1
|
Mandarić M, Topić E, Agustin D, Pisk J, Vrdoljak V. Preparative and Catalytic Properties of Mo VI Mononuclear and Metallosupramolecular Coordination Assemblies Bearing Hydrazonato Ligands. Int J Mol Sci 2024; 25:1503. [PMID: 38338782 PMCID: PMC10855701 DOI: 10.3390/ijms25031503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
A series of polynuclear, dinuclear, and mononuclear Mo(VI) complexes were synthesized with the hydrazonato ligands derived from 5-methoxysalicylaldehyde and the corresponding hydrazides (isonicotinic hydrazide (H2L1), nicotinic hydrazide (H2L2), 2-aminobenzhydrazide (H2L3), or 4-aminobenzhydrazide (H2L4)). The metallosupramolecular compounds obtained from non-coordinating solvents, [MoO2(L1,2)]n (1 and 2) and [MoO2(L3,4)]2 (3 and 4), formed infinite structures and metallacycles, respectively. By blocking two coordination sites with cis-dioxo ligands, the molybdenum centers have three coordination sites occupied by the ONO donor atoms from the rigid hydrazone ligands and one by the N atom of pyridyl or amine-functionalized ligand subcomponents from the neighboring Mo building units. The reaction in methanol afforded the mononuclear analogs [MoO2(L1-4)(MeOH)] (1a-4a) with additional monodentate MeOH ligands. All isolated complexes were tested as catalysts for cyclooctene epoxidation using tert-butyl hydroperoxide (TBHP) as an oxidant in water. The impact of the structure and ligand lability on the catalytic efficiency in homogeneous cyclooctene epoxidation was elucidated based on theoretical considerations. Thus, dinuclear assemblies exhibited better catalytic activity than mononuclear or polynuclear complexes.
Collapse
Affiliation(s)
- Mirna Mandarić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Edi Topić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Dominique Agustin
- IUT P. Sabatier, Department of Chemistry, University of Toulouse, Av. G. Pompidou, BP20258, 81104 Castres CEDEX, France;
- CNRS (Centre National de la Recherche Scientifique), LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP44099, 31077 Toulouse CEDEX 4F, France
| | - Jana Pisk
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| | - Višnja Vrdoljak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (M.M.); (E.T.); (J.P.)
| |
Collapse
|
2
|
Li N, Jian C, Song Y, Wang L, Rehman AU, Fu Y, Zhang F, Chen DL, Zhu W. Scalable synthesis of MIL-88A(Fe) for efficient aerobic oxidation of cyclohexene to 2-cyclohexene-1-ol. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Liu J, Wang W, Wang L, Jian P. Heterostructured V2O5/FeVO4 for enhanced liquid-phase epoxidation of cyclooctene. J Colloid Interface Sci 2023; 630:804-812. [DOI: 10.1016/j.jcis.2022.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
4
|
Fosshat S, Siddhiaratchi SDM, Baumberger CL, Ortiz VR, Fronczek FR, Chambers MB. Light-Initiated C–H Activation via Net Hydrogen Atom Transfer to a Molybdenum(VI) Dioxo. J Am Chem Soc 2022; 144:20472-20483. [DOI: 10.1021/jacs.2c09235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saeed Fosshat
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | | | - Courtney L. Baumberger
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Victor R. Ortiz
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Matthew B. Chambers
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| |
Collapse
|
5
|
Malik DD, Lee Y, Nam W. Identification of a cobalt(
IV
)–oxo intermediate as an active oxidant in catalytic oxidation reactions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deesha D. Malik
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| |
Collapse
|
6
|
Gupta R, Li XX, Lee Y, Seo MS, Lee YM, Yanagisawa S, Kubo M, Sarangi R, Cho KB, Fukuzumi S, Nam W. Heme compound II models in chemoselectivity and disproportionation reactions. Chem Sci 2022; 13:5707-5717. [PMID: 35694346 PMCID: PMC9116367 DOI: 10.1039/d2sc01232d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Heme compound II models bearing electron-deficient and -rich porphyrins, [FeIV(O)(TPFPP)(Cl)]- (1a) and [FeIV(O)(TMP)(Cl)]- (2a), respectively, are synthesized, spectroscopically characterized, and investigated in chemoselectivity and disproportionation reactions using cyclohexene as a mechanistic probe. Interestingly, cyclohexene oxidation by 1a occurs at the allylic C-H bonds with a high kinetic isotope effect (KIE) of 41, yielding 2-cyclohexen-1-ol product; this chemoselectivity is the same as that of nonheme iron(iv)-oxo intermediates. In contrast, as observed in heme compound I models, 2a yields cyclohexene oxide product with a KIE of 1, demonstrating a preference for C[double bond, length as m-dash]C epoxidation. The latter result is interpreted as 2a disproportionating to form [FeIV(O)(TMP+˙)]+ (2b) and FeIII(OH)(TMP), and 2b becoming the active oxidant to conduct the cyclohexene epoxidation. In contrast to 2a, 1a does not disproportionate under the present reaction conditions. DFT calculations confirm that compound II models prefer C-H bond hydroxylation and that disproportionation of compound II models is controlled thermodynamically by the porphyrin ligands. Other aspects, such as acid and base effects on the disproportionation of compound II models, have been discussed as well.
Collapse
Affiliation(s)
- Ranjana Gupta
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Youngseob Lee
- Department of Chemistry, Jeonbuk National University Jeonju 54896 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo Hyogo 678-1297 Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo Hyogo 678-1297 Japan
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University California 94023 USA
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University Jeonju 54896 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
7
|
Singh P, Denler MC, Mayfield JR, Jackson TA. Differences in chemoselectivity in olefin oxidation by a series of non-porphyrin manganese(IV)-oxo complexes. Dalton Trans 2022; 51:5938-5949. [PMID: 35348163 DOI: 10.1039/d2dt00876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High valent metal-oxo intermediates are versatile oxidants known to facilitate both oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions in nature. In addition to performing essential yet challenging biological reactions, these intermediates are known for their selectivity in favoring the formation of one oxidation product. To understand the basis for this selectivity, we explore the role of equatorial ligand field perturbations in MnIV-oxo complexes on chemoselectivity in cyclohexene oxidation. We also examine reactions of MnIV-oxo complexes with cyclohexene-d10, cyclooctene, and styrene. Within this series, the product distribution in olefin oxidation is highly dependent on the coordination environment of the MnIV-oxo unit. While MnIV-oxo complexes with sterically encumbered, and slightly tilted, MnO units favor CC epoxidation products in cyclohexene oxidation, a less encumbered analogue prefers to cleave allylic C-H bonds, resulting in cyclohexenol and cyclohexenone formation. These conclusions are drawn from GC-MS product analysis of the reaction mixture, changes in the UV-vis absorption spectra, and kinetic analyses. DFT computations establish a trend in thermodynamic properties of the MnIV-oxo complexes and their reactivity towards olefin oxidation on the basis of the MnO bond dissociation free energy (BDFE). The most reactive MnIV-oxo adduct from this series oxidizes cyclohexene-d10, cyclooctene, and styrene to give corresponding epoxides as the only detected products. Collectively, these results suggest that the chemoselectivity obtained in oxidation of olefins is controlled by both the coordination environment around the MnO unit, which modulates the MnO BDFE, and the BDFEs of the allylic C-H bond of the olefins.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Jaycee R Mayfield
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Milica Feldt
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Theory & Catalysis Albert-Einstein-Str 29A 18059 Rostock GERMANY
| | - Quan Manh Phung
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| |
Collapse
|
9
|
Ma Z, Hada M, Nakatani N. Mechanistic insights into the selectivity of norcarane oxidation by oxoMn(V) porphyrin complexes. Chemphyschem 2022; 23:e202100810. [PMID: 34981629 DOI: 10.1002/cphc.202100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Indexed: 11/05/2022]
Abstract
OxoMn(V) porphyrin complexes perform competitive hydroxylation, desaturation, and radical rearrangement reactions using diagnostic substrate norcarane. Initial C-H cleavage proceeds through the two hydrogen abstraction steps from the two adjacent carbon on the norcarane, then the selective reaction is performed to generate various products. Using density functional theory calculations, we show that the hydroxylation and desaturation reactions are triggered by a rate-determining H-abstraction step, whereas the rate-determining step for the radical rearrangement is located at the rebound step ( TS2 ). We find that the endo- 2 reaction is favorable over other reactions, which is consistent with the experimental result. Furthermore, the competitive pathways for norcarane oxidation depend on the non-covalent interaction between norcarane and porphyrin-ring, and orbital energy gaps between donor and acceptor orbitals because of stable or unstable acceptor orbital. The stereo- and regio-selectivities of norcarane oxidation are hardly sensitive to the zero-point energy and thermal free energy corrections.
Collapse
Affiliation(s)
- Zhifeng Ma
- Tokyo Metropolitan University, Chemistry, 1-1 Minami-Osawa, 192-0397, Tokyo, JAPAN
| | - Masahiko Hada
- Tokyo Metropolitan University - Minamiosawa Campus: Shuto Daigaku Tokyo, Chemistry, JAPAN
| | - Naoki Nakatani
- Tokyo Metropolitan University - Minamiosawa Campus: Shuto Daigaku Tokyo, Chemistry, JAPAN
| |
Collapse
|
10
|
‘Oxygen-Consuming Complexes’–Catalytic Effects of Iron–Salen Complexes with Dioxygen. Catalysts 2021. [DOI: 10.3390/catal11121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[(salen)FeIII]+MeCN complex is a useful catalyst for cyclohexene oxidation with dioxygen. As the main products, ketone and alcohol are formed. In acetonitrile, [(salen)FeII]MeCN is rapidly oxidized by dioxygen, forming iron(III) species. Voltammetric electroreduction of the [(salen)FeIII]+MeCN complex in the presence of dioxygen causes the increase in current observed, which indicates the existence of a catalytic effect. Further transformations of the oxygen-activated iron(III) salen complex generate an effective catalyst. Based on the catalytic and electrochemical results, as well as DFT calculations, possible forms of active species in c-C6H10 oxidation have been proposed.
Collapse
|
11
|
Karmalkar DG, Seo MS, Lee YM, Kim Y, Lee E, Sarangi R, Fukuzumi S, Nam W. Deeper Understanding of Mononuclear Manganese(IV)-Oxo Binding Brønsted and Lewis Acids and the Manganese(IV)-Hydroxide Complex. Inorg Chem 2021; 60:16996-17007. [PMID: 34705465 DOI: 10.1021/acs.inorgchem.1c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of Lewis acidic metal ions and Brønsted acid at the metal-oxo group of high-valent metal-oxo complexes enhances their reactivities significantly in oxidation reactions. However, such a binding of Lewis acids and proton at the metal-oxo group has been questioned in several cases and remains to be clarified. Herein, we report the synthesis, characterization, and reactivity studies of a mononuclear manganese(IV)-oxo complex binding triflic acid, {[(dpaq)MnIV(O)]-HOTf}+ (1-HOTf). First, 1-HOTf was synthesized and characterized using various spectroscopic techniques, including resonance Raman (rRaman) and X-ray absorption spectroscopy/extended X-ray absorption fine structure. In particular, in rRaman experiments, we observed a linear correlation between the Mn-O stretching frequencies of 1-HOTf (e.g., νMn-O at ∼793 cm-1) and 1-Mn+ (Mn+ = Ca2+, Zn2+, Lu3+, Al3+, or Sc3+) and the Lewis acidities of H+ and Mn+ ions, suggesting that H+ and Mn+ bind at the metal-oxo moiety of [(dpaq)MnIV(O)]+. Interestingly, a single-crystal structure of 1-HOTf was obtained by X-ray diffraction analysis, but the structure was not an expected Mn(IV)-oxo complex but a Mn(IV)-hydroxide complex, [(dpaq)MnIV(OH)](OTf)2 (4), with a Mn-O bond distance of 1.8043(19) Å and a Mn-O stretch at 660 cm-1. More interestingly, 4 reverted to 1-HOTf upon dissolution, demonstrating that 1-HOTf and 4 are interconvertible depending on the physical states, such as 1-HOTf in solution and 4 in isolated solid. The reactivity of 1-HOTf was investigated in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions and then compared with those of 1-Mn+ complexes; an interesting correlation between the Mn-O stretching frequencies of 1-HOTf and 1-Mn+ and their reactivities in the OAT and HAT reactions is reported for the first time in this study.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
12
|
Guo M, Zhang J, Zhang L, Lee YM, Fukuzumi S, Nam W. Enthalpy-Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. J Am Chem Soc 2021; 143:18559-18570. [PMID: 34723505 DOI: 10.1021/jacs.1c08198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
"Enthalpy-Entropy Compensation Effect" (EECE) is ubiquitous in chemical reactions; however, such an EECE has been rarely explored in biomimetic oxidation reactions. In this study, six manganese(IV)-oxo complexes bearing electron-rich and -deficient porphyrins are synthesized and investigated in various oxidation reactions, such as hydrogen atom transfer (HAT), oxygen atom transfer (OAT), and electron-transfer (ET) reactions. First, all of the six Mn(IV)-oxo porphyrins are highly reactive in the HAT, OAT, and ET reactions. Interestingly, we have observed a reversed reactivity in the HAT and OAT reactions by the electron-rich and -deficient Mn(IV)-oxo porphyrins, depending on reaction temperatures, but not in the ET reactions; the electron-rich Mn(IV)-oxo porphyrins are more reactive than the electron-deficient Mn(IV)-oxo porphyrins at high temperature (e.g., 0 °C), whereas at low temperature (e.g., -60 °C), the electron-deficient Mn(IV)-oxo porphyrins are more reactive than the electron-rich Mn(IV)-oxo porphyrins. Such a reversed reactivity between the electron-rich and -deficient Mn(IV)-oxo porphyrins depending on reaction temperatures is rationalized with EECE; that is, the lower is the activation enthalpy, the more negative is the activation entropy, and vice versa. Interestingly, a unified linear correlation between the activation enthalpies and the activation entropies is observed in the HAT and OAT reactions of the Mn(IV)-oxo porphyrins. Moreover, from the previously reported HAT reactions of nonheme Fe(IV)-oxo complexes, a linear correlation between the activation enthalpies and the activation entropies is also observed. To the best of our knowledge, we report the first detailed mechanistic study of EECE in the oxidation reactions by synthetic high-valent metal-oxo complexes.
Collapse
Affiliation(s)
- Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Lina Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
13
|
Li XX, Lu X, Park JW, Cho KB, Nam W. Nonheme Iron Imido Complexes Bearing a Non-Innocent Ligand: A Synthetic Chameleon Species in Oxidation Reactions. Chemistry 2021; 27:17495-17503. [PMID: 34590742 DOI: 10.1002/chem.202103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/07/2022]
Abstract
High-valent iron-imido complexes can perform C-H activation and sulfimidation reactions, but are far less studied than the more ubiquitous iron-oxo species. As case studies, we have looked at a recently published iron(V)-imido ligand π-cation radical complex, which is formally an iron(VI)-imido complex [FeV (NTs)(TAML+. )] (1; NTs=tosylimido), and an iron(V)-imido complex [FeV (NTs)(TAML)]- (2). Using a theoretical approach, we found that they have multiple energetically close-lying electromers, sometimes even without changing spin states, reminiscent of the so-called Compound I in Cytochrome P450. When studying their reactivity theoretically, it is indeed found that their electronic structures may change to perform efficient oxidations, emulating the multi-spin state reactivity in FeIV O systems. This is actually in contrast to the known [FeV (O)(TAML)]- species (3), where the reactions occur only on the ground spin state. We also looked into the whole reaction pathway for the C-H bond activation of 1,4-cyclohexadiene by these intermediates to reproduce the experimentally observed products, including steps that usually attract no interest (neither theoretically nor experimentally) due to their non-rate-limiting status and fast reactivity. A new "clustering non-rebound mechanism" is presented for this C-H activation reaction.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
14
|
Tomboc GM, Park Y, Lee K, Jin K. Directing transition metal-based oxygen-functionalization catalysis. Chem Sci 2021; 12:8967-8995. [PMID: 34276926 PMCID: PMC8261717 DOI: 10.1039/d1sc01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review presents the recent progress of oxygen functionalization reactions based on non-electrochemical (conventional organic synthesis) and electrochemical methods. Although both methods have their advantages and limitations, the former approach has been used to synthesize a broader range of organic substances as the latter is limited by several factors, such as poor selectivity and high energy cost. However, because electrochemical methods can replace harmful terminal oxidizers with external voltage, organic electrosynthesis has emerged as greener and more eco-friendly compared to conventional organic synthesis. The progress of electrochemical methods toward oxygen functionalization is presented by an in-depth discussion of different types of electrically driven-chemical organic synthesis, with particular attention to recently developed electrochemical systems and catalyst designs. We hope to direct the attention of readers to the latest breakthroughs of traditional oxygen functionalization reactions and to the potential of electrochemistry for the transformation of organic substrates to useful end products.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
15
|
Rydel-Ciszek K. The most reactive iron and manganese complexes with N-pentadentate ligands for dioxygen activation—synthesis, characteristics, applications. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [PMCID: PMC8204929 DOI: 10.1007/s11144-021-02008-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The iron and manganese complexes that activate oxygen atom play multiple role in technologically relevant reactions as well as in biological transformations, in which exist in different redox states. Among them, high-valent oxo intermediate seems to be the most important one. Iron, and/or manganese-based processes have found application in many areas, starting from catalysis and sustainable technologies, through DNA oxidative cleavage, to new substances useful in chemotherapeutic drugs. This review is not only the latest detailed list of uses of homogeneous N-pentadentate iron and manganese catalysts for syntheses of valuable molecules with huge applications in green technologies, but also a kind of "a cookbook", collecting "recipes" for the discussed complexes, in which the sources necessary to obtain a full characterization of the compounds are presented. Following the catalytic activity of metalloenzymes, and taking into account the ubiquity of iron and manganese salts, which in combination with properly designed ligands may show similarity to natural systems, the discussed complexes can find application as new anti-cancer drugs. Also, owing to ability of oxygen atom to exchange in reaction with H2O, they can be successfully applied in photodriven reactions of water oxidation, as well as in chemically regenerated fuel cells as a redox catalyst.
Collapse
Affiliation(s)
- Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, al. Powstańców Warszawy 6, P.O. Box 85, 35-959 Rzeszów, Poland
| |
Collapse
|
16
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Duan M, Wang X, Peng W, Liu D, Cheng Q, Yang Q. Co(II) Schiff Base Complex Supported on Nano‐Silica for the Aerobic Oxidation of Cyclohexene: Reaction Pathways and Overoxidation on the Experimental and Calculated Mechanism. ChemistrySelect 2021. [DOI: 10.1002/slct.202004676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mingxing Duan
- College of Chemical Engineering Hebei University of Technology Key Laboratory of Green Chemical Technology and High Efficient Energy Saving of Hebei Province and Tianjin Key Laboratory of Chemical Process Safety Tianjin 300131 China
| | - Xinguo Wang
- College of Chemical Engineering Hebei University of Technology Key Laboratory of Green Chemical Technology and High Efficient Energy Saving of Hebei Province and Tianjin Key Laboratory of Chemical Process Safety Tianjin 300131 China
| | - Wenjing Peng
- College of Chemical Engineering Hebei University of Technology Key Laboratory of Green Chemical Technology and High Efficient Energy Saving of Hebei Province and Tianjin Key Laboratory of Chemical Process Safety Tianjin 300131 China
| | - Dongjie Liu
- College of Chemical Engineering Hebei University of Technology Key Laboratory of Green Chemical Technology and High Efficient Energy Saving of Hebei Province and Tianjin Key Laboratory of Chemical Process Safety Tianjin 300131 China
| | - Qingyan Cheng
- College of Chemical Engineering Hebei University of Technology Key Laboratory of Green Chemical Technology and High Efficient Energy Saving of Hebei Province and Tianjin Key Laboratory of Chemical Process Safety Tianjin 300131 China
| | - Qiusheng Yang
- College of Chemical Engineering Hebei University of Technology Key Laboratory of Green Chemical Technology and High Efficient Energy Saving of Hebei Province and Tianjin Key Laboratory of Chemical Process Safety Tianjin 300131 China
| |
Collapse
|
18
|
Philip RM, Radhika S, Abdulla CMA, Anilkumar G. Recent Trends and Prospects in Homogeneous Manganese‐Catalysed Epoxidation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rose Mary Philip
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - C. M. Afsina Abdulla
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| |
Collapse
|
19
|
Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213443] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Mayfield JR, Grotemeyer EN, Jackson TA. Concerted proton-electron transfer reactions of manganese-hydroxo and manganese-oxo complexes. Chem Commun (Camb) 2020; 56:9238-9255. [PMID: 32578605 PMCID: PMC7429365 DOI: 10.1039/d0cc01201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.
Collapse
Affiliation(s)
- Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
21
|
The oxidation of cyclo-olefin by the S = 2 ground-state complex [Fe IV(O)(TQA)(NCMe)] 2. J Biol Inorg Chem 2020; 25:371-382. [PMID: 32133579 DOI: 10.1007/s00775-020-01768-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/16/2020] [Indexed: 10/24/2022]
Abstract
Density functional theory calculation is used to investigate the oxidation of cyclo-olefin (cyclobutene, cyclopentene, cyclohexene, cycloheptene, and cyclo-octene) by the complex [FeIV(O)(TQA)(NCMe)]2+, which has S = 2 ground state, and the effect of electronic factors and steric hindrance on reaction barriers. Our results suggest that the oxo-iron(IV) complex can oxidise C-H and C = C bonds via a single-state mechanism, and two different ways of electron transport exist. The energy barriers initially decrease with increasing substrate size, and the trend then reverses. Comparison of the energy barrier in different systems reveals that except for the reaction between [FeIV(O)(TQA)(NCMe)]2+ and cycloheptene, oxo-iron(IV) complexes prefer epoxidation to hydroxylation. However, the hydroxylated product is more stable than the corresponding epoxidated product. This result indicates that the products of epoxidation tend to decompose first. The energy barrier of hydroxylation and epoxidation originates from the balance of orbital interaction and Pauli repulsion from the equatorial ligand and protons on the approaching substrate. In this regard, we calculate the weak interaction between two fragments (oxo-iron complex and substrates) using the independent gradient model and drawn the corresponding 3D isosurface representations of reactants.
Collapse
|
22
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
23
|
Mononuclear manganese(III) complex with a monodeprotonated N-(2-pyridylmethyl)iminodiisopropanol ligand: synthesis, crystal structure, and catalytic properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Steen JD, Stepanovic S, Parvizian M, de Boer JW, Hage R, Chen J, Swart M, Gruden M, Browne WR. Lewis versus Brønsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation. Inorg Chem 2019; 58:14924-14930. [PMID: 31625380 PMCID: PMC6832668 DOI: 10.1021/acs.inorgchem.9b02737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Lewis acid (LA) activation
by coordination to metal oxido species
has emerged as a new strategy in catalytic oxidations. Despite the
many reports of enhancement of performance in oxidation catalysis,
direct evidence for LA-catalyst interactions under catalytically relevant
conditions is lacking. Here, we show, using the oxidation of alkenes
with H2O2 and the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 (1), that Lewis acids commonly used to enhance catalytic activity,
e.g., Sc(OTf)3, in fact undergo hydrolysis with adventitious
water to release a strong Brønsted acid. The formation of Brønsted
acids in situ is demonstrated using a combination of resonance Raman,
UV/vis absorption spectroscopy, cyclic voltammetry, isotope labeling,
and DFT calculations. The involvement of Brønsted acids in LA
enhanced systems shown here holds implications for the conclusions
reached in regard to the relevance of direct LA-metal oxido interactions
under catalytic conditions. Lewis acid activation of oxidation
catalysts is proposed
to be through binding of the Lewis acids to metal-oxo species. The
activity of the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 in the oxidation of alkenes
with H2O2 appears to correlate with the strength
of the Lewis acid used for its activation. We show that the correlation
arises from the relative propensity of the Lewis acids to generate
Brønsted acids in situ.
Collapse
Affiliation(s)
- Jorn D Steen
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Stepan Stepanovic
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Mahsa Parvizian
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Johannes W de Boer
- Catexel B.V. , BioPartner Center Leiden , Galileiweg 8 , 2333 BD Leiden , The Netherlands
| | - Ronald Hage
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands.,Catexel B.V. , BioPartner Center Leiden , Galileiweg 8 , 2333 BD Leiden , The Netherlands
| | - Juan Chen
- Department of Applied Chemistry, School of Science , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Marcel Swart
- IQCC & Departament de Química , Universitat de Girona , Campus Montilivi (Ciències) , 17003 Girona , Spain.,ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| | - Maja Gruden
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| |
Collapse
|
25
|
Rice DB, Massie AA, Jackson TA. Experimental and Multireference ab Initio Investigations of Hydrogen-Atom-Transfer Reactivity of a Mononuclear MnIV-oxo Complex. Inorg Chem 2019; 58:13902-13916. [DOI: 10.1021/acs.inorgchem.9b01761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Derek B. Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Allyssa A. Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
26
|
Dutta M, Bania KK, Pratihar S. Remote ‘Imidazole’ Based Ruthenium(II)
p
‐Cymene Precatalyst for Selective Oxidative Cleavage of C−C Multiple Bonds. ChemCatChem 2019. [DOI: 10.1002/cctc.201900242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manali Dutta
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| | - Kusum Kumar Bania
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| | - Sanjay Pratihar
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| |
Collapse
|
27
|
Jin K, Maalouf JH, Lazouski N, Corbin N, Yang D, Manthiram K. Epoxidation of Cyclooctene Using Water as the Oxygen Atom Source at Manganese Oxide Electrocatalysts. J Am Chem Soc 2019; 141:6413-6418. [PMID: 30963761 DOI: 10.1021/jacs.9b02345] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epoxides are useful intermediates for the manufacture of a diverse set of chemical products. Current routes of olefin epoxidation either involve hazardous reagents or generate stoichiometric side products, leading to challenges in separation and significant waste streams. Here, we demonstrate a sustainable and safe route to epoxidize olefin substrates using water as the oxygen atom source at room temperature and ambient pressure. Manganese oxide nanoparticles (NPs) are shown to catalyze cyclooctene epoxidation with Faradaic efficiencies above 30%. Isotopic studies and detailed product analysis reveal an overall reaction in which water and cyclooctene are converted to cyclooctene oxide and hydrogen. Electrokinetic studies provide insights into the mechanism of olefin epoxidation, including an approximate first-order dependence on the substrate and water and a rate-determining step which involves the first electron transfer. We demonstrate that this new route can also achieve a cyclooctene conversion of ∼50% over 4 h.
Collapse
Affiliation(s)
- Kyoungsuk Jin
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Joseph H Maalouf
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nikifar Lazouski
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nathan Corbin
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Dengtao Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Karthish Manthiram
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
28
|
Wang S, Liu Y, Zhang Z, Li X, Tian H, Yan T, Zhang X, Liu S, Sun X, Xu L, Luo F, Liu S. One-Step Template-Free Fabrication of Ultrathin Mixed-Valence Polyoxovanadate-Incorporated Metal-Organic Framework Nanosheets for Highly Efficient Selective Oxidation Catalysis in Air. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12786-12796. [PMID: 30859804 DOI: 10.1021/acsami.9b00908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyoxometalate (POM)-based metal-organic frameworks (MOFs) with nanostructure represent a class of promising heterogeneous nanocatalysts. As yet, direct one-step controllable synthesis of pure nanoscale POM-MOFs catalysts is an extremely huge challenge owing to highly complicated synthetic conditions. Herein, for the first time, we fabricated ultrathin (∼5 nm) mixed-valence {V16} clusters-incorporated metal-organic framework nanosheets [Ni(4,4'-bpy)2]2 [V7IVV9VO38Cl]·(4,4'-bpy)·6H2O (NENU-MV-1a) via one-step template-free strategy and successfully achieved one-step removal of all impurities from the multicomponent complex system. The obtained NENU-MV-1a nanosheets possess dramatically different physiochemical properties from bulk crystal, including larger lateral area, and more active sites originated from their nanostructures. As a proof-of-concept application, NENU-MV-1a was applied in olefin epoxidation in air and exhibited more excellent catalytic activity (95% conversion) than the bulk crystal (35%). In addition, detailed catalytic mechanism studies revealed the structure-property correlations of NENU-MV-1a and proposed VIV-VV synergistic catalytic effect. Our investigations are of great significance for the development of more active and/or selective mixed-valence metal-oxygen cluster-based MOF nanocatalysts.
Collapse
Affiliation(s)
- Shuang Wang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Yiwei Liu
- State Key Laboratory of New Ceramics and Fine Processing, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Zhong Zhang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Xiaohui Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Hongrui Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Tingting Yan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Xue Zhang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Shumei Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Xiuwei Sun
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Li Xu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Fang Luo
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry , Northeast Normal University , Jilin 130024 , P. R. China
| |
Collapse
|
29
|
Guo M, Corona T, Ray K, Nam W. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS CENTRAL SCIENCE 2019; 5:13-28. [PMID: 30693322 PMCID: PMC6346628 DOI: 10.1021/acscentsci.8b00698] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 05/23/2023]
Abstract
Utilization of O2 as an abundant and environmentally benign oxidant is of great interest in the design of bioinspired synthetic catalytic oxidation systems. Metalloenzymes activate O2 by employing earth-abundant metals and exhibit diverse reactivities in oxidation reactions, including epoxidation of olefins, functionalization of alkane C-H bonds, arene hydroxylation, and syn-dihydroxylation of arenes. Metal-oxo species are proposed as reactive intermediates in these reactions. A number of biomimetic metal-oxo complexes have been synthesized in recent years by activating O2 or using artificial oxidants at iron and manganese centers supported on heme or nonheme-type ligand environments. Detailed reactivity studies together with spectroscopy and theory have helped us understand how the reactivities of these metal-oxygen intermediates are controlled by the electronic and steric properties of the metal centers. These studies have provided important insights into biological reactions, which have contributed to the design of biologically inspired oxidation catalysts containing earth-abundant metals like iron and manganese. In this Outlook article, we survey a few examples of these advances with particular emphasis in each case on the interplay of catalyst design and our understanding of metalloenzyme structure and function.
Collapse
Affiliation(s)
- Mian Guo
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Teresa Corona
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kallol Ray
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou
Research Institute of LICP, Lanzhou Institute of Chemical Physics
(LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R.
China
| |
Collapse
|
30
|
Yu Y, Luo G, Yang J, Luo Y. Cobalt-catalysed unactivated C(sp 3)–H amination: two-state reactivity and multi-reference electronic character. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00239a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A remarkable two-state reactivity scenario and an unusual multi-reference character have been computationally found in Co-catalysed C(sp3)–H amination. In addition, the investigation on the additive, aminating reagent, metal center, and auxiliary ligand provides implications for development of new catalytic C–H functionalization systems.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
31
|
Saito T, Takano Y. Transition State Search Using rPM6: Iron- and Manganese-Catalyzed Oxidation Reactions as a Test Case. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| |
Collapse
|
32
|
Guo M, Lee YM, Seo MS, Kwon YJ, Li XX, Ohta T, Kim WS, Sarangi R, Fukuzumi S, Nam W. Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. Inorg Chem 2018; 57:10232-10240. [DOI: 10.1021/acs.inorgchem.8b01426] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Ju Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
33
|
Zhang LL, Wang XY, Jiang KY, Zhao BY, Yan HM, Zhang XY, Zhang ZX, Guo Z, Che CM. A theoretical study on the oxidation of alkenes to aldehydes catalyzed by ruthenium porphyrins using O 2 as the sole oxidant. Dalton Trans 2018; 47:5286-5297. [PMID: 29569676 DOI: 10.1039/c8dt00614h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Density functional theory (DFT) calculations were used to study the ruthenium porphyrin-catalyzed oxidation of styrene to generate an aldehyde. The results indicate that two reactive oxidants, dioxoruthenium and monooxoruthenium-superoxo porphyrins, participate in the catalytic oxidation. In the mechanism, the resultant monooxoruthenium porphyrin acts in the tandem epoxide isomerization (E-I) to selectively yield an aldehyde and generate a dioxoruthenium porphyrin, thereby triggering new oxidation reaction cycles. In this calculation, several key elements responsible for the observed oxidative ability have been established by using Frontier molecular orbital (FMO) theory, natural bond orbital (NBO) analysis, etc., which include the reaction energy, the spin exchange effect, the spin-state conversion process, and the energy level of the lowest unoccupied molecular orbitals (LUMOs) of the reactive oxidants. The comparative oxidative abilities of the ruthenium-oxo/superoxo compounds with different axial ligands are also investigated. The results suggest that the ruthenium-oxo/superoxo species featuring a chlorine axial ligand is more reactive than that substituted with oxygen. This tuneable reactivity can be understood when considering the different electronic characters of the two ligands and the effective atomic number rule (EAN).
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiang-Yun Wang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Kun-Yao Jiang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Bing-Yuan Zhao
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Hui-Min Yan
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiao-Yun Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhu-Xia Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhen Guo
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Chi-Ming Che
- Department of Chemistry, the University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
34
|
Du J, Miao C, Xia C, Lee YM, Nam W, Sun W. Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00874] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junyi Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengxia Miao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
35
|
Balamurugan M, Saravanan N, Ha H, Lee YH, Nam KT. Involvement of high-valent manganese-oxo intermediates in oxidation reactions: realisation in nature, nano and molecular systems. NANO CONVERGENCE 2018; 5:18. [PMID: 30101051 PMCID: PMC6061251 DOI: 10.1186/s40580-018-0150-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/19/2018] [Indexed: 05/12/2023]
Abstract
Manganese plays multiple role in many biological redox reactions in which it exists in different oxidation states from Mn(II) to Mn(IV). Among them the high-valent manganese-oxo intermediate plays important role in the activity of certain enzymes and lessons from the natural system provide inspiration for new developments of artificial systems for a sustainable energy supply and various organic conversions. This review describes recent advances and key lessons learned from the nature on high-valent Mn-oxo intermediates. Also we focus on the elemental science developed from the natural system, how the novel strategies are realised in nano particles and molecular sites at heterogeneous and homogeneous reaction conditions respectively. Finally, perspectives on the utilisation of the high-valent manganese-oxo species towards other organic reactions are proposed.
Collapse
Affiliation(s)
- Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Natarajan Saravanan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Heonjin Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744 South Korea
| |
Collapse
|
36
|
Mukherjee G, Lee CWZ, Nag SS, Alili A, Cantú Reinhard FG, Kumar D, Sastri CV, de Visser SP. Dramatic rate-enhancement of oxygen atom transfer by an iron(iv)-oxo species by equatorial ligand field perturbations. Dalton Trans 2018; 47:14945-14957. [DOI: 10.1039/c8dt02142b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactivity and characterization of a novel iron(iv)-oxo species is reported that gives enhanced reactivity as a result of second-coordination sphere perturbations of the ligand system.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Calvin W. Z. Lee
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | | | - Aligulu Alili
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Devesh Kumar
- Department of Applied Physics
- School for Physical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | | | - Sam P. de Visser
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| |
Collapse
|
37
|
Stubbs AW, Braglia L, Borfecchia E, Meyer RJ, Román- Leshkov Y, Lamberti C, Dincă M. Selective Catalytic Olefin Epoxidation with MnII-Exchanged MOF-5. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02946] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amanda W. Stubbs
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Luca Braglia
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
- International
research center “Smart Materials”, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russia
| | - Elisa Borfecchia
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
| | - Randall J. Meyer
- Corporate
Strategic Research, ExxonMobil Research and Engineering, 1545 Route 22, Annandale, New Jersey 08801, United States
| | - Yuriy Román- Leshkov
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Carlo Lamberti
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
- International
research center “Smart Materials”, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russia
| | - Mircea Dincă
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Zhang Z, Sadakane M, Hara M, Ueda W. Ultrathin Anionic Tungstophosphite Molecular Wire with Tunable Hydrophilicity and Catalytic Activity for Selective Epoxidation in Organic Media. Chemistry 2017; 23:17497-17503. [DOI: 10.1002/chem.201703856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenxin Zhang
- Faculty of Engineering; Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi; Kanagawa 221-8686 Japan
- Materials and Structures Laboratory; Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-city; Kanagawa 226-8503 Japan
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Engineering; Hiroshima University; 1-4-1 Kagamiyama, Higashi Hiroshima 739-8527 Japan
| | - Michikazu Hara
- Materials and Structures Laboratory; Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-city; Kanagawa 226-8503 Japan
| | - Wataru Ueda
- Faculty of Engineering; Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama-shi; Kanagawa 221-8686 Japan
| |
Collapse
|
39
|
Saito T, Takano Y. rPM6 Parameters for Manganese and Application to Transition State Search for Oxidation Reactions of Cyclohexene by Manganese(IV)-Oxo Species. CHEM LETT 2017. [DOI: 10.1246/cl.170687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toru Saito
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194
| | - Yu Takano
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194
| |
Collapse
|
40
|
Ahn HM, Bae JM, Kim MJ, Bok KH, Jeong HY, Lee SJ, Kim C. Synthesis, Characterization, and Efficient Catalytic Activities of a Nickel(II) Porphyrin: Remarkable Solvent and Substrate Effects on Participation of Multiple Active Oxidants. Chemistry 2017; 23:11969-11976. [PMID: 28731593 DOI: 10.1002/chem.201702750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/13/2022]
Abstract
A new nickel(II) porphyrin complex, [NiII (porp)] (1), has been synthesized and characterized by 1 H NMR, 13 C NMR and mass spectrometry analysis. This NiII porphyrin complex 1 quantitatively catalyzed the epoxidation reaction of a wide range of olefins with meta-chloroperoxybenzoic acid (m-CPBA) under mild conditions. Reactivity and Hammett studies, H218 O-exchange experiments, and the use of PPAA (peroxyphenylacetic acid) as a mechanistic probe suggested that participation of multiple active oxidants NiII -OOC(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4 within olefin epoxidation reactions by the nickel porphyrin complex is markedly affected by solvent polarity, concentration, and type of substrate. In aprotic solvent systems, such as toluene, CH2 Cl2 , and CH3 CN, multiple oxidants, NiII -(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4, operate simultaneously as the key active intermediates responsible for epoxidation reactions of easy-to-oxidize substrate cyclohexene, whereas NiIV -Oxo 3 and NiIII -Oxo 4 species become the common reactive oxidant for the difficult-to-oxidize substrate 1-octene. In a protic solvent system, a mixture of CH3 CN and H2 O (95:5), the NiII -OOC(O)R 2 undergoes heterolytic or homolytic O-O bond cleavage to afford NiIV -Oxo 3 and NiIII -Oxo 4 species by general acid catalysis prior to direct interaction between 2 and olefin, regardless of the type of substrate. In this case, only NiIV -Oxo 3 and NiIII -Oxo 4 species were the common reactive oxidant responsible for olefin epoxidation reactions.
Collapse
Affiliation(s)
- Hye Mi Ahn
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Jeong Mi Bae
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Min Jeong Kim
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Kwon Hee Bok
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Ha Young Jeong
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Suk Joong Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| |
Collapse
|
41
|
Promoting a non-heme manganese complex catalyzed oxygen transfer reaction by both lewis acid and Brønsted acid: Similarities and distinctions. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Gupta SK, Choudhury J. A Mixed N-Heterocyclic Carbene/2,2′-Bipyridine-Supported Robust Ruthenium(II) Oxidation Precatalyst for Benzylic C−H Oxidation. ChemCatChem 2017. [DOI: 10.1002/cctc.201700177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Suraj K. Gupta
- Organometallics & Smart Materials Laboratory; Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal 462 066 India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory; Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal 462 066 India
| |
Collapse
|
43
|
Gupta R, Li XX, Cho KB, Guo M, Lee YM, Wang Y, Fukuzumi S, Nam W. Tunneling Effect That Changes the Reaction Pathway from Epoxidation to Hydroxylation in the Oxidation of Cyclohexene by a Compound I Model of Cytochrome P450. J Phys Chem Lett 2017; 8:1557-1561. [PMID: 28301931 DOI: 10.1021/acs.jpclett.7b00461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rate constants of the C═C epoxidation and the C-H hydroxylation (i.e., allylic C-H bond activation) in the oxidation of cyclohexene by a high-valent iron(IV)-oxo porphyrin π-cation radical complex, [(TMP•+)FeIV(O)(Cl)] (1, TMP = meso-tetramesitylporphyrin dianion), were determined at various temperatures by analyzing the overall rate constants and the products obtained in the cyclohexene oxidation by 1, leading us to conclude that reaction pathway changes from the C═C epoxidation to C-H hydroxylation by decreasing reaction temperature. When cyclohexene was replaced by deuterated cyclohexene (cyclohexene-d10), the epoxidation pathway dominated irrespective of the reaction temperature. The temperature dependence of the rate constant of the C-H hydroxylation pathway in the reactions of cyclohexene and cyclohexene-d10 by 1 suggests that there is a significant tunneling effect on the hydrogen atom abstraction of allylic C-H bonds of cyclohexene by 1, leading us to propose that the tunneling effect is a determining factor for the switchover of the reaction pathway from the C═C epoxidation pathway to the C-H hydroxylation pathway by decreasing reaction temperature. By performing density functional theory (DFT) calculations, the reaction energy barriers of the C═C epoxidation and C-H bond activation reactions by 1 were found to be similar, supporting the notion that small environmental changes, such as the reaction temperature, can flip the preference for one reaction to another.
Collapse
Affiliation(s)
- Ranjana Gupta
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| | - Kyung-Bin Cho
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST) , Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| |
Collapse
|
44
|
Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nat Commun 2017; 8:14839. [PMID: 28337985 PMCID: PMC5376677 DOI: 10.1038/ncomms14839] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Terminal cobalt(IV)-oxo (CoIV-O) species have been implicated as key intermediates in various cobalt-mediated oxidation reactions. Herein we report the photocatalytic generation of a mononuclear non-haem [(13-TMC)CoIV(O)]2+ (2) by irradiating [CoII(13-TMC)(CF3SO3)]+ (1) in the presence of [RuII(bpy)3]2+, Na2S2O8, and water as an oxygen source. The intermediate 2 was also obtained by reacting 1 with an artificial oxidant (that is, iodosylbenzene) and characterized by various spectroscopic techniques. In particular, the resonance Raman spectrum of 2 reveals a diatomic Co-O vibration band at 770 cm-1, which provides the conclusive evidence for the presence of a terminal Co-O bond. In reactivity studies, 2 was shown to be a competent oxidant in an intermetal oxygen atom transfer, C-H bond activation and olefin epoxidation reactions. The present results lend strong credence to the intermediacy of CoIV-O species in cobalt-catalysed oxidation of organic substrates as well as in the catalytic oxidation of water that evolves molecular oxygen.
Collapse
|
45
|
Massie AA, Denler MC, Cardoso LT, Walker AN, Hossain MK, Day VW, Nordlander E, Jackson TA. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)‐Oxo Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - M. Kamal Hossain
- Chemical Physics Department of Chemistry Lund University Box 124 22100 Lund Sweden
| | - Victor W. Day
- Department of Chemistry University of Kansas Lawrence KS USA
| | - Ebbe Nordlander
- Chemical Physics Department of Chemistry Lund University Box 124 22100 Lund Sweden
| | | |
Collapse
|
46
|
Massie AA, Denler MC, Cardoso LT, Walker AN, Hossain MK, Day VW, Nordlander E, Jackson TA. Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes. Angew Chem Int Ed Engl 2017; 56:4178-4182. [PMID: 28300349 DOI: 10.1002/anie.201612309] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/03/2017] [Indexed: 11/06/2022]
Abstract
Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic MnIV -oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of MnIV -oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the MnIV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these MnIV -oxo complexes, the rate enhancements are correlated with both 1) the energy of a low-lying 4 E excited state, which has been postulated to be involved in a two-state reactivity model, and 2) the MnIII/IV reduction potentials.
Collapse
Affiliation(s)
- Allyssa A Massie
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Melissa C Denler
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | | | - Ashlie N Walker
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - M Kamal Hossain
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 22100, Lund, Sweden
| | - Victor W Day
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 22100, Lund, Sweden
| | | |
Collapse
|
47
|
Andris E, Navrátil R, Jašík J, Terencio T, Srnec M, Costas M, Roithová J. Chasing the Evasive Fe═O Stretch and the Spin State of the Iron(IV)-Oxo Complexes by Photodissociation Spectroscopy. J Am Chem Soc 2017; 139:2757-2765. [PMID: 28125220 DOI: 10.1021/jacs.6b12291] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate the application of infrared photodissocation spectroscopy for determination of the Fe═O stretching frequencies of high-valent iron(IV)-oxo complexes [(L)Fe(O)(X)]2+/+ (L = TMC, N4Py, PyTACN, and X = CH3CN, CF3SO3, ClO4, CF3COO, NO3, N3). We show that the values determined by resonance Raman spectroscopy in acetonitrile solutions are on average 9 cm-1 red-shifted with respect to unbiased gas-phase values. Furthermore, we show the assignment of the spin state of the complexes based on the vibrational modes of a coordinated anion and compare reactivities of various iron(IV)-oxo complexes generated as dications or monocations (bearing an anionic ligand). The coordinated anions can drastically affect the reactivity of the complex and should be taken into account when comparing reactivities of complexes bearing different ligands. Comparison of reactivities of [(PyTACN)Fe(O)(X)]+ generated in different spin states and bearing different anionic ligands X revealed that the nature of anion influences the reactivity more than the spin state. The triflate and perchlorate ligands tend to stabilize the quintet state of [(PyTACN)Fe(O)(X)]+, whereas trifluoroacetate and nitrate stabilize the triplet state of the complex.
Collapse
Affiliation(s)
- Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thibault Terencio
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS , v.v i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona , Campus Montilivi, Girona 17071, Spain
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| |
Collapse
|
48
|
Lee YM, Yoo M, Yoon H, Li XX, Nam W, Fukuzumi S. Direct oxygen atom transfer versus electron transfer mechanisms in the phosphine oxidation by nonheme Mn(iv)-oxo complexes. Chem Commun (Camb) 2017; 53:9352-9355. [DOI: 10.1039/c7cc04035k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Direct oxygen atom transfer from Mn(iv)-oxo to Ph3P occurs, exhibiting significant steric effects of the ortho-substitution of the phenyl group, whereas in the presence of HOTf, the mechanism is switched to electron transfer from Ph3P to Mn(iv)-oxo, exhibiting no steric effects.
Collapse
Affiliation(s)
- Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Mi Yoo
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Heejung Yoon
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Department of Material and Life Science
| |
Collapse
|
49
|
Shen D, Saracini C, Lee YM, Sun W, Fukuzumi S, Nam W. Photocatalytic Asymmetric Epoxidation of Terminal Olefins Using Water as an Oxygen Source in the Presence of a Mononuclear Non-Heme Chiral Manganese Complex. J Am Chem Soc 2016; 138:15857-15860. [DOI: 10.1021/jacs.6b10836] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Duyi Shen
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Claudio Saracini
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shunichi Fukuzumi
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty
of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
50
|
Leto DF, Massie AA, Rice DB, Jackson TA. Spectroscopic and Computational Investigations of a Mononuclear Manganese(IV)-Oxo Complex Reveal Electronic Structure Contributions to Reactivity. J Am Chem Soc 2016; 138:15413-15424. [PMID: 27802057 DOI: 10.1021/jacs.6b08661] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mononuclear Mn(IV)-oxo complex [MnIV(O)(N4py)]2+, where N4py is the pentadentate ligand N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine, has been proposed to attack C-H bonds by an excited-state reactivity pattern [ Cho, K.-B.; Shaik, S.; Nam, W. J. Phys. Chem. Lett. 2012 , 3 , 2851 - 2856 (DOI: 10.1021/jz301241z )]. In this model, a 4E excited state is utilized to provide a lower-energy barrier for hydrogen-atom transfer. This proposal is intriguing, as it offers both a rationale for the relatively high hydrogen-atom-transfer reactivity of [MnIV(O)(N4py)]2+ and a guideline for creating more reactive complexes through ligand modification. Here we employ a combination of electronic absorption and variable-temperature magnetic circular dichroism (MCD) spectroscopy to experimentally evaluate this excited-state reactivity model. Using these spectroscopic methods, in conjunction with time-dependent density functional theory (TD-DFT) and complete-active space self-consistent-field calculations (CASSCF), we define the ligand-field and charge-transfer excited states of [MnIV(O)(N4py)]2+. Through a graphical analysis of the signs of the experimental C-term MCD signals, we unambiguously assign a low-energy MCD feature of [MnIV(O)(N4py)]2+ as the 4E excited state predicted to be involved in hydrogen-atom-transfer reactivity. The CASSCF calculations predict enhanced MnIII-oxyl character on the excited-state 4E surface, consistent with previous DFT calculations. Potential-energy surfaces, developed using the CASSCF methods, are used to determine how the energies and wave functions of the ground and excited states evolved as a function of Mn═O distance. The unique insights into ground- and excited-state electronic structure offered by these spectroscopic and computational studies are harmonized with a thermodynamic model of hydrogen-atom-transfer reactivity, which predicts a correlation between transition-state barriers and driving force.
Collapse
Affiliation(s)
- Domenick F Leto
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|