1
|
Lulic K, Wang J, Li X, Markandeya N, Huc I, Maurizot V, Duhamel J. Probing the Closed Association of Oligoquinoline Foldamers by Time-Resolved Fluorescence Anisotropy. J Phys Chem B 2024; 128:10297-10308. [PMID: 39359059 DOI: 10.1021/acs.jpcb.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The metal-mediated dimerization of oligoquinoline foldamers terminated at one end with an oligo(phenylenevinylene) and at the other with a carboxylic acid (OPV-QnA, where n = 4, 8, 17, and 33), and the complexation of OPV-Q8A and Q16A was promoted in chloroform by the addition of a concentrated 16 M aqueous sodium hydroxide solution. UV-vis absorption and time-resolved fluorescence anisotropy (TRFA) experiments were conducted to determine, respectively, the concentration and the average rotational time ⟨ϕ⟩ of the mixture of unassociated and associated foldamers across a range of foldamer concentrations spanning 5 orders of magnitude. Plots of ⟨ϕ⟩ as a function of acid group concentration revealed that ⟨ϕ⟩ increased with increasing foldamer concentration only when the foldamer solution in chloroform was vigorously mixed with the 16 M sodium hydroxide aqueous solution. Furthermore, all plots showed that ⟨ϕ⟩ reached a plateau at high foldamer concentration. The increase in ⟨ϕ⟩ reflected the association of foldamers into larger objects through metal ion coordination with the carboxylate anions generated by deprotonation of the carboxylic acid of OPV-QnA with NaOH, while the plateau obtained at high foldamer concentration indicated that these interactions led to the dimerization of the foldamers via a closed association mechanism. Analysis of the ⟨ϕ⟩ trends yielded the equilibrium constants (K) describing the foldamer dimerization, whose value equaled 1.0 (±0.2) × 106 M-1 for the three longer OPV-QnA foldamers, but was about 10 times smaller for the shortest one (n = 4). Association of OPV-Q8A and Q16A yielded a complex with a ⟨ϕ⟩ matching that of OPV-Q24A, and K for this complexation was similar to that for dimerization. These experiments illustrate the robust nature of TRFA as an experimental method to probe the size of rigid, self-assembled foldamers in solution.
Collapse
Affiliation(s)
- Kristijan Lulic
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jingqi Wang
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Xuesong Li
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Nagula Markandeya
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Ivan Huc
- Department Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, D-81377 Munich, Germany
| | - Victor Maurizot
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Pahan S, Dey S, George G, Mahapatra SP, Puneeth Kumar DRGKR, Gopi HN. Design of Chiral β-Double Helices from γ-Peptide Foldamers. Angew Chem Int Ed Engl 2024; 63:e202316309. [PMID: 38009917 DOI: 10.1002/anie.202316309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Chirality is ubiquitous in nature, and homochirality is manifested in many biomolecules. Although β-double helices are rare in peptides and proteins, they consist of alternating L- and D-amino acids. No peptide double helices with homochiral amino acids have been observed. Here, we report chiral β-double helices constructed from γ-peptides consisting of alternating achiral (E)-α,β-unsaturated 4,4-dimethyl γ-amino acids and chiral (E)-α,β-unsaturated γ-amino acids in both single crystals and in solution. The two independent strands of the same peptide intertwine to form a β-double helix structure, and it is stabilized by inter-strand hydrogen bonds. The peptides with chiral (E)-α,β-unsaturated γ-amino acids derived from α-L-amino acids adopt a (P)-β-double helix, whereas peptides consisting of (E)-α,β-unsaturated γ-amino acids derived from α-D-amino acids adopt an (M)-β-double helix conformation. The circular dichroism (CD) signature of the (P) and (M)-β-double helices and the stability of these peptides at higher temperatures were examined. Furthermore, ion transport studies suggested that these peptides transport ions across membranes. Even though the structural analogy suggests that these new β-double helices are structurally different from those of the α-peptide β-double helices, they retain ion transport activity. The results reported here may open new avenues in the design of functional foldamers.
Collapse
Affiliation(s)
- Saikat Pahan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Gijo George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Souvik Panda Mahapatra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
3
|
Molliet A, Doninelli S, Hong L, Tran B, Debas M, Salentinig S, Kilbinger AFM, Casalini T. Solvent Dependent Folding of an Amphiphilic Polyaramid. J Am Chem Soc 2023; 145:27830-27837. [PMID: 38084077 DOI: 10.1021/jacs.3c11026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A series of synthetic alternating and amphiphilic aromatic amide polymers were synthesized by a step growth polymerization. Alternating meta- and para-linkages were introduced to force the polymer chain into a helical shape in the highly polar solvent water. The polymers were analyzed by 1H NMR spectroscopy and SEC in polar aprotic solvents such as DMSO and DMF. However, the polymers also showed good solubility in water. 1H NMR spectroscopy, small-angle X-ray scattering, and dynamic light scattering provided clear evidence of polymer folding in water but not DMF. We employed parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) to simulate the free energy surfaces of an analogous model polymer in DMF and water. The simulations gave a molecular model of an unfolded structure in DMF and a helically folded tubular structure in water.
Collapse
Affiliation(s)
- Angélique Molliet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Samantha Doninelli
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Linda Hong
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Bettina Tran
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Meron Debas
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
- Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland
| |
Collapse
|
4
|
Shi L, Sun Z, Richy N, Blanchard-Desce M, Mongin O, Paul F, Paul-Roth CO. Giant Star-shaped meso-substituted Fluorescent Porphyrins with Fluorenyl-containing Arms Designed for Two-photon Oxygen Photosensitization. Chemistry 2023:e202303243. [PMID: 38116883 DOI: 10.1002/chem.202303243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
In the continuation of previous studies on carbon-rich meso-tetraarylporphyrins featuring 2,7-fluorene units at their periphery, the effect of changing the peripheral dendritic arms for linear arms on their oxygen-photosensitizing ability, their fluorescence and their two-photon absorption (2PA) properties is now analyzed. Thus, starburst porphyrins possessing up to twenty conjugated fluorenyl units were isolated and studied. More precisely, a series of five new free-base porphyrins featuring fully conjugated arms incorporating an increasing number of fluorenyl groups connected via 1,2-alkenyl spacers were synthesized, along with their Zn(II) complexes. Upon excitation in the arm-centred π-π* absorption band, an efficient energy transfer takes place from the peripheral fluorenyl units to the central porphyrin core, leading to intense red-light emission and oxygen photosensitization by the latter. More interestingly, while the linear optical properties of these porphyrins were only slightly improved compared to those of their dendrimer analogues for photodynamic therapy (PDT) or fluorescence imaging, their 2PA cross-sections were much more significantly boosted, evidencing the key role played by different structures on nonlinear optical properties. Finally, by comparison with other porphyrin-based two-photon photosensitizers reported in the literature, we show that these new "semi-disconnected" starburst systems exhibit a remarkable trade-off between intrinsic 2PA, fluorescence and oxygen photosensitization.
Collapse
Affiliation(s)
- Limiao Shi
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Zhipeng Sun
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Nicolas Richy
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | | | - Olivier Mongin
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Frédéric Paul
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Christine O Paul-Roth
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| |
Collapse
|
5
|
Lee H, Lee D. Assembling Molecular Clips To Build π-Stacks. Chemistry 2023; 29:e202302523. [PMID: 37658276 DOI: 10.1002/chem.202302523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Nature utilizes an intimate stacking of aromatic motifs to construct functional structures, as demonstrated in protein folding and polynucleotide assembly. However, organized π-stacks of artificial molecules are difficult to build, primarily due to the weak, non-directional, and context-sensitive nature of van der Waals forces. To overcome these challenges, chemists have invented ingenious architectural designs to construct π-stacked supramolecular assemblies using clip-like molecules. This Concept article focuses on molecular clips that enable precise spatial control over assembly patterns, beyond the scope of simple host-guest chemistry. Different design strategies are analyzed and compared that leverage non-covalent interactions to create multi-layer π-stacks. Particular emphasis is placed on the choice of spine units as they play a crucial role in controlling the (i) spacing, (ii) orientation, and (iii) conformational pre-organization of linked aromatics to achieve long-range spatial ordering.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
6
|
Teng B, Mandal PK, Allmendinger L, Douat C, Ferrand Y, Huc I. Controlling aromatic helix dimerization in water by tuning charge repulsions. Chem Sci 2023; 14:11251-11260. [PMID: 37860656 PMCID: PMC10583700 DOI: 10.1039/d3sc02020g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
Several helically folded aromatic oligoamides were designed and synthesized. The sequences were all water-soluble thanks to the charged side chains borne by the monomers. Replacing a few, sometimes only two, charged side chains by neutral methoxy groups was shown to trigger the formation of various aggregates which could be tentatively assigned to head-to-head stacked dimers of single helices, double helical duplexes and a quadruplex, none of which would form in organic solvent with organic-soluble analogues. The nature of the aggregates was supported by concentration and solvent dependent NMR studies, 1H DOSY experiments, mass spectrometry, and X-ray crystallography or energy-minimized models, as well as analogies with earlier studies. The hydrophobic effect appears to be the main driving force for aggregation but it can be finely modulated by the presence or absence of a small number of charges to an extent that had no precedent in aromatic foldamer architectures. These results will serve as a benchmark for future foldamer design in water.
Collapse
Affiliation(s)
- Binhao Teng
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Pradeep K Mandal
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Céline Douat
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| | - Yann Ferrand
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique CBMN UMR 5248, 2 rue Escarpit 33600 Pessac France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität Butenandtstr. 5-13 81377 München Germany
| |
Collapse
|
7
|
Privitera A, Faccio D, Giuri D, Latawiec EI, Genovese D, Tassinari F, Mummolo L, Chiesa M, Fontanesi C, Salvadori E, Cornia A, Wasielewski MR, Tomasini C, Sessoli R. Challenges in the Direct Detection of Chirality-induced Spin Selectivity: Investigation of Foldamer-based Donor-acceptor Dyads. Chemistry 2023:e202301005. [PMID: 37677125 DOI: 10.1002/chem.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.
Collapse
Affiliation(s)
- Alberto Privitera
- Department of Industrial Engineering, University of Florence, Via Santa Marta 3, 50139, Firenze, Italy
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Davide Faccio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Demetra Giuri
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Elisabeth I Latawiec
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Francesco Tassinari
- Department of Chemical and Geological Sciences and, INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Liviana Mummolo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Claudio Fontanesi
- Department of Engineering "E. Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125, Modena, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Andrea Cornia
- Department of Chemical and Geological Sciences and, INSTM Research Unit, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Claudia Tomasini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff" and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Morris DTJ, Clayden J. Screw sense and screw sensibility: communicating information by conformational switching in helical oligomers. Chem Soc Rev 2023; 52:2480-2496. [PMID: 36928473 PMCID: PMC10068589 DOI: 10.1039/d2cs00982j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Biological systems have evolved a number of different strategies to communicate information on the molecular scale. Among these, the propagation of conformational change is among the most important, being the means by which G-protein coupled receptors (GPCRs) use extracellular signals to modulate intracellular processes, and the way that opsin proteins translate light signals into nerve impulses. The developing field of foldamer chemistry has allowed chemists to employ conformationally well-defined synthetic structures likewise to mediate information transfer, making use of mechanisms that are not found in biological contexts. In this review, we discuss the use of switchable screw-sense preference as a communication mechanism. We discuss the requirements for functional communication devices, and show how dynamic helical foldamers derived from the achiral monomers such as α-aminoisobutyric acid (Aib) and meso-cyclohexane-1,2-diamine fulfil them by communicating information in the form of switchable screw-sense preference. We describe the various stimuli that can be used to switch screw sense, and explore the way that propagation of the resulting conformational preference in a well-defined helical molecule allows screw sense to control chemical events remote from a source of information. We describe the operation of these conformational switches in the membrane phase, and outline the progress that has been made towards using conformational switching to communicate between the exterior and interior of a phospholipid vesicle.
Collapse
Affiliation(s)
- David T J Morris
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
9
|
Chen C, Valera JS, Adachi TBM, Hermans TM. Efficient Photoredox Cycles to Control Perylenediimide Self-Assembly. Chemistry 2023; 29:e202202849. [PMID: 36112270 PMCID: PMC10098730 DOI: 10.1002/chem.202202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 01/04/2023]
Abstract
Photoreduction of perylenediimide (PDI) derivatives has been widely studied for use in photocatalysis, hydrogen evolution, photo-responsive gels, and organic semiconductors. Upon light irradiation, the radical anion (PDI⋅- ) can readily be obtained, whereas further reduction to the dianion (PDI2- ) is rare. Here we show that full 2-electron photoreduction can be achieved using UVC light: 1) in anaerobic conditions by 'direct photoreduction' of PDI aggregates, or 2) by 'indirect photoreduction' in aerobic conditions due to acetone ketyl radicals. The latter strategy is also efficient for other dyes, such as naphthalenediimide (NDI) and methylviologen (MV2+ ). Efficient photoreduction on the minute time-scale using simple LED light in aerobic conditions is attractive for use in dissipative light-driven systems and materials.
Collapse
Affiliation(s)
- Chunfeng Chen
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Jorge S Valera
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Takuji B M Adachi
- Department of Physical chemistry Sciences II, 30 Quai Ernest Ansermet, 1211, Genève 4, Switzerland
| | - Thomas M Hermans
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| |
Collapse
|
10
|
Molecular Tetris by sequence-specific stacking of hydrogen bonding molecular clips. Commun Chem 2022; 5:180. [PMID: 36697760 PMCID: PMC9814962 DOI: 10.1038/s42004-022-00802-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
A face-to-face stacking of aromatic rings is an effective non-covalent strategy to build functional architectures, as elegantly exemplified with protein folding and polynucleotide assembly. However, weak, non-directional, and context-sensitive van der Waals forces pose a significant challenge if one wishes to construct well-organized π-stacks outside the confines of the biological matrix. To meet this design challenge, we have devised a rigid polycyclic template to create a non-collapsible void between two parallel oriented π-faces. In solution, these shape-persistent aromatic clips self-dimerize to form quadruple π-stacks, the thermodynamic stability of which is enhanced by self-complementary N-H···N hydrogen bonds, and finely regulated by the regioisomerism of the π-canopy unit. With assistance from sufficient electrostatic polarization of the π-surface and bifurcated hydrogen bonds, a small polyheterocyclic guest can effectively compete against the self-dimerization of the host to afford a triple π-stack inclusion complex. A combination of solution spectroscopic, X-ray crystallographic, and computational studies aided a detailed understanding of this cooperative vs competitive process to afford layered aromatics with extraordinary structural regularity and fidelity.
Collapse
|
11
|
Formation of supramolecular channels by reversible unwinding-rewinding of bis(indole) double helix via ion coordination. Nat Commun 2022; 13:6507. [PMID: 36316309 PMCID: PMC9622825 DOI: 10.1038/s41467-022-34159-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Stimulus-responsive reversible transformation between two structural conformers is an essential process in many biological systems. An example of such a process is the conversion of amyloid-β peptide into β-sheet-rich oligomers, which leads to the accumulation of insoluble amyloid in the brain, in Alzheimer's disease. To reverse this unique structural shift and prevent amyloid accumulation, β-sheet breakers are used. Herein, we report a series of bis(indole)-based biofunctional molecules, which form a stable double helix structure in the solid and solution state. In presence of chloride anion, the double helical structure unwinds to form an anion-coordinated supramolecular polymeric channel, which in turn rewinds upon the addition of Ag+ salts. Moreover, the formation of the anion-induced supramolecular ion channel results in efficient ion transport across lipid bilayer membranes with excellent chloride selectivity. This work demonstrates anion-cation-assisted stimulus-responsive unwinding and rewinding of artificial double-helix systems, paving way for smart materials with better biomedical applications.
Collapse
|
12
|
Algar JL, Findlay JA, Preston D. Roles of Metal Ions in Foldamers and Other Conformationally Flexible Supramolecular Systems. ACS ORGANIC & INORGANIC AU 2022; 2:464-476. [PMID: 36855532 PMCID: PMC9955367 DOI: 10.1021/acsorginorgau.2c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Conformational control is a key prerequisite for much molecular function. As chemists seek to create complex molecules that have applications beyond the academic laboratory, correct spatial positioning is critical. This is particularly true of flexible systems. Conformationally flexible molecules show potential because they resemble in many cases naturally occurring analogues such as the secondary structures found in proteins and peptides such as α-helices and β-sheets. One of the ways in which conformation can be controlled in these molecules is through interaction with or coordination to metal ions. This review explores how secondary structure (i.e., controlled local conformation) in foldamers and other conformationally flexible systems can be enforced or modified through coordination to metal ions. We hope to provide examples that illustrate the power of metal ions to influence this structure toward multiple different outcomes.
Collapse
|
13
|
Meier D, Schoof B, Wang J, Li X, Walz A, Huettig A, Schlichting H, Rosu F, Gabelica V, Maurizot V, Reichert J, Papageorgiou AC, Huc I, Barth JV. Structural adaptations of electrosprayed aromatic oligoamide foldamers on Ag(111). Chem Commun (Camb) 2022; 58:8938-8941. [PMID: 35851385 DOI: 10.1039/d2cc03286d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic foldamers are promising for applications such as molecular recognition and molecular machinery. For many of these, defect free, 2D-crystaline monolayers are needed. To this end, submonolayers were prepared in ultra-high vacuum (UHV) on Ag(111) via electrospray controlled ion beam deposition (ES-CIBD). On the surface, the unfolded state is unambiguously identified by real-space single-molecule imaging using scanning tunnelling microscopy (STM) and it is found to assemble in regular structures.
Collapse
Affiliation(s)
- Dennis Meier
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Benedikt Schoof
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Jinhua Wang
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Xuesong Li
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Andreas Walz
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Annette Huettig
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Hartmut Schlichting
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Frédéric Rosu
- Institut Européen de Chimie et Biologie (UAR3033/US001), Univ. Bordeaux, CNRS, INSERM, F-33600 Pessac, France
| | - Valérie Gabelica
- Institut Européen de Chimie et Biologie (UAR3033/US001), Univ. Bordeaux, CNRS, INSERM, F-33600 Pessac, France.,ARNA (U1212), Univ. Bordeaux, INSERM, CNRS, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Joachim Reichert
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | | | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany. .,Cluster of Excellence e-conversion, D-85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany. .,Cluster of Excellence e-conversion, D-85748 Garching, Germany
| |
Collapse
|
14
|
Kanbayashi N, Yamazaki K, Nishio M, Onitsuka K. Synthesis Methodology of End-Functionalized Poly(quinolylene-2,3-methylene)s: Living Cyclocopolymerization Using Aryl Palladium Initiators Conveniently Prepared from Versatile Aryl Halide. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kazuki Yamazaki
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Miho Nishio
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
15
|
Gole B, Kauffmann B, Tron A, Maurizot V, McClenaghan N, Huc I, Ferrand Y. Selective and Cooperative Photocycloadditions within Multistranded Aromatic Sheets. J Am Chem Soc 2022; 144:6894-6906. [PMID: 35380826 DOI: 10.1021/jacs.2c01269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of aromatic helix-sheet-helix oligoamide foldamers composed of several different photosensitive diazaanthracene units have been designed and synthesized. Molecular objects up to 7 kDa were straightforwardly produced on a 100 mg scale. Nuclear magnetic resonance and crystallographic investigations revealed that helix-sheet-helix architectures can adopt one or two distinct conformations. Sequences composed of an even number of turn units were found to fold in a canonical symmetrical conformation with two helices of identical handedness stacked above and below the sheet segment. Sequences composed of an odd number of turns revealed a coexistence between a canonical fold with helices of opposite handedness and an alternate fold with a twist within the sheet and two helices of identical handedness. The proportions between these species could be manipulated, in some cases quantitatively, being dependent on solvent, temperature, and absolute control of helix handedness. Diazaanthracene units were shown to display distinct reactivity toward [4 + 4] photocycloadditions according to the substituent in position 9. Their organization within the sequences was programmed to allow photoreactions to take place in a specific order. Reaction pathways and kinetics were deciphered and product characterized, demonstrating the possibility to orchestrate successive photoreactions so as to avoid orphan units or to deliberately produce orphan units at precise locations. Strong cooperative effects were observed in which the photoreaction rate was influenced by the presence (or absence) of photoadducts in the structure. Multiple photoreactions within the aromatic sheet eventually lead to structure lengthening and stiffening, locking conformational equilibria. Photoproducts could be thermally reverted.
Collapse
Affiliation(s)
- Bappaditya Gole
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 2 rue Escarpit, 33600 Pessac, France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS, INSERM, Institut Européen de Chimie Biologie (UMS3033/US001), 2 rue Escarpit, 33600 Pessac, France
| | - Arnaud Tron
- Univ. Bordeaux, CNRS, Institut des Sciences Moléculaires (UMR5255), 351 cours de la Libération, 33405 Talence cedex, France
| | - Victor Maurizot
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 2 rue Escarpit, 33600 Pessac, France
| | - Nathan McClenaghan
- Univ. Bordeaux, CNRS, Institut des Sciences Moléculaires (UMR5255), 351 cours de la Libération, 33405 Talence cedex, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany.,Cluster of Excellence e-Conversion, 85748 Garching, Germany
| | - Yann Ferrand
- Univ. Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), 2 rue Escarpit, 33600 Pessac, France
| |
Collapse
|
16
|
Kanbayashi N, Kataoka Y, Okamura TA, Onitsuka K. Stability Enhancement of a π-Stacked Helical Structure Using Substituents of an Amino Acid Side Chain: Helix Formation via a Nucleation-Elongation Mechanism. J Am Chem Soc 2022; 144:6080-6090. [PMID: 35325538 DOI: 10.1021/jacs.2c01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular design involving the incorporation of an α-amino acid residue into the side chain or main chain of a polymer is often used to stabilize artificial molecular architectures through intramolecular hydrogen bonding. However, this molecular design strategy rarely considers the importance of interactions between substituents at the α-position of amino acid moieties, as found in nature. Herein, we report the synthesis of a novel series of π-stacked helical poly(quinolylene-2,3-methylene) with amino acid derivatives bearing different substituents at the α-position. We found that the thermal stability of π-stacked helical poly(quinolylene-2,3-methylene) is significantly improved by packing the substituents in the empty spaces between the side chains. In particular, when a bulky cyclohexyl alanine derivative was used as the side chain, the π-stacked helical structure maintained its stability even in dimethylsulfoxide, a hydrogen bond competitor. The stabilization of the π-stacked structure by the amino acid substituents resulted in a unique polymerization behavior involving nucleation-elongation steps. In the case of derivatives with leucine and cyclohexyl alanine, which form stable π-stacked helical structures, metastable structures with entangled main chains were formed in the initial polymerization stage. These structures subsequently underwent an irreversible structural change to achieve a thermodynamically stable helical π-stacked conformation as a nucleus for subsequent polymerization. Thereafter, the polymerization reaction proceeded with the elongation of the π-stacked helical structure. Differences in the stability of these systems indicated that the amino acid substituents on the side chains determine the most thermodynamically stable π-stacked helical structure.
Collapse
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Yuki Kataoka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Taka-Aki Okamura
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| |
Collapse
|
17
|
Wang J, Wicher B, Méndez-Ardoy A, Li X, Pecastaings G, Buffeteau T, Bassani DM, Maurizot V, Huc I. Loading Linear Arrays of Cu II Inside Aromatic Amide Helices. Angew Chem Int Ed Engl 2021; 60:18461-18466. [PMID: 34014599 PMCID: PMC8456862 DOI: 10.1002/anie.202104734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The very stable helices of 8-amino-2-quinolinecarboxylic acid oligoamides are shown to uptake CuII ions in their cavity through deprotonation of their amide functions with minimal alteration of their shape, unlike most metallo-organic structures which generally differ from their organic precursors. The outcome is the formation of intramolecular linear arrays of a defined number of CuII centers (up to sixteen in this study) at a 3 Å distance, forming a molecular mimic of a metal wire completely surrounded by an organic sheath. The helices pack in the solid state so that the arrays of CuII extend intermolecularly. Conductive-AFM and cyclic voltammetry suggest that electrons are transported throughout the metal-loaded helices in contrast with hole transport observed for analogous foldamers devoid of metal ions.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Alejandro Méndez-Ardoy
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Xuesong Li
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Gilles Pecastaings
- LCPO (UMR 5629), Bordeaux INP, CNRS, 16, Av. Pey-Berland, 33600, Pessac, France
- CRPP (UMR 5031), Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600, Pessac, France
| | - Thierry Buffeteau
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Dario M Bassani
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandstraße 5-13, 81377, Munich, Germany
- Cluster of Excellence e-conversion, 85748, Garching, Germany
| |
Collapse
|
18
|
Wang J, Wicher B, Méndez‐Ardoy A, Li X, Pecastaings G, Buffeteau T, Bassani DM, Maurizot V, Huc I. Loading Linear Arrays of Cu
II
Inside Aromatic Amide Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinhua Wang
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Barbara Wicher
- Department of Chemical Technology of Drugs Poznan University of Medical Sciences Grunwaldzka 6 60-780 Poznan Poland
| | | | - Xuesong Li
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Gilles Pecastaings
- LCPO (UMR 5629) Bordeaux INP CNRS 16, Av. Pey-Berland 33600 Pessac France
- CRPP (UMR 5031) Univ. Bordeaux CNRS 115 Avenue du Dr Albert Schweitzer 33600 Pessac France
| | - Thierry Buffeteau
- ISM (UMR 5255) Univ. Bordeaux CNRS 351, Cours de la Libération 33405 Talence France
| | - Dario M. Bassani
- ISM (UMR 5255) Univ. Bordeaux CNRS 351, Cours de la Libération 33405 Talence France
| | - Victor Maurizot
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Ivan Huc
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
- Department of Pharmacy Ludwig-Maximilians-Universität Butenandstraße 5–13 81377 Munich Germany
- Cluster of Excellence e-conversion 85748 Garching Germany
| |
Collapse
|
19
|
Preston D. Discrete Self-Assembled Metallo-Foldamers with Heteroleptic Sequence Specificity. Angew Chem Int Ed Engl 2021; 60:20027-20035. [PMID: 34263526 DOI: 10.1002/anie.202108456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 01/23/2023]
Abstract
Discrete and structurally diverse foldamer sequences are constructed in both natural and abiotic systems primarily using inert connectivity with irreversible organic covalent bonds, serving to preserve the identity of the sequence. The formation of sequences under thermodynamic control using labile coordination bonds would be attractive for synthetic ease and modular capability, but this presents issues regarding sequence preservation. Here is presented an approach integrating palladium(II) metal ions into the sequence itself, with fidelity maintained through use of complementary pairings of ligand arrangements at the metal centre. This is accomplished using sites of different denticity and/or hydrogen bonding capability. In this fashion, discrete and ordered metallo-sequences are formed as thermodynamic products in a single step, and these then fold into defined conformations due to π-π interactions between electron-rich and -poor aromatic regions of the combined componentry.
Collapse
Affiliation(s)
- Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
20
|
Preston D. Discrete Self‐Assembled Metallo‐Foldamers with Heteroleptic Sequence Specificity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Preston
- Research School of Chemistry Australian National University Canberra ACT 2600 Australia
| |
Collapse
|
21
|
Chiesa A, Chizzini M, Garlatti E, Salvadori E, Tacchino F, Santini P, Tavernelli I, Bittl R, Chiesa M, Sessoli R, Carretta S. Assessing the Nature of Chiral-Induced Spin Selectivity by Magnetic Resonance. J Phys Chem Lett 2021; 12:6341-6347. [PMID: 34228926 PMCID: PMC8397348 DOI: 10.1021/acs.jpclett.1c01447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
Understanding chiral-induced spin selectivity (CISS), resulting from charge transport through helical systems, has recently inspired many experimental and theoretical efforts but is still the object of intense debate. In order to assess the nature of CISS, we propose to focus on electron-transfer processes occurring at the single-molecule level. We design simple magnetic resonance experiments, exploiting a qubit as a highly sensitive and coherent magnetic sensor, to provide clear signatures of the acceptor polarization. Moreover, we show that information could even be obtained from time-resolved electron paramagnetic resonance experiments on a randomly oriented solution of molecules. The proposed experiments will unveil the role of chiral linkers in electron transfer and could also be exploited for quantum computing applications.
Collapse
Affiliation(s)
- A. Chiesa
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - M. Chizzini
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
| | - E. Garlatti
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - E. Salvadori
- Dipartimento
di Chimica & NIS Centre, Università
di Torino, Via P. Giuria
7, I-10125 Torino, Italy
| | - F. Tacchino
- IBM
Quantum, IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - P. Santini
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - I. Tavernelli
- IBM
Quantum, IBM Research—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - R. Bittl
- Freie
Universität Berlin, Fachbereich Physik, Berlin Joint EPR Lab, Arnimallee 14, D-14195 Berlin, Germany
| | - M. Chiesa
- Dipartimento
di Chimica & NIS Centre, Università
di Torino, Via P. Giuria
7, I-10125 Torino, Italy
| | - R. Sessoli
- Dipartimento
di Chimica “Ugo Schiff” & INSTM, Università Degli Studi di Firenze, I-50019 Sesto Fiorentino, Italy
| | - S. Carretta
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
22
|
Min J, Wang C, Wang L. A new method for detecting intramolecular H-bonds of aromatic amides based on the de-shielding effect of carbonyl groups on β-protons. Phys Chem Chem Phys 2021; 23:13284-13291. [PMID: 34095931 DOI: 10.1039/d1cp01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic amide foldamers with highly predictable conformations possess potential for application in the fields of stereoselective recognition, charge transport and catalysis, whose conformations are commonly limited by the intramolecular hydrogen bonding between amide groups and hydrogen-bonding receptors. Herein, on the basis of the de-shielding effect of carbonyl groups on β-protons, we develop a new method for detecting intramolecular hydrogen bonds of aromatic amide compounds. The solvent-related changes in the βH chemical shifts (Δ(δβH)) and NH chemical shifts (Δ(δNH)) of three kinds of amide compounds, which are frequently used as building blocks of aromatic amide foldamers, were recorded in chloroform, nitromethane, acetonitrile and DMSO. The Δ(δβH) method is found to be highly suitable for studying methoxy-benzamides and fluoro-benzamides in chloroform and DMSO. It is worth noting that a reference compound is not required for applying the Δ(δβH) method, which is an advantage over the Δ(δNH) method. In addition, we extend the Δ(δNH) method from methoxy-benzamides to pyridine-carboxamides and fluoro-benzamides in chloroform and DMSO, and propose that nitromethane and acetonitrile will be possible alternatives for the Δ(δNH) method if a test compound is not soluble in chloroform.
Collapse
Affiliation(s)
- Jing Min
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Liyan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
23
|
Hu X, Schulz A, Lindner JO, Grüne M, Bialas D, Würthner F. Folding and fluorescence enhancement with strong odd-even effect for a series of merocyanine dye oligomers. Chem Sci 2021; 12:8342-8352. [PMID: 34221315 PMCID: PMC8221066 DOI: 10.1039/d1sc01678d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of merocyanine (MC) oligomers with a varying number of chromophores from two to six has been synthesized via a peptide synthesis strategy. Solvent-dependent UV/vis spectroscopic studies reveal folding processes for the MC oligomers driven by strong dipole–dipole interactions resulting in well-defined π-stacks with antiparallel orientation of the dyes. Whilst even-numbered tetramer 4 and hexamer 6 only show partial folding into dimeric units, odd-numbered trimer 3 and pentamer 5 fold into π-stacks of three and five MC units upon decreasing solvent polarity. In-depth 2D NMR studies provided insight into the supramolecular structure. For trimer 3, an NMR structure could be generated revealing the presence of a well-defined triple π-stack in the folded state. Concomitant with folding, the fluorescence quantum yield is increased for all MC oligomers in comparison to the single chromophore. Based on radiative and non-radiative decay rates, this fluorescence enhancement can be attributed to the rigidification of the chromophores within the π-stacks that affords a pronounced decrease of the non-radiative decay rates. Theoretical investigations for the double and triple dye stacks based on time-dependent density functional theory (TD-DFT) calculations indicate for trimer 3 a pronounced mixing of Frenkel and charge transfer (CT) states. This leads to significant deviations from the predictions obtained by the molecular exciton theory which only accounts for the Coulomb interaction between the transition dipole moments of the chromophores. A series of merocyanine (MC) oligomers with a varying number of chromophores from two to six has been synthesized via a peptide synthesis strategy.![]()
Collapse
Affiliation(s)
- Xiaobo Hu
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schulz
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Joachim O Lindner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Matthias Grüne
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - David Bialas
- Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
24
|
Devaux F, Li X, Sluysmans D, Maurizot V, Bakalis E, Zerbetto F, Huc I, Duwez AS. Single-molecule mechanics of synthetic aromatic amide helices: Ultrafast and robust non-dissipative winding. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Moreno K, Merlet E, McClenaghan N, Buffeteau T, Ferrand Y, Olivier C. Influence of Positional Isomerism on the Chiroptical Properties of Functional Aromatic Oligoamide Foldamers. Chempluschem 2021; 86:496-503. [PMID: 33755326 DOI: 10.1002/cplu.202100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Indexed: 12/25/2022]
Abstract
A series of functionalized quinoline-based aromatic oligoamide foldamers were prepared in their two enantiomeric forms, comprising an enantiopure terminal camphanyl chiral inducer, which governed the adjacent (P-/M-) helical-handedness. Hierarchical chirality transfer was further investigated in chromophore-appended variants via a range of electronic and vibrational spectroscopic techniques, including circularly polarized luminescence, vibrational circular dichroism and fluorescence. Intense total and polarized photoluminescence (up to Φlum =0.39, glum =1.5×10-3 ) was observed in the visible region from these modular multicomponent architectures and a significant influence of positional isomerism was evidenced. The optimal position of a fluorophore substituent on the quinoline hexamers was determined as being position 2 over position 6, as stronger chiroptical features were systematically observed with the 2-positioned derivatives.
Collapse
Affiliation(s)
- Kevin Moreno
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Eric Merlet
- Institut de Chimie et Biologie des Membranes et des Nano-objets, UMR 5248 CNRS, Université de Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Yann Ferrand
- Institut de Chimie et Biologie des Membranes et des Nano-objets, UMR 5248 CNRS, Université de Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Céline Olivier
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| |
Collapse
|
26
|
Role of intramolecular hydrogen bonds in promoting electron flow through amino acid and oligopeptide conjugates. Proc Natl Acad Sci U S A 2021; 118:2026462118. [PMID: 33707214 DOI: 10.1073/pnas.2026462118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala)4 Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala)4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor-acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a "scorpion-shaped" molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH…O=C-NH…O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor-acceptor assemblies linked by long flexible bridges as well as insights into structural motifs for mediating ET and HT in proteins.
Collapse
|
27
|
Fuller AA, Moreno JL, Nguyen MT. Using Fluorescence to Enable Innovative Functions of Foldamers. Isr J Chem 2021. [DOI: 10.1002/ijch.202000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amelia A. Fuller
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| | - Jose L. Moreno
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| | - Michelle T. Nguyen
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| |
Collapse
|
28
|
Mateus P, Jacquet A, Méndez-Ardoy A, Boulloy A, Kauffmann B, Pecastaings G, Buffeteau T, Ferrand Y, Bassani DM, Huc I. Sensing a binding event through charge transport variations using an aromatic oligoamide capsule. Chem Sci 2021; 12:3743-3750. [PMID: 34163648 PMCID: PMC8179446 DOI: 10.1039/d0sc06060g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
The selective binding properties of a 13-mer oligoamide foldamer capsule composed of 4 different aromatic subunits are reported. The capsule was designed to recognize dicarboxylic acids through multiple-point interactions owing to a combination of protonation/deprotonation events, H-bonding, and geometrical constraints imparted by the rigidity of the foldamer backbone. Compared to tartaric acid, binding of 2,2-difluorosuccinic acid or 2,2,3,3-tetrafluorosuccinic acid resulted in symmetry breaking due to deprotonation of only one of the two carboxylic acid groups of the encapsulated species as shown by NMR studies in solution and by single-crystal X-ray diffraction in the solid state. An analogous 14-mer foldamer capsule terminated with a thiol anchoring group was used to probe the complexation event in self-assembled monolayers on Au substrates. Ellipsometry and polarization-modulation infrared absorption-reflection spectroscopy studies were consistent with the formation of a single molecule layer of the foldamer capsule oriented vertically with respect to the surface. The latter underwent smooth complexation of 2,2-difluorosuccinic acid with deprotonation of one of the two carboxylic acid groups. A significant (80-fold) difference in the charge transport properties of the monolayer upon encapsulation of the dicarboxylic acid was evidenced from conducting-AFM measurements (S = 1.1 × 10-9 vs. 1.4 × 10-11 ohm-1 for the empty and complexed capsule, respectively). The modulation in conductivity was assigned to protonation of the aromatic foldamer backbone.
Collapse
Affiliation(s)
- Pedro Mateus
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | - Antoine Jacquet
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | | | - Alice Boulloy
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS UMS 3033/US001 IECB 2 rue Escarpit 33600 Pessac France
| | - Gilles Pecastaings
- Inst. Polytechnique de Bordeaux, CNRS UMR 5629 LCPO 16, Av. Pey-Berland 33600 Pessac France
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS UMR 5255 ISM 351, Cours de la Libération 33405 Talence France
| | - Yann Ferrand
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
| | - Dario M Bassani
- Univ. Bordeaux, CNRS UMR 5255 ISM 351, Cours de la Libération 33405 Talence France
| | - Ivan Huc
- Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5248 CBMN, IECB 2 rue Escarpit 33600 Pessac France
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandstraße 5-13 81377 Munich Germany
- Cluster of Excellence e-Conversion 85748 Garching Germany
| |
Collapse
|
29
|
Wang J, Wicher B, Maurizot V, Huc I. Oligo-Quinolylene-Vinylene Foldamers. Chemistry 2021; 27:1031-1038. [PMID: 32881144 PMCID: PMC7839515 DOI: 10.1002/chem.202003559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Indexed: 01/26/2023]
Abstract
Quinoline based aromatic amide foldamers are known to adopt stable folded conformations. We have developed a synthetic approach to produce similar oligomers where all amide bonds, or part of them, have been replaced by an isosteric vinylene group. The results of solution and solid state structural studies show that oligomers exclusively containing vinylene linkages are not well folded, and adopt predominantly flat conformations. In contrast, a vinylene segment flanked by helical oligoamides also folds in a helix, albeit with a slightly lower curvature. The presence of vinylene functions also result in an extension of π-conjugation across the oligomer that may change charge transport properties. Altogether, these results pave the way to foldamers in which both structural control and specific electronic properties may be engineered.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR5248), Univ. Bordeaux–CNRS–IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660-780PoznanPoland
| | - Victor Maurizot
- CBMN (UMR5248), Univ. Bordeaux–CNRS–IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Ivan Huc
- CBMN (UMR5248), Univ. Bordeaux–CNRS–IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
- Department of Pharmacy and Cluster e-conversionLudwig-Maximilians-UniversiätButenandtstrasse 5–1381377MünchenGermany
| |
Collapse
|
30
|
Umerani MJ, Yang H, Pratakshya P, Nowick JS, Gorodetsky AA. An aza-Diels–Alder route to quinoline-based unnatural amino acids and polypeptide surrogates. RSC Adv 2021. [DOI: 10.1039/d0ra04783j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of quinoline-based unnatural amino acids and the subsequent preparation of polypeptide surrogates from these building blocks on solid support.
Collapse
Affiliation(s)
- M. J. Umerani
- Department of Materials Science and Engineering
- University of California, Irvine
- Irvine
- USA
| | - H. Yang
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - P. Pratakshya
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - J. S. Nowick
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - A. A. Gorodetsky
- Department of Materials Science and Engineering
- University of California, Irvine
- Irvine
- USA
- Department of Chemistry
| |
Collapse
|
31
|
Keshri SK, Nakanishi W, Takai A, Ishizuka T, Kojima T, Takeuchi M. Discrete π Stack of a Tweezer-Shaped Naphthalenediimide-Anthracene Conjugate. Chemistry 2020; 26:13288-13294. [PMID: 32583576 DOI: 10.1002/chem.202002477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 12/22/2022]
Abstract
The design and synthesis of a tweezer-shaped naphthalenediimide (NDI)-anthracene conjugate (2NDI) are reported. In the structure of the closed form (πNDI ⋅⋅⋅πNDI stack) of 2NDI, which was elucidated by single-crystal XRD, the existence of C-H⋅⋅⋅O hydrogen bonding involving the nearest carbonyl oxygen atom of an NDI unit was suggested. The tunability of πNDI ⋅⋅⋅πNDI interactions was studied by means of UV/Vis absorption, fluorescence and NMR spectroscopy and molecular modelling. This revealed that the πNDI ⋅⋅⋅πNDI interactions in 2NDI affect the absorption and emission properties depending on the temperature. Furthermore, in polar solvents, 2NDI prefers the stronger πNDI ⋅⋅⋅πNDI stack, whereas the πNDI ⋅⋅⋅πNDI interaction is diminished in nonpolar solvents. Importantly, the conformational variations of 2NDI can be reversibly switched by variation in temperature, and this suggests potential application for fluorogenic molecular switches upon temperature changes.
Collapse
Affiliation(s)
- Sudhir Kumar Keshri
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| | - Waka Nakanishi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure & Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure & Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, 305-0047, Japan
| |
Collapse
|
32
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kirinda VC, Schrage BR, Ziegler CJ, Hartley CS. ortho
‐Phenylene‐Based Macrocyclic Hydrocarbons Assembled Using Olefin Metathesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Viraj C. Kirinda
- Department of Chemistry & Biochemistry Miami University 45056 Oxford OH USA
| | | | | | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University 45056 Oxford OH USA
| |
Collapse
|
34
|
Kataoka Y, Kanbayashi N, Fujii N, Okamura T, Haino T, Onitsuka K. Construction of Helically Stacked π‐Electron Systems in Poly(quinolylene‐2,3‐methylene) Stabilized by Intramolecular Hydrogen Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Kataoka
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Naoka Fujii
- Department of Chemistry Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Taka‐aki Okamura
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
35
|
Jevric J, Langenegger SM, Häner R. Light-Harvesting Supramolecular Polymers: Energy Transfer to Various Polyaromatic Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jovana Jevric
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
36
|
Kataoka Y, Kanbayashi N, Fujii N, Okamura T, Haino T, Onitsuka K. Construction of Helically Stacked π‐Electron Systems in Poly(quinolylene‐2,3‐methylene) Stabilized by Intramolecular Hydrogen Bonds. Angew Chem Int Ed Engl 2020; 59:10286-10291. [DOI: 10.1002/anie.202002734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Yuki Kataoka
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Naoka Fujii
- Department of Chemistry Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Taka‐aki Okamura
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
37
|
Huang Y, Yu F, Cao X, Nie L, Zhang P, Xu F, Gong Q, Zhan X, Zhao K, Huang Y, Mai Y, Zhang Q. Tunable low-dimensional self-assembly of H-shaped bichromophoric perylenediimide Gemini in solution. NANOSCALE 2020; 12:3058-3067. [PMID: 31971199 DOI: 10.1039/c9nr10607c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A material with diverse self-assembled morphologies is extremely important and highly desirable because such samples can provide tunable optical and electronic properties, which are critical in applications such as organic photovoltaics, microelectronics and bio-imaging. Moreover, the synthesis and controllable self-assembly of H-shaped bichromophoric perylenediimides (PDIs) are needed to advance these materials in organic photovoltaics, microelectronics and bio-imaging; however, this has remained a great challenge thus far. Here, we successfully synthesize a novel H-shaped bichromophoric PDI Gemini through the palladium-catalyzed coupling reaction. The as-prepared PDI Gemini exhibited unprecedented tunable self-assembly behavior in solution, yielding diverse low-dimensional superstructures, such as one-dimensional (1D) helices, two-dimensional (2D) rectangular nanocrystals, pyramid-shaped parallelograms, ultralarge micro-sheets, and uniform nanospheres, under different self-assembly conditions. Of particular interest, the 2D hierarchical superstructures along with their formation mechanisms represent the first finding in the self-assembly of PDI-based molecules. This study opens a new avenue for tunable self-assembly of conjugated molecules and affords opportunities for the fabrication of novel self-assembled optical and electronic materials based on PDI molecules.
Collapse
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Fei Yu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Lina Nie
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Qiuyu Gong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xuejun Zhan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Kexiang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
38
|
Little H, Wang J, Duhamel J, Li X, Markandeya N, Maurizot V, Huc I. Simplification in the Acquisition and Analysis of Fluorescence Decays Acquired with Polarized Emission for Time-Resolved Fluorescence Anisotropy Measurements. Anal Chem 2020; 92:668-673. [PMID: 31804799 DOI: 10.1021/acs.analchem.9b05021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study introduces a global fluorescence decay analysis that substantially simplifies the acquisition and analysis of time-resolved fluorescence decays acquired with a vertically polarized excitation and vertically (IVV(t)) and horizontally (IVH(t)) polarized emission for time-resolved fluorescence anisotropy (TRFA) measurements. TRFA measurements were conducted whereby the IVV(t) and IVH(t) fluorescence decays of a series of oligoquinolines labeled at one end with an oligo(phenylenevinylene) dye (OPV-Qn with n = 4, 7, 17, 24, 33) were acquired according to the standard protocol that is currently accepted in the scientific literature which involves toggling the emission polarizer before fitting linear combinations of the IVV(t) and IVH(t) decays or acquiring the IVV(t) and IVH(t) decays with static polarizers before fitting them globally. The rotational time (ϕ) and initial anisotropy (r0) retrieved from these analyses were identical within experimental error regardless of whether the decays were acquired with toggling or static polarizers and fitted according to the standard protocol or globally. These experimental results were further supported by retrieving the parameters used to generate mono-, bi-, and tri-exponential TRFAs from the global analysis of simulated IVV(t) and IVH(t) fluorescence decays which were found to match perfectly the values that were inputted. Together, these experiments and simulations demonstrated that the parameters describing any type of TRFA can be extracted directly from the analysis of the IVV(t) and IVH(t) fluorescence decays acquired with a standard time-resolved fluorometer, a substantial simplification compared to the protocols currently in place to determine the TRFA.
Collapse
Affiliation(s)
- Hunter Little
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Jingqi Wang
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Xuesong Li
- Université de Bordeaux , CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie , 2 Rue Escarpit , 33600 Pessac , France
| | - Nagula Markandeya
- Université de Bordeaux , CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie , 2 Rue Escarpit , 33600 Pessac , France
| | - Victor Maurizot
- Université de Bordeaux , CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie , 2 Rue Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Université de Bordeaux , CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie , 2 Rue Escarpit , 33600 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , D-81377 Munich , Germany
| |
Collapse
|
39
|
Yang L, Ma C, Kauffmann B, Li D, Gan Q. Absolute handedness control of oligoamide double helices by chiral oxazolylaniline induction. Org Biomol Chem 2020; 18:6643-6650. [DOI: 10.1039/d0ob01503b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aromatic oligoamide double helices bearing a chiral oxazolylaniline moiety were synthesized and their helix handedness was completely controlled (de > 99%).
Collapse
Affiliation(s)
- Ling Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Chunmiao Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Brice Kauffmann
- Université de Bordeaux
- CNRS
- INSERM
- IECB-UMS3033-US001
- Institut Européen de Chimie et Biologie
| | - Dongyao Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| |
Collapse
|
40
|
Castrogiovanni A, Herr P, Larsen CB, Guo X, Sparr C, Wenger OS. Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes. Chemistry 2019; 25:16748-16754. [PMID: 31674695 DOI: 10.1002/chem.201904771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/30/2019] [Indexed: 01/24/2023]
Abstract
Atropisomeric 1,2-naphthylene scaffolds provide access to donor-acceptor compounds with helical oligomer-based bridges, and transient absorption studies revealed a highly unusual dependence of the electron-transfer rate on oligomer length, which is due to their well-defined secondary structure. Close noncovalent intramolecular contacts enable shortcuts for electron transfer that would otherwise have to occur over longer distances along covalent pathways, reminiscent of the behavior seen for certain proteins. The simplistic picture of tube-like electron transfer can describe this superposition of different pathways including both the covalent helical backbone, as well as noncovalent contacts, contrasting the wire-like behavior reported many times before for more conventional molecular bridges. The exquisite control over the molecular architecture, achievable with the configurationally stable and topologically defined 1,2-naphthylene-based scaffolds, is of key importance for the tube-like electron transfer behavior. Our insights are relevant for the emerging field of multidimensional electron transfer and for possible future applications in molecular electronics.
Collapse
Affiliation(s)
| | - Patrick Herr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Xingwei Guo
- Current address: Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
41
|
Verreault D, Moreno K, Merlet É, Adamietz F, Kauffmann B, Ferrand Y, Olivier C, Rodriguez V. Hyper-Rayleigh Scattering as a New Chiroptical Method: Uncovering the Nonlinear Optical Activity of Aromatic Oligoamide Foldamers. J Am Chem Soc 2019; 142:257-263. [DOI: 10.1021/jacs.9b09890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dominique Verreault
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Kevin Moreno
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Éric Merlet
- Institut de Chimie et Biologie des Membranes et des Nano-objets, UMR 5248 CNRS, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Frédéric Adamietz
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie, UMS 3033 CNRS, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Yann Ferrand
- Institut de Chimie et Biologie des Membranes et des Nano-objets, UMR 5248 CNRS, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Céline Olivier
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| | - Vincent Rodriguez
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France
| |
Collapse
|
42
|
Wang J, Little H, Duhamel J, Li X, Markandeya N, Maurizot V, Huc I. Application of Time-Resolved Fluorescence Anisotropy To Probe Quinoline-Based Foldamers Labeled with Oligo(phenylene vinylene). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingqi Wang
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hunter Little
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Xuesong Li
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie, 2 Rue Escarpit, 33600 Pessac, France
| | - Nagula Markandeya
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie, 2 Rue Escarpit, 33600 Pessac, France
| | - Victor Maurizot
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie, 2 Rue Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Institut Europeen de Chimie Biologie, 2 Rue Escarpit, 33600 Pessac, France
- Department Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, D-81377 Munich, Germany
| |
Collapse
|
43
|
Spiteri JC, Denisov SA, Jonusauskas G, Klejna S, Szaciłowski K, McClenaghan ND, Magri DC. Molecular engineering of logic gate types by module rearrangement in 'Pourbaix Sensors': the effect of excited-state electric fields. Org Biomol Chem 2019; 16:6195-6201. [PMID: 29714805 DOI: 10.1039/c8ob00485d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of fluorescent logic gates are accessed from two different arrangements of the same modular components, one as an AND logic gate (1) and the other as a PASS 0 logic gate (2). The logic gates were designed with an 'electron-donor-spacer1-fluorophore-spacer2-receptor' format and demonstrated in 1 : 1 (v/v) methanol/water. The molecules consist of ferrocene as the electron donor, 4-aminonaphthalimide as the fluorophore and a tertiary alkylamine as the receptor. In the presence of high H+ and Fe3+ levels, regioisomers 1a and 1b switch 'on' as AND logic gates with fluorescence enhancement ratios of 16-fold and 10-fold, respectively, while regioisomers 2a and 2b are functionally dormant, exhibiting no fluorescence switching. The PASS 0 logic of 2a and 2b results from the transfer of an electron from the excited state fluorophore to the ferrocenium unit under oxidising conditions as predicted by DFT calculations. Time-resolved fluorescence spectroscopy provided lifetimes of 8.3 ns and 8.1 ns for 1a and 1b, respectively. The transient signal recovery rate of 1b is ∼10 ps while that of 2b is considerably longer on the nanosecond timescale. The divergent logic attributes of 1 and 2 highlight the importance of field effects and opens up a new approach for regulating logic-based molecules.
Collapse
Affiliation(s)
- Jake C Spiteri
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta.
| | | | | | | | | | | | | |
Collapse
|
44
|
Veeresh K, Singh M, Gopi HN. Impact of substituent effects on the design of β-sheet mimetics and β-double helices from (E)-vinylogous γ-amino acid oligomers. Org Biomol Chem 2019; 17:9226-9231. [DOI: 10.1039/c9ob01801h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of substituent effects at the γ-carbon on the structures of (E)-vinylogous γ-amino acid homooligomers is studied.
Collapse
Affiliation(s)
- Kuruva Veeresh
- Department of Chemistry
- Indian Institute of Science Education and Research
- Dr. Homi Bhabha Road
- India
| | - Manjeet Singh
- Department of Chemistry
- Indian Institute of Science Education and Research
- Dr. Homi Bhabha Road
- India
| | - Hosahudya N. Gopi
- Department of Chemistry
- Indian Institute of Science Education and Research
- Dr. Homi Bhabha Road
- India
| |
Collapse
|
45
|
Merlet E, Moreno K, Tron A, McClenaghan N, Kauffmann B, Ferrand Y, Olivier C. Aromatic oligoamide foldamers as versatile scaffolds for induced circularly polarized luminescence at adjustable wavelengths. Chem Commun (Camb) 2019; 55:9825-9828. [PMID: 31360956 DOI: 10.1039/c9cc04697f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Quinoline oligoamide foldamers appended with non-chiral fluorophores and derivatized with a camphanyl chiral inducer display strong chiroptical properties at tunable wavelengths as proved by CD and CPL spectroscopies. Induced CPL activity with high luminescence dissymmetry factors was observed in the visible range at wavelengths specific to the fluorophores.
Collapse
Affiliation(s)
- Eric Merlet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Atcher J, Nagai A, Mayer P, Maurizot V, Tanatani A, Huc I. Aromatic β-sheet foldamers based on tertiary squaramides. Chem Commun (Camb) 2019; 55:10392-10395. [DOI: 10.1039/c9cc04849a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Suitably substituted aryl-methyl tertiary squaramides are convenient and efficient at promoting hairpin turns in aromatic amide sequences.
Collapse
Affiliation(s)
- Joan Atcher
- Department of Pharmacy and Center for Integrated Protein Science
- Ludwig-Maximilians-Universität
- Germany
- CBMN (UMR5248)
- Université de Bordeaux-CNRS-IPB
| | - Aki Nagai
- CBMN (UMR5248)
- Université de Bordeaux-CNRS-IPB
- Institut Européen de Chimie et Biologie
- 33600 Pessac
- France
| | - Peter Mayer
- Department of Chemistry
- Ludwig-Maximilians-Universität
- Germany
| | - Victor Maurizot
- CBMN (UMR5248)
- Université de Bordeaux-CNRS-IPB
- Institut Européen de Chimie et Biologie
- 33600 Pessac
- France
| | - Aya Tanatani
- Department of Chemistry
- Faculty of Science
- Ochnomizu University
- Tokyo 112-8610
- Japan
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science
- Ludwig-Maximilians-Universität
- Germany
- CBMN (UMR5248)
- Université de Bordeaux-CNRS-IPB
| |
Collapse
|
47
|
Yan T, Yang F, Qi S, Fan X, Liu S, Ma N, Luo Q, Dong Z, Liu J. Supramolecular nanochannels self-assembled by helical pyridine–pyridazine oligomers. Chem Commun (Camb) 2019; 55:2509-2512. [DOI: 10.1039/c8cc10098e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present a novel helix-based supramolecular nanochannel, wherein alkali ions could be easily collected, transported and even controllably released.
Collapse
Affiliation(s)
- Tengfei Yan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ningning Ma
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
48
|
Malzkuhn S, Guo X, Häussinger D, Wenger OS. Electron Transfer across o-Phenylene Wires. J Phys Chem A 2018; 123:96-102. [PMID: 30592217 DOI: 10.1021/acs.jpca.8b11236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoinduced electron transfer across rigid rod-like oligo- p-phenylenes has been thoroughly investigated in the past, but their o-connected counterparts are yet entirely unexplored in this regard. We report on three molecular dyads comprised of a triarylamine donor and a Ru(bpy)32+ (bpy =2,2'-bipyridine) acceptor connected covalently by 2 to 6 o-phenylene units. Pulsed excitation of the Ru(II) sensitizer at 532 nm leads to the rapid formation of oxidized triarylamine and reduced ruthenium complex via intramolecular electron transfer. The subsequent thermal reverse charge-shift reaction to reinstate the electronic ground-state occurs on a time scale of 120-220 ns in deaerated CH3CN at 25 °C. The conformational flexibility of the o-phenylene bridges causes multiexponential transient absorption kinetics for the photoinduced forward process, but the thermal reverse reaction produces single-exponential transient absorption decays. The key finding is that the flexible o-phenylene bridges permit rapid formation of photoproducts storing ca. 1.7 eV of energy with lifetimes on the order of hundreds of nanoseconds, similar to what is possible with rigid rod-like donor-acceptor compounds. Thus, the conformational flexibility of the o-phenylenes represents no disadvantage with regard to the photoproduct lifetimes, and this is relevant in the greater context of light-to-chemical energy conversion.
Collapse
Affiliation(s)
- Sabine Malzkuhn
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Xingwei Guo
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
49
|
Espinoza EM, Clark JA, Derr JB, Bao D, Georgieva B, Quina FH, Vullev VI. How Do Amides Affect the Electronic Properties of Pyrene? ACS OMEGA 2018; 3:12857-12867. [PMID: 31458010 PMCID: PMC6644773 DOI: 10.1021/acsomega.8b01581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 05/12/2023]
Abstract
The electronic properties of amide linkers, which are intricate components of biomolecules, offer a wealth of unexplored possibilities. Herein, we demonstrate how the different modes of attaching an amide to a pyrene chromophore affect the electrochemical and optical properties of the chromophore. Thus, although they cause minimal spectral shifts, amide substituents can improve either the electron-accepting or electron-donating capabilities of pyrene. Specifically, inversion of the amide orientation shifts the reduction potentials by 200 mV. These trends indicate that, although amides affect to a similar extent the energies of the ground and singlet excited states of pyrene, the effects on the doublet states of its radical ions are distinctly different. This behavior reflects the unusually strong orientation dependence of the resonance effects of amide substituents, which should extend to amide substituents on other types of chromophores in general. These results represent an example where the Hammett sigma constants fail to predict substituent effects on electrochemical properties. On the other hand, Swain-Lupton parameters are found to be in good agreement with the observed trends. Examination of the frontier orbitals of the pyrene derivatives and their components reveals the underlying reason for the observed amide effects on the electronic properties of this polycyclic aromatic hydrocarbon and points to key molecular-design strategies for electronic and energy-conversion systems.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
| | - John A. Clark
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - James B. Derr
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Duoduo Bao
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Boriana Georgieva
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Frank H. Quina
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
- E-mail: (F.H.Q.)
| | - Valentine I. Vullev
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- E-mail: (V.I.V.)
| |
Collapse
|
50
|
Kaufmann C, Bialas D, Stolte M, Würthner F. Discrete π-Stacks of Perylene Bisimide Dyes within Folda-Dimers: Insight into Long- and Short-Range Exciton Coupling. J Am Chem Soc 2018; 140:9986-9995. [PMID: 29992819 DOI: 10.1021/jacs.8b05490] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Four well-defined π-stacks of perylene bisimide (PBI) dyes were obtained in solution by covalent linkage of two chromophores with spacer units of different length and sterical demand. Structural elucidation of the folda-dimers by in-depth nuclear magnetic resonance studies and geometry optimization at the level of density functional theory suggest different, but highly defined molecular arrangements of the two chromophores in the folded state enforced by the various spacer moieties. Remarkably, the dye stacks exhibit considerably different optical properties as investigated by UV/vis absorption and fluorescence spectroscopy, despite only slightly different chromophore arrangements. The distinct absorption properties can be rationalized by an interplay of long- and short-range exciton coupling resulting in optical signatures ranging from conventional H-type to monomer like absorption features with low and appreciably high fluorescence quantum yields, respectively. To the best of our knowledge, we present the first experimental proof of a PBI-based "null-aggregate", in which long- and short-range exciton coupling fully compensate each other, giving rise to monomer-like absorption features for a stack of two PBI chromophores. Hence, our insights pinpoint the importance of charge-transfer mediated short-range coupling that can significantly influence the optical properties of PBI π-stacks.
Collapse
Affiliation(s)
- Christina Kaufmann
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - David Bialas
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Matthias Stolte
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Frank Würthner
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|