canonical deoxyribonucleotides but that r8-oxo-GTP is inserted mutagenically at a rate similar to those of other common DNA replication errors (i.e. ribonucleotide and mismatch insertions). Using FRET assays to monitor conformational changes of pol β with r8-oxo-GTP, we demonstrate impaired pol β closure that correlates with a reduced insertion efficiency. X-ray crystallographic analyses revealed that, similar to 8-oxo-dGTP, r8-oxo-GTP adopts an anti conformation opposite a templating cytosine and a syn conformation opposite adenine. However, unlike 8-oxo-dGTP, r8-oxo-GTP did not form a planar base pair with either templating base. These results suggest that r8-oxo-GTP is a potential mutagenic substrate for DNA polymerases and provide structural insights into how r8-oxo-GTP is processed by DNA polymerases.
Collapse
Affiliation(s)
- Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Khadijeh S Alnajjar
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona 85724
| | - Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona 85724
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160.
| |
Collapse
|
28
|
Donati E, Genna V, De Vivo M. Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases. J Am Chem Soc 2020; 142:2823-2834. [PMID: 31939291 PMCID: PMC7993637 DOI: 10.1021/jacs.9b10656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Enzymes of the 5′ structure-specific
nuclease family are crucial for DNA repair, replication, and recombination.
One such enzyme is the human exonuclease 1 (hExo1) metalloenzyme,
which cleaves DNA strands, acting primarily as a processive 5′-3′
exonuclease and secondarily as a 5′-flap endonuclease. Recently,
in crystallo reaction intermediates have elucidated how hExo1 exerts
hydrolysis of DNA phosphodiester bonds. These hExo1 structures show
a third metal ion intermittently bound close to the two-metal-ion
active site, to which recessed ends or 5′-flap substrates bind.
Evidence of this third ion has been observed in several nucleic-acid-processing
metalloenzymes. However, there is still debate over what triggers
the (un)binding of this transient third ion during catalysis and whether
this ion has a catalytic function. Using extended molecular dynamics
and enhanced sampling free-energy simulations, we observed that the
carboxyl side chain of Glu89 (located along the arch motif in hExo1)
flips frequently from the reactant state to the product state. The
conformational flipping of Glu89 allows one metal ion to be recruited
from the bulk and promptly positioned near the catalytic center. This
is in line with the structural evidence. Additionally, our simulations
show that the third metal ion assists the departure, through the mobile
arch, of the nucleotide monophosphate product from the catalytic site.
Structural comparisons of nuclease enzymes suggest that this Glu(Asp)-mediated
mechanism for third ion recruitment and nucleic acid hydrolysis may
be shared by other 5′ structure-specific nucleases.
Collapse
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Vito Genna
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
29
|
Peltzer RM, Gauss J, Eisenstein O, Cascella M. The Grignard Reaction – Unraveling a Chemical Puzzle. J Am Chem Soc 2020; 142:2984-2994. [DOI: 10.1021/jacs.9b11829] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Raphael Mathias Peltzer
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, Oslo 0315, Norway
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Odile Eisenstein
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, Oslo 0315, Norway
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, Oslo 0315, Norway
| |
Collapse
|
30
|
Roston D, Demapan D, Cui Q. Extensive free-energy simulations identify water as the base in nucleotide addition by DNA polymerase. Proc Natl Acad Sci U S A 2019; 116:25048-25056. [PMID: 31757846 PMCID: PMC6911213 DOI: 10.1073/pnas.1914613116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transphosphorylation of nucleotide triphosphates is the central reaction in DNA replication by DNA polymerase as well as many other biological processes. Despite its importance, the microscopic chemical mechanism of transphosphorylation of nucleotide triphosphates is, in most cases, unknown. Here we use extensive simulations of DNA polymerase η to test mechanistic hypotheses. We systematically survey the reactive space by calculating 2D free-energy surfaces for 10 different plausible mechanisms that have been proposed. We supplement these free-energy surfaces with calculations of pKa for a number of potentially acidic protons in different states relevant to the catalytic cycle. We find that among all of the conditions that we test, the smallest activation barrier occurs for a reaction where a Mg2+-coordinated water deprotonates the nucleophilic 3'-OH, and this deprotonation is concerted with the phosphoryl transfer. The presence of a third Mg2+ in the active site lowers the activation barrier for the water-as-base mechanism, as does protonation of the pyrophosphate leaving group, which is consistent with general acid catalysis. The results demonstrate the value of simulations, when used in conjunction with experimental data, to help establish a microscopic chemical mechanism in a complex environment.
Collapse
Affiliation(s)
- Daniel Roston
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| | - Darren Demapan
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215;
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
31
|
Ogino T, Green TJ. RNA Synthesis and Capping by Non-segmented Negative Strand RNA Viral Polymerases: Lessons From a Prototypic Virus. Front Microbiol 2019; 10:1490. [PMID: 31354644 PMCID: PMC6636387 DOI: 10.3389/fmicb.2019.01490] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Non-segmented negative strand (NNS) RNA viruses belonging to the order Mononegavirales are highly diversified eukaryotic viruses including significant human pathogens, such as rabies, measles, Nipah, and Ebola. Elucidation of their unique strategies to replicate in eukaryotic cells is crucial to aid in developing anti-NNS RNA viral agents. Over the past 40 years, vesicular stomatitis virus (VSV), closely related to rabies virus, has served as a paradigm to study the fundamental molecular mechanisms of transcription and replication of NNS RNA viruses. These studies provided insights into how NNS RNA viruses synthesize 5'-capped mRNAs using their RNA-dependent RNA polymerase L proteins equipped with an unconventional mRNA capping enzyme, namely GDP polyribonucleotidyltransferase (PRNTase), domain. PRNTase or PRNTase-like domains are evolutionally conserved among L proteins of all known NNS RNA viruses and their related viruses belonging to Jingchuvirales, a newly established order, in the class Monjiviricetes, suggesting that they may have evolved from a common ancestor that acquired the unique capping system to replicate in a primitive eukaryotic host. This article reviews what has been learned from biochemical and structural studies on the VSV RNA biosynthesis machinery, and then focuses on recent advances in our understanding of regulatory and catalytic roles of the PRNTase domain in RNA synthesis and capping.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Todd J. Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
32
|
Genna V, Marcia M, De Vivo M. A Transient and Flexible Cation-π Interaction Promotes Hydrolysis of Nucleic Acids in DNA and RNA Nucleases. J Am Chem Soc 2019; 141:10770-10776. [PMID: 31251587 DOI: 10.1021/jacs.9b03663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal-dependent DNA and RNA nucleases are enzymes that cleave nucleic acids with great efficiency and precision. These enzyme-mediated hydrolytic reactions are fundamental for the replication, repair, and storage of genetic information within the cell. Here, extensive classical and quantum-based free-energy molecular simulations show that a cation-π interaction is transiently formed in situ at the metal core of Bacteriophage-λ Exonuclease (Exo-λ), during catalysis. This noncovalent interaction (Lys131-Tyr154) triggers nucleophile activation for nucleotide excision. Then, our simulations also show the oscillatory dynamics and swinging of the newly formed cation-π dyad, whose conformational change may favor proton release from the cationic Lys131 to the bulk solution, thus restoring the precatalytic protonation state in Exo-λ. Altogether, we report on the novel mechanistic character of cation-π interactions for catalysis. Structural and bioinformatic analyses support that flexible orientation and transient formation of mobile cation-π interactions may represent a common catalytic strategy to promote nucleic acid hydrolysis in DNA and RNA nucleases.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genoa , Italy
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble , 71 Avenue des Martyrs , Grenoble 38042 , France
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 , Genoa , Italy
| |
Collapse
|
33
|
An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nat Catal 2019. [DOI: 10.1038/s41929-019-0290-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Ogino T, Green TJ. Transcriptional Control and mRNA Capping by the GDP Polyribonucleotidyltransferase Domain of the Rabies Virus Large Protein. Viruses 2019; 11:E504. [PMID: 31159413 PMCID: PMC6631705 DOI: 10.3390/v11060504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Rabies virus (RABV) is a causative agent of a fatal neurological disease in humans and animals. The large (L) protein of RABV is a multifunctional RNA-dependent RNA polymerase, which is one of the most attractive targets for developing antiviral agents. A remarkable homology of the RABV L protein to a counterpart in vesicular stomatitis virus, a well-characterized rhabdovirus, suggests that it catalyzes mRNA processing reactions, such as 5'-capping, cap methylation, and 3'-polyadenylation, in addition to RNA synthesis. Recent breakthroughs in developing in vitro RNA synthesis and capping systems with a recombinant form of the RABV L protein have led to significant progress in our understanding of the molecular mechanisms of RABV RNA biogenesis. This review summarizes functions of RABV replication proteins in transcription and replication, and highlights new insights into roles of an unconventional mRNA capping enzyme, namely GDP polyribonucleotidyltransferase, domain of the RABV L protein in mRNA capping and transcription initiation.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
35
|
Arangundy-Franklin S, Taylor AI, Porebski BT, Genna V, Peak-Chew S, Vaisman A, Woodgate R, Orozco M, Holliger P. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat Chem 2019; 11:533-542. [PMID: 31011171 DOI: 10.1038/s41557-019-0255-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
Collapse
Affiliation(s)
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Benjamin T Porebski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vito Genna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Roger Woodgate
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
36
|
Olsen JMH, Bolnykh V, Meloni S, Ippoliti E, Bircher MP, Carloni P, Rothlisberger U. MiMiC: A Novel Framework for Multiscale Modeling in Computational Chemistry. J Chem Theory Comput 2019; 15:3810-3823. [DOI: 10.1021/acs.jctc.9b00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Viacheslav Bolnykh
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
- CaSToRC, The Cyprus
Institute, 2121 Aglantzia, Nicosia, Cyprus
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simone Meloni
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Emiliano Ippoliti
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin P. Bircher
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Paolo Carloni
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute for Neuroscience and Medicine (INM-11), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Franco-Ulloa S, Riccardi L, Rimembrana F, Pini M, De Vivo M. NanoModeler: A Webserver for Molecular Simulations and Engineering of Nanoparticles. J Chem Theory Comput 2019; 15:2022-2032. [PMID: 30758952 DOI: 10.1021/acs.jctc.8b01304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Functionalized nanoparticles (NPs) are at the frontier of nanoscience. They hold the promise of innovative applications for human health and technology. In this context, molecular dynamics (MD) simulations of NPs are increasingly employed to understand the fundamental structural and dynamical features of NPs. While informative, such simulations demand a laborious two-step process for their setup. In-house scripts are required to (i) construct complex 3D models of the inner metal core and outer layer of organic ligands, and (ii) correctly assign force-field parameters to these composite systems. Here, we present NanoModeler ( www.nanomodeler.it ), the first Webserver designed to automatically generate and parametrize model systems of monolayer-protected gold NPs and gold nanoclusters. The only required input is a structure file of one or two ligand(s) to be grafted onto the gold core, with the option of specifying homogeneous or heterogeneous NP morphologies. NanoModeler then generates 3D models of the nanosystem and the associated topology files. These files are ready for use with the Gromacs MD engine, and they are compatible with the AMBER family of force fields. We illustrate NanoModeler's capabilities with MD simulations of selected representative NP model systems. NanoModeler is the first platform to automate and standardize the construction and parametrization of realistic models for atomistic simulations of gold NPs and gold nanoclusters.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab , Istituto Italiano di Tecnologia , via Morego 30 , Genova 16163 , Italy
| | - Laura Riccardi
- Molecular Modeling and Drug Discovery Lab , Istituto Italiano di Tecnologia , via Morego 30 , Genova 16163 , Italy
| | - Federico Rimembrana
- Molecular Modeling and Drug Discovery Lab , Istituto Italiano di Tecnologia , via Morego 30 , Genova 16163 , Italy
| | - Mattia Pini
- Molecular Modeling and Drug Discovery Lab , Istituto Italiano di Tecnologia , via Morego 30 , Genova 16163 , Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab , Istituto Italiano di Tecnologia , via Morego 30 , Genova 16163 , Italy
| |
Collapse
|
38
|
Wilson KA, Fernandes PA, Ramos MJ, Wetmore SD. Exploring the Identity of the General Base for a DNA Polymerase Catalyzed Reaction Using QM/MM: The Case Study of Human Translesion Synthesis Polymerase η. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| |
Collapse
|
39
|
Zuo Z, Liu J. Assessing the Performance of the Nonbonded Mg 2+ Models in a Two-Metal-Dependent Ribonuclease. J Chem Inf Model 2018; 59:399-408. [PMID: 30521334 DOI: 10.1021/acs.jcim.8b00627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Magnesium ions (Mg2+), abundant in living cells, are essential for biomolecular structure, dynamics, and function. The biological importance of Mg2+ has motivated continuous development and improvement of various Mg2+ models for molecular dynamics (MD) simulations during the last decades. There are four types of nonbonded Mg2+ models: the point charge models based on a 12-6 or 12-6-4 type Lennard-Jones (LJ) potential, and the multisite models based on a 12-6 or 12-6-4 LJ potential. Here, we systematically assessed the performance of these four types of nonbonded Mg2+ models (21 models in total) in terms of maintaining a challenging intermediate state configuration captured in the structure of a prototypical two-metal-ion RNase H complex with an RNA/DNA hybrid. Our data demonstrate that the 12-6-4 multisite models, which account for charge-induced dipole interactions, perform the best in reproducing all the unique coordination modes in this intermediate state and maintaining the correct carboxylate denticity. Our benchmark work provides a useful guideline for MD simulations and structural refinement of Mg2+-containing biomolecular systems.
Collapse
Affiliation(s)
- Zhicheng Zuo
- Department of Pharmaceutical Sciences , University of North Texas System College of Pharmacy, University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Jin Liu
- Department of Pharmaceutical Sciences , University of North Texas System College of Pharmacy, University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| |
Collapse
|
40
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
41
|
Roston D, Lu X, Fang D, Demapan D, Cui Q. Analysis of Phosphoryl-Transfer Enzymes with QM/MM Free Energy Simulations. Methods Enzymol 2018; 607:53-90. [PMID: 30149869 DOI: 10.1016/bs.mie.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We discuss the application of quantum mechanics/molecular mechanics (QM/MM) free energy simulations to the analysis of phosphoryl transfers catalyzed by two enzymes: alkaline phosphatase and myosin. We focus on the nature of the transition state and the issue of mechanochemical coupling, respectively, in the two enzymes. The results illustrate unique insights that emerged from the QM/MM simulations, especially concerning the interpretation of experimental data regarding the nature of enzymatic transition states and coupling between global structural transition and catalysis in the active site. We also highlight a number of technical issues worthy of attention when applying QM/MM free energy simulations, and comment on a number of technical and mechanistic issues that require further studies.
Collapse
Affiliation(s)
- Daniel Roston
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Xiya Lu
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Dong Fang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Darren Demapan
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States.
| |
Collapse
|
42
|
Šebera J, Dubankova A, Sychrovský V, Ruzek D, Boura E, Nencka R. The structural model of Zika virus RNA-dependent RNA polymerase in complex with RNA for rational design of novel nucleotide inhibitors. Sci Rep 2018; 8:11132. [PMID: 30042483 PMCID: PMC6057956 DOI: 10.1038/s41598-018-29459-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus is a global health threat due to significantly elevated risk of fetus malformations in infected pregnant women. Currently, neither an effective therapy nor a prophylactic vaccination is available for clinical use, desperately necessitating novel therapeutics and approaches to obtain them. Here, we present a structural model of the Zika virus RNA-dependent RNA polymerase (ZIKV RdRp) in complex with template and nascent RNAs, Mg2+ ions and accessing nucleoside triphosphate. The model allowed for docking studies aimed at effective pre-screening of potential inhibitors of ZIKV RdRp. Applicability of the structural model for docking studies was illustrated with the NITD008 artificial nucleotide that is known to effectively inhibit the function of the ZIKV RdRp. The ZIKV RdRp – RNA structural model is provided for all possible variations of the nascent RNA bases pairs to enhance its general utility in docking and modelling experiments. The developed model makes the rational design of novel nucleosides and nucleotide analogues feasible and thus provides a solid platform for the development of advanced antiviral therapy.
Collapse
Affiliation(s)
- Jakub Šebera
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Anna Dubankova
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Daniel Ruzek
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic
| | - Evzen Boura
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic.
| | - Radim Nencka
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic.
| |
Collapse
|
43
|
Stevens DR, Hammes-Schiffer S. Exploring the Role of the Third Active Site Metal Ion in DNA Polymerase η with QM/MM Free Energy Simulations. J Am Chem Soc 2018; 140:8965-8969. [PMID: 29932331 DOI: 10.1021/jacs.8b05177] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enzyme human DNA polymerase η (Pol η) is critical for bypassing lesions during DNA replication. In addition to the two Mg2+ ions aligning the active site, experiments suggest that a third Mg2+ ion could play an essential catalytic role. Herein the role of this third metal ion is investigated with quantum mechanical/molecular mechanical (QM/MM) free energy simulations of the phosphoryl transfer reaction and a proposed self-activating proton transfer from the incoming nucleotide to the pyrophosphate leaving group. The simulations with only two metal ions in the active site support a sequential mechanism, with phosphoryl transfer followed by relatively fast proton transfer. The simulations with three metal ions in the active site suggest that the third metal ion may play a catalytic role through electrostatic interactions with the leaving group. These electrostatic interactions stabilize the product, making the phosphoryl transfer reaction more thermodynamically favorable with a lower free energy barrier relative to the activated state corresponding to the deprotonated 3'OH nucleophile, and also inhibit the subsequent proton transfer. The possibility that Mg2+-bound hydroxide acts as the base deprotonating the 3'OH nucleophile is also explored.
Collapse
Affiliation(s)
- David R Stevens
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
44
|
|
45
|
Genna V, Carloni P, De Vivo M. A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases. J Am Chem Soc 2018; 140:3312-3321. [PMID: 29424536 DOI: 10.1021/jacs.7b12446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymerases (Pols) synthesize the double-stranded nucleic acids in the Watson-Crick (W-C) conformation, which is critical for DNA and RNA functioning. Yet, the molecular basis to catalyze the W-C base pairing during Pol-mediated nucleic acids biosynthesis remains unclear. Here, through bioinformatics analyses on a large data set of Pol/DNA structures, we first describe the conserved presence of one positively charged residue (Lys or Arg), which is similarly located near the enzymatic two-metal active site, always interacting directly with the incoming substrate (d)NTP. Incidentally, we noted that some Pol/DNA structures showing the alternative Hoogsteen base pairing were often solved with this specific residue either mutated, displaced, or missing. We then used quantum and classical simulations coupled to free-energy calculations to illustrate how, in human DNA Pol-η, the conserved Arg61 favors W-C base pairing through defined interactions with the incoming nucleotide. Taken together, these structural observations and computational results suggest a structural framework in which this specific residue is critical for stabilizing the incoming (d)NTP nucleotide and base pairing during Pol-mediated nucleic acid biosynthesis. These results may benefit enzyme engineering for nucleic acid processing and encourage new drug discovery strategies to modulate Pols function.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| |
Collapse
|
46
|
Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Structure 2017; 26:40-50.e2. [PMID: 29225080 PMCID: PMC5758106 DOI: 10.1016/j.str.2017.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/12/2017] [Accepted: 11/12/2017] [Indexed: 02/01/2023]
Abstract
Synthesis and scission of phosphodiester bonds in DNA and RNA regulate vital processes within the cell. Enzymes that catalyze these reactions operate mostly via the recognized two-metal-ion mechanism. Our analysis reveals that basic amino acids and monovalent cations occupy structurally conserved positions nearby the active site of many two-metal-ion enzymes for which high-resolution (<3 Å) structures are known, including DNA and RNA polymerases, nucleases such as Cas9, and splicing ribozymes. Integrating multiple-sequence and structural alignments with molecular dynamics simulations, electrostatic potential maps, and mutational data, we found that these elements always interact with the substrates, suggesting that they may play an active role for catalysis, in addition to their electrostatic contribution. We discuss possible mechanistic implications of this expanded two-metal-ion architecture, including inferences on medium-resolution cryoelectron microscopy structures. Ultimately, our analysis may inspire future experiments and strategies for enzyme engineering or drug design to modulate nucleic acid processing. Basic residues in the active site of two-metal-ion enzymes are structurally conserved These residues are also conserved in evolution Mutagenesis suggests these residues may exert an effect on DNA- and RNA processing Our work offers insights into CRISPR/Cas9, spliceosome, and DNA/RNA polymerases
Collapse
|
47
|
Walker AR, Cisneros GA. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Chem Res Toxicol 2017; 30:1922-1935. [PMID: 28877429 PMCID: PMC5696005 DOI: 10.1021/acs.chemrestox.7b00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Genetic information is vital in the
cell cycle of DNA-based organisms.
DNA polymerases (DNA Pols) are crucial players in transactions dealing
with these processes. Therefore, the detailed understanding of the
structure, function, and mechanism of these proteins has been the
focus of significant effort. Computational simulations have been applied
to investigate various facets of DNA polymerase structure and function.
These simulations have provided significant insights over the years.
This perspective presents the results of various computational studies
that have been employed to research different aspects of DNA polymerases
including detailed reaction mechanism investigation, mutagenicity
of different metal cations, possible factors for fidelity synthesis,
and discovery/functional characterization of cancer-related mutations
on DNA polymerases.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
48
|
Wu WJ, Yang W, Tsai MD. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0068] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Wang X, Zhu W, Liu Y. Tryptophan lyase (NosL): mechanistic insights into amine dehydrogenation and carboxyl fragment migration by QM/MM calculations. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00573c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM calculations suggest two feasible pathways for the breaking of the C–C bond of the substrate. The breaking of the Cα–Cβ bond leads to the final product, whereas the cleavage of the Cα–C bond will terminate in the EPR-trapped radical intermediate.
Collapse
Affiliation(s)
- Xiya Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Wenyou Zhu
- College of Chemistry and Chemical Engineering
- Xuzhou Institute of Technology
- Xuzhou
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
50
|
Ucisik MN, Hammes-Schiffer S. Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η. J Phys Chem B 2016; 121:3667-3675. [PMID: 28423907 PMCID: PMC5402696 DOI: 10.1021/acs.jpcb.6b09973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Human DNA polymerase η (Pol
η) plays a vital role in
protection against skin cancer caused by damage from ultraviolet light.
This enzyme rescues stalled replication forks at cyclobutane thymine–thymine
dimers (TTDs) by inserting nucleotides opposite these DNA lesions.
Residue R61 is conserved in the Pol η enzymes across species,
but the corresponding residue, as well as its neighbor S62, is different
in other Y-family polymerases, Pol ι and Pol κ. Herein,
R61 and S62 are mutated to their Pol ι and Pol κ counterparts.
Relative binding free energies of dATP to mutant Pol η•DNA
complexes with and without a TTD were calculated using thermodynamic
integration. The binding free energies of dATP to the Pol η•DNA
complex with and without a TTD are more similar for all of these mutants
than for wild-type Pol η, suggesting that these mutations decrease
the ability of this enzyme to distinguish between a TTD lesion and
undamaged DNA. Molecular dynamics simulations of the mutant systems
provide insights into the molecular level basis for the changes in
relative binding free energies. The simulations identified differences
in hydrogen-bonding, cation−π, and π–π
interactions of the side chains with the dATP and the TTD or thymine–thymine
(TT) motif. The simulations also revealed that R61 and Q38 act as
a clamp to position the dATP and the TTD or TT and that the mutations
impact the balance among the interactions related to this clamp. Overall,
these calculations suggest that R61 and S62 play key roles in the
specificity and effectiveness of Pol η for bypassing TTD lesions
during DNA replication. Understanding the basis for this specificity
is important for designing drugs aimed at cancer treatment.
Collapse
Affiliation(s)
- Melek N Ucisik
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801-3364, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801-3364, United States
| |
Collapse
|