1
|
Zhao J, Zhang T, Xu H, Hou S, Ren F, Han J, Zhao B. CO-Free Aminocarbonylation of Terminal Alkynes Catalyzed by Synergistic Effect From Metal-Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405308. [PMID: 39234812 PMCID: PMC11538656 DOI: 10.1002/advs.202405308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Incorporation of CO into substrates to construct high-value carbonyl compounds is an intensive industrial carbonylation procedure, however, high toxicity and wide explosion limits (12.5-74.0 vol% in air) of CO limit its application in industrial production. The development of a CO-free catalytic system for carbonylation is one of ideal methods, but full of challenge. Herein, this study reports the CO-free aminocarbonylation conversion of terminal alkynes synergistically catalyzed by a unique Co(ІІ)/Ag(І) metal-organic framework (MOF), in which the combination of isocyanides and O2 is employed as safe and green source of aminocarbonyl. This reaction has broad substrate applicability in terminal alkyne and isocyanides components with 100% atom economy. The bimetal MOF catalyst can be recycled at least five times without substantial loss of catalytic activities. Mechanistic investigations demonstrate that the synergistic effect between Ag(I) and Co(II) sites can efficiently activate terminal alkyne and isocyanides, respectively. Free radical capture experiments, FT-IR analysis and theoretical explorations further reveal that terminal alkynes and isocyanides can be catalytically transformed into an anionic intermediate through heterolysis pathways. This work provides secure and practical access to carbonylation as well as a new approach to aminocarbonylation of terminal alkynes.
Collapse
Affiliation(s)
- Jian Zhao
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Tianze Zhang
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Hang Xu
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Sheng‐Li Hou
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Fang‐Yu Ren
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Jie Han
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| | - Bin Zhao
- Department of ChemistryKey Laboratory of Advanced Energy Materials ChemistryRenewable Energy Conversion and Storage Center (RECAST)Nankai UniversityTianjin300071P. R. China
| |
Collapse
|
2
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Jin Y, Hok S, Bacsa J, Dai M. Convergent and Efficient Total Synthesis of (+)-Heilonine Enabled by C-H Functionalizations. J Am Chem Soc 2024; 146:1825-1831. [PMID: 38226869 PMCID: PMC10811669 DOI: 10.1021/jacs.3c13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
We report a convergent and efficient total synthesis of the C-nor D-homo steroidal alkaloid (+)-heilonine with a hexacyclic ring system, nine stereocenters, and a trans-hydrindane moiety. Our synthesis features four selective C-H functionalizations to form key C-C bonds and stereocenters, a Stille carbonylative cross-coupling to connect the AB ring system with the DEF ring system, and a Nazarov cyclization to construct the five-membered C ring. These enabling transformations significantly reduced functional group manipulations and delivered (+)-heilonine in 11 or 13 longest linear sequence (LLS) steps.
Collapse
Affiliation(s)
- Yuan Jin
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sovanneary Hok
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Zhang YD, Chen M, Li Y, Liu BW, Ren ZH, Guan ZH. Enantioselective Palladium-Catalyzed Domino Carbonylative Heck Esterification of o-Iodoalkenylbenzenes with Arylboronic Acids. Org Lett 2023; 25:8110-8115. [PMID: 37921830 DOI: 10.1021/acs.orglett.3c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The current investigation presents an innovative palladium-catalyzed asymmetric carbonylative Heck esterification method. This approach facilitates the efficient synthesis of various chiral γ-ketoacid esters by utilizing o-alkenyliodobenzenes and arylboronic acids as primary substrates. This reaction achieves the creation of three carbon-carbon bonds, two carbon-oxygen bonds, and the establishment of a quaternary carbon center within a single step. The α-chiral γ-ketoacid esters were obtained in yields ranging from good to high yields, displaying enantiomeric excesses (ee's) levels up to 92% under mild reaction conditions.
Collapse
Affiliation(s)
- Yao-Du Zhang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yang Li
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Bo-Wen Liu
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
5
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Cai J, Sun B, Yu S, Zhang H, Zhang W. Heck Macrocyclization in Forging Non-Natural Large Rings including Macrocyclic Drugs. Int J Mol Sci 2023; 24:ijms24098252. [PMID: 37175956 PMCID: PMC10179193 DOI: 10.3390/ijms24098252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The intramolecular Heck reaction is a well-established strategy for natural product total synthesis. When constructing large rings, this reaction is also referred to as Heck macrocyclization, which has proved a viable avenue to access diverse naturally occurring macrocycles. Less noticed but likewise valuable, it has created novel macrocycles of non-natural origin that neither serve as nor derive from natural products. This review presents a systematic account of the title reaction in forging this non-natural subset of large rings, thereby addressing a topic rarely covered in the literature. Walking through two complementary sections, namely (1) drug discovery research and (2) synthetic methodology development, it demonstrates that beyond the well-known domain of natural product synthesis, Heck macrocyclization also plays a remarkable role in forming synthetic macrocycles, in particular macrocyclic drugs.
Collapse
Affiliation(s)
- Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Sims HS, Dai M. Palladium-Catalyzed Carbonylations: Application in Complex Natural Product Total Synthesis and Recent Developments. J Org Chem 2023; 88:4925-4941. [PMID: 36705327 PMCID: PMC10127288 DOI: 10.1021/acs.joc.2c02746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbon monoxide is a cheap and abundant C1 building block that can be readily incorporated into organic molecules to rapidly build structural complexity. In this Perspective, we outline several recent (since 2015) examples of palladium-catalyzed carbonylations in streamlining complex natural product total synthesis and highlight the strategic importance of these carbonylation reactions in the corresponding synthesis. The selected examples include spinosyn A, callyspongiolide, perseanol, schizozygane alkaloids, cephanolides, and bisdehydroneostemoninine and related stemona alkaloids. We also provide our perspective about the recent advancements and future developments of palladium-catalyzed carbonylations.
Collapse
Affiliation(s)
- Hunter S Sims
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
8
|
Li Q, Zhang Y, Liu P, Zhong J, Gong B, Yao H, Lin A. Pd-Catalyzed Asymmetric 5-exo-trig Cyclization/Cyclopropanation/Carbonylation of 1,6-Enynes for the Construction of Chiral 3-Azabicyclo[3.1.0]hexanes. Angew Chem Int Ed Engl 2023; 62:e202211988. [PMID: 36426561 DOI: 10.1002/anie.202211988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
We herein disclose a mild and efficient access to chiral 3-azabicyclo[3.1.0]hexanes via a Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes. Various nucleophiles, such as alcohols, phenols, amines and water, are well compatible with the reaction system. This reaction forms three C-C bonds, two rings, two adjacent quaternary carbon stereocenters as well as one C-O/C-N bond with excellent regio- and enantioselectivities. The products could be further functionalized to generate a library of 3-azabicyclo[3.1.0]hexane frameworks.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yunchu Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jing Zhong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
9
|
Abstract
Gibberellins (GAs) are important plant hormones, but some of their family members are in extremely limited natural supply including GA18. Herein, we report a concise synthesis of (-)-GA18 methyl ester, a member of the C20 gibberellins, from commercially available and cheap andrographolide. Our synthesis features an intramolecular ene reaction to form the C ring, an oxidative cleavage followed by aldol condensation to realize a ring contraction and form the challenging trans-hydrindane (AB ring), and a photochemical [2+2] cycloaddition accompanied by a subsequent SmI2-mediated skeletal rearrangement to construct the methylenebicyclo[3.2.1]octanol moiety (CD ring).
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Weida Liang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Mario E. Rivera
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ye-Cheng Wang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
10
|
Abstract
The stereoselective construction of 1,2-cis furanosidic linkage is synthetically challenging. A strategy that applies to all furanose types remains elusive. In this work, a solution is developed based on gold catalysis and the deployment of the directing-group-on-leaving-group strategy, where a basic oxazole group in the gold-activated leaving group facilitates the stereoinvertive attack by glycosyl acceptors. In addition to exhibiting good to excellent 1,2-cis selectivities, these furanosylation reactions are high-yielding and mostly complete in 30 min to 2 h. A broad range of 1,2-cis-furanosides is prepared. Although some are uncommon, the ease of access enabled by this approach presents new opportunities to study their applications in medicine and materials research.
Collapse
Affiliation(s)
| | | | - Xijun Zhu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| |
Collapse
|
11
|
Xu RR, Bao X, Huo YW, Miao RG, Wen D, Dai W, Qi X, Wu XF. Palladium-Catalyzed Domino Carbopalladation/Carbonylative Cyclization: Synthesis of Heterocycles bearing Oxindoles and 3-Acylbenzofuran/3-Acylindole Moieties. Org Lett 2022; 24:6477-6482. [PMID: 36040811 DOI: 10.1021/acs.orglett.2c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and straightforward methodology for palladium-catalyzed carbopalladation-initiated domino carbonylative cyclization to construct bisheterocycles has been established. With TFBen as an efficient and convenient CO source, the protocol is capable of generating oxindole and 3-acylbenzofuran/3-acylindole moieties from the corresponding N-(o-iodoaryl)acrylamides and o-alkynylphenols/o-alkynylanilines with the formation of three C-C bonds and one C-O/C-N bond in a single one-step operation. A wide range of bisheterocycles bearing oxindoles and 3-acylbenzofurans/3-acylindoles were prepared in moderate to excellent yields with good functional group tolerance.
Collapse
Affiliation(s)
- Ren-Rui Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xuanzhang Bao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Yong-Wang Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ren-Guan Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Dan Wen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Weiqi Dai
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
12
|
Nakazato K, Oda M, Fuwa H. Total Synthesis of (+)-Neopeltolide by the Macrocyclization/Transannular Pyran Cyclization Strategy. Org Lett 2022; 24:4003-4008. [PMID: 35649194 DOI: 10.1021/acs.orglett.2c01429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An 11-step synthesis of (+)-neopeltolide was developed. The C1-C7 carboxylic acid and the C8-C16 alcohol were prepared, each in six steps, from (R)- and (S)-epichlorohydrin, respectively. After esterification, our tandem macrocyclization/transannular pyran cyclization strategy was applied to a stereocontrolled construction of the neopeltolide macrolactone. The side chain was synthesized in six steps from ethyl 4-oxazolecarboxylate through palladium-catalyzed cross-couplings. A Mitsunobu reaction of the neopeltolide macrolactone and the side chain completed the synthesis.
Collapse
Affiliation(s)
- Kazuki Nakazato
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Mami Oda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
13
|
Xu RR, Wen D, Qi X, Wu XF. Palladium-catalyzed cascade Heck-type cyclization and reductive aminocarbonylation for the synthesis of functionalized amides. Org Biomol Chem 2022; 20:2605-2608. [PMID: 35293928 DOI: 10.1039/d2ob00299j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A palladium-catalyzed Heck/carbonylative cyclization process has been explored for the synthesis of functionalized amides. By using nitroarenes as readily accessible nitrogen sources, a variety of amide products were obtained in moderate to excellent yields with good functional group compatibility. Furthermore, a late-stage modification of a natural molecule is also achieved by this protocol.
Collapse
Affiliation(s)
- Ren-Rui Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Dan Wen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China. .,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany.
| |
Collapse
|
14
|
Xiong Q, Xiao L, Dong XQ, Wang CJ. Asymmetric Synthesis of Chiral Aza-macrodiolides via Iridium-Catalyzed Cascade Allylation/Macrolactonization. Org Lett 2022; 24:2579-2584. [PMID: 35344369 DOI: 10.1021/acs.orglett.2c00942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iridium-catalyzed cascade allylation/macrolactonization between vinylethylene carbonate (VEC) and isatoic anhydride derivatives was successfully developed, readily generating a wide range of C2-symmetric chiral macrodiolides bearing 14-membered rings in moderate to good yields with excellent diastereoselectivities and enantioselectivities (generally 99% ee). Control experiments revealed that racemic VEC as the precursor of electrophilic iridium-π-allyl species underwent kinetic resolution process. This expedient protocol features easily available substrates, excellent stereoselective control, and high step economy.
Collapse
Affiliation(s)
- Qi Xiong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
15
|
Liu X, Chen Y, Deng Y, Xiao C, Luan S, Huang Q. Novel Galactosyl Moiety-Conjugated Furylchalcones Synthesized Facilely Display Significant Regulatory Effect on Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1766-1775. [PMID: 35107011 DOI: 10.1021/acs.jafc.1c05240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The expansion of weed infestation has increased the demand on new herbicides. A series of novel galactosyl moiety-conjugated furylchalcones was facilely synthesized in which the furyl group (A ring) was combined with the substituted benzene group (B ring), and a galactosyl moiety was introduced. All these galactosyl furylchalcones were predicted to be phloem-mobile. Most of the galactosyl furylchalcones significantly promoted early seedling growth of sorghum and barnyardgrass under dark conditions, but all of them revealed considerable anti-growth ability on illuminated pot plants; especially, 1-(3'-(4″-O-β-d-galactopyranosyl)furyl)-3-(4″-nitrophenyl)-2-en-1-one (B11) had a better herbicidal activity against rapeseed and Chinese amaranth than haloxyfop-R-methyl. The median efficient concentrations (EC50) of compound B11 against cucumber and wheat were 9.55 and 26.97 mg/L, respectively, also showing a stronger suppressing capacity than 2,4-D. Molecular docking with phosphoenolpyruvate carboxylase protein showed a stable binding conformation in which the galactosyl group interacted with LYS363 and GLU369, the furan ring and carbonyl bound with ARG184, and the crosslink of the nitro group with GLU240 formed a salt bridge. The results demonstrate that galactosyl furylchalcones possess the great potential as new herbicides for weed management, and further evaluations on more weeds are required for practical application.
Collapse
Affiliation(s)
- Xuefeng Liu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yunfei Deng
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Stöckl Y, Fellmeth T, Bauer F, Wank B, Frey W, Claasen B, Zens A, Köhn A, Laschat S. Chasing polycyclic natural products: 5/6/5‐ or 5/6/6‐carbotricyclic scaffold construction via stereodivergent Diels‐Alder reaction of chiral hydrindanes and their boron complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yannick Stöckl
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Thomas Fellmeth
- University of Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Florian Bauer
- University of Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Bianca Wank
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Wolfgang Frey
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Birgit Claasen
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Anna Zens
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Andreas Köhn
- Universität Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Sabine Laschat
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart GERMANY
| |
Collapse
|
17
|
Wu XF, Qi X, wang W, Xu RR. Palladium-Catalyzed Cascade Heck-type Thiocarbonylation for the Synthesis of Functionalized Thioesters. Org Chem Front 2022. [DOI: 10.1039/d2qo00096b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed cascade Heck-type cyclization and carbonylation reaction has been developed for the synthesis of functionalized thioesters. With arylsulfonyl chlorides as odorless and readily available sulfur source, a variety of...
Collapse
|
18
|
Chang YP, Ma X, Shao H, Zhao YM. Total Syntheses of Galanthamine and Lycoramine via a Palladium-Catalyzed Cascade Cyclization and Late-Stage Reorganization of the Cyclized Skeleton. Org Lett 2021; 23:9659-9663. [PMID: 34874174 DOI: 10.1021/acs.orglett.1c03943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we report the highly efficient total syntheses of galanthamine and lycoramine from a common tetracyclic intermediate. This concise synthetic route features a two-phase strategy, which includes the early-stage rapid construction of a tetracyclic skeleton followed by the late-stage selective reorganization of the tetracyclic skeleton. Key to the success of this strategy are a palladium-catalyzed carbonylative cascade annulation, a DDQ-mediated intramolecular regioselective oxidative lactamization, as well as a BF3·Et2O-promoted reorganization of the bridged tetracyclic skeleton.
Collapse
Affiliation(s)
- Ya-Ping Chang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Xia Ma
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.,CAS Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| |
Collapse
|
19
|
Cheng H, Wei J, Liang M, Dai S, Liu X, Ma L, Wang H, Lai F. Calcium Glycerolate Catalyst Derived from Eggshell Waste for Cyclopentadecanolide Synthesis. Front Chem 2021; 9:770247. [PMID: 34957045 PMCID: PMC8695726 DOI: 10.3389/fchem.2021.770247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
The synthesis costs of macrolide musks are higher than those of other commercial musks. To make this process less expensive, eggshell waste was calcined at a low temperature to obtain a catalyst for the cyclopentadecanolide production via reactive distillation using a glycerol entrainer. X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy analyses of the original and recovered catalysts revealed that the main catalytic ingredient was calcium glycerolate (CaG) and not calcium diglyceroxide (CaDG). The basic strengths of CaG and CaDG obtained by Hammett indicators were 7.2 < H_≤ 15.0 and 9.8 < H_≤15.0, while the corresponding base amounts were 1.9 and 7.3 mmol/ g, respectively. Because CaG was soluble in glycerine, the catalyst was efficiently reused. The reaction product containing over 95.0% cyclopentadecanolide with a yield of 49.8% was obtained at a temperature of 190°C and catalyst amount of 12 wt% after 7 h of reaction. Thus, eggshell waste may be directly placed into the reaction mixture after calcination at 600°C to synthesise a large amount of cyclopentadecanolide within a relatively short time. The results of this work indicate that eggshell waste can serve as a potential eco-friendly and affordable catalyst source for the production of macrolide musks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang Lai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Zhou W, Zhou T, Tian M, Jiang Y, Yang J, Lei S, Wang Q, Zhang C, Qiu H, He L, Wang Z, Deng J, Zhang M. Asymmetric Total Syntheses of Schizozygane Alkaloids. J Am Chem Soc 2021; 143:19975-19982. [PMID: 34797070 DOI: 10.1021/jacs.1c10279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The concise, collective, and asymmetric total syntheses of four schizozygane alkaloids, which feature a "Pan lid"-like hexacyclic core scaffold bearing up to six continuous stereocenters, including two quaternary ones, are described. A new method of dearomative cyclization of cyclopropanol onto the indole ring at C2 was developed to build the ABCF ring system of the schizozygane core with a ketone group. Another key skeleton-building reaction, the Heck/carbonylative lactamization cascade, ensured the rapid assembly of the hexacyclic schizozygane core and concurrent installation of an alkene group. By strategic use of these two reactions and through late-stage diversifications of the functionalized schizozygane core, the first and asymmetric total syntheses of (+)-schizozygine, (+)-3-oxo-14α,15α-epoxyschizozygine, and (+)-α-schizozygol and the total synthesis of (+)-strempeliopine have been accomplished in 11-12 steps from tryptamines.
Collapse
Affiliation(s)
- Wenqiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tao Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Mengxing Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaojiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shuai Lei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qi Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Chongzhou Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhen Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
21
|
Wang N, Wu Z, Wang J, Ullah N, Lu Y. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis. Chem Soc Rev 2021; 50:9766-9793. [PMID: 34286704 DOI: 10.1039/d0cs01124j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The past two decades have witnessed remarkable growth of asymmetric organocatalysis, which is now a firmly established synthetic tool, serving as a powerful platform for the production of chiral molecules. Ring structures are ubiquitous in organic compounds, and, in the context of natural product synthesis, strategic construction of ring motifs is often crucial, fundamentally impacting the eventual fate of the whole synthetic plan. In this review, we provide a comprehensive and updated summary of asymmetric organocatalytic annulation reactions; in particular, the application of these annulation strategies in natural product synthesis will be highlighted.
Collapse
Affiliation(s)
- Nengzhong Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | | | | | | | | |
Collapse
|
22
|
Force G, Perfetto A, Mayer RJ, Ciofini I, Lebœuf D. Macrolactonization Reactions Driven by a Pentafluorobenzoyl Group**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Anna Perfetto
- Chimie Paris-Tech PSL CNRS, Institute of Chemistry for Health and Life Science (I-CLeHS) Theoretical Chemistry and Modelling Group (CTM) 75005 Paris France
| | - Robert J. Mayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ilaria Ciofini
- Chimie Paris-Tech PSL CNRS, Institute of Chemistry for Health and Life Science (I-CLeHS) Theoretical Chemistry and Modelling Group (CTM) 75005 Paris France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
23
|
Liu H, Xiong Y, Chen Z. Pd‐Catalyzed Cascade Heck‐Type Annulation And Carbonylation to
β
‐Oxindolysulfoximidoyl Amides at Room Temperature. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huahua Liu
- Key Laboratory of Functional Small Organic Molecules Ministry of Education College of Chemistry & Chemical Engineering Jiangxi Normal University Ziyang Road 99 Nanchang Jiangxi 330022 P. R. China
| | - Yuping Xiong
- Key Laboratory of Functional Small Organic Molecules Ministry of Education College of Chemistry & Chemical Engineering Jiangxi Normal University Ziyang Road 99 Nanchang Jiangxi 330022 P. R. China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules Ministry of Education College of Chemistry & Chemical Engineering Jiangxi Normal University Ziyang Road 99 Nanchang Jiangxi 330022 P. R. China
| |
Collapse
|
24
|
Force G, Perfetto A, Mayer RJ, Ciofini I, Lebœuf D. Macrolactonization Reactions Driven by a Pentafluorobenzoyl Group*. Angew Chem Int Ed Engl 2021; 60:19843-19851. [PMID: 34213811 DOI: 10.1002/anie.202105882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Macrolactones constitute a privileged class of natural and synthetic products with a broad range of applications in the fine chemicals and pharmaceutical industry. Despite all the progress made towards their synthesis, notably from seco-acids, a macrolactonization promoter system that is effective, selective, flexible, readily available, and, insofar as possible, compatible with manifold functional groups is still lacking. Herein, we describe a strategy that relies on the formation of a mixed anhydride incorporating a pentafluorophenyl group which, due to its high electronic activation enables a convenient access to macrolactones, macrodiolides and esters with a broad versatility. Kinetic studies and DFT computations were performed to rationalize the reactivity of the pentafluorophenyl group in macrolactonization reactions.
Collapse
Affiliation(s)
- Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405, Orsay, France
| | - Anna Perfetto
- Chimie Paris-Tech, PSL, CNRS, Institute of Chemistry for Health and Life Science (I-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005, Paris, France
| | - Robert J Mayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Ilaria Ciofini
- Chimie Paris-Tech, PSL, CNRS, Institute of Chemistry for Health and Life Science (I-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
25
|
Feng Z, Li Q, Chen L, Yao H, Lin A. Palladium-catalyzed asymmetric carbamoyl-carbonylation of alkenes. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9992-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Hu H, Peng Y, Yu T, Cheng S, Luo S, Zhu Q. Palladium-Catalyzed Enantioselective 7- exo-Trig Carbopalladation/Carbonylation: Cascade Reactions To Achieve Atropisomeric Dibenzo[ b, d]azepin-6-ones. Org Lett 2021; 23:3636-3640. [PMID: 33886342 DOI: 10.1021/acs.orglett.1c01036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enantioselective 7-exo-trig cyclocarbopalladation-initiated carbonylation cascade reactions, leading to seven-membered dibenzo[b,d]azepin-6-ones containing a thermodynamically controlled stereogenic axis, have been realized for the first time. A series of 7-acetate- or 7-acetamide-substituted dibenzo[b,d]azepin-6-ones are obtained under atmospheric pressure of CO in good yields with excellent diastereo- and enantioselectivities. The calculated energy difference between the diastereoisomers generated from the stereogenic biaryl axis and the stereogenic center is approximately 2.8 kcal/mol, which agrees with the excellent diastereoselectivity observed.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yan Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Bioland Laboratory, Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China.,Bioland Laboratory, Guangzhou 510005, China
| |
Collapse
|
28
|
Paul D, Das S, Saha S, Sharma H, Goswami RK. Intramolecular Heck Reaction in Total Synthesis of Natural Products: An Update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Subhendu Das
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Sanu Saha
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Himangshu Sharma
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
29
|
Hoang KM, Lees NR, Herzon SB. General Method for the Synthesis of α- or β-Deoxyaminoglycosides Bearing Basic Nitrogen. J Am Chem Soc 2021; 143:2777-2783. [PMID: 33555855 DOI: 10.1021/jacs.0c11262] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The introduction of glycosides bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, because many aminoglycosides lack a C2 substituent, diastereomeric mixtures of O-glycosides are often produced. Herein, we present a method for the synthesis of α- or β- 2,3,6-trideoxy-3-amino- and 2,4,6-trideoxy-4-amino O-glycosides from a common precursor. Our strategy proceeds by the reductive lithiation of thiophenyl glycoside donors and trapping of the resulting anomeric anions with 2-methyltetrahydropyranyl peroxides. We apply this strategy to the synthesis of α- and β-forosamine, pyrrolosamine, acosamine, and ristosamine derivatives using primary and secondary peroxides as electrophiles. α-Linked products are obtained in 60-96% yield and with >50:1 selectivity. β-Linked products are obtained in 45-94% yield and with 1.7->50:1 stereoselectivity. Contrary to donors bearing an equatorial amine substituent, donors bearing an axial amine substituent favored β-products at low temperatures. This work establishes a general strategy to synthesize O-glycosides bearing a basic nitrogen.
Collapse
Affiliation(s)
- Kevin M Hoang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nicholas R Lees
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
30
|
Holman KR, Stanko AM, Reisman SE. Palladium-catalyzed cascade cyclizations involving C–C and C–X bond formation: strategic applications in natural product synthesis. Chem Soc Rev 2021; 50:7891-7908. [DOI: 10.1039/d0cs01385d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This tutorial review highlights the use of palladium-catalyzed cascade cyclizations in natural product synthesis, focusing on cascades that construct multiple rings and form both C–C and C–X (X = O, N) bonds in a single synthetic operation.
Collapse
Affiliation(s)
- K. R. Holman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - A. M. Stanko
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - S. E. Reisman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| |
Collapse
|
31
|
Liu ZK, Gao Y, Hu XQ. Recent advances in catalytic synthesis of medium-ring lactones and their derivatives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01438b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In light of the ever-increasing significance of medium-sized lactones across the range of chemical sciences, this review summarizes the recent advances in catalytic synthesis of medium-ring lactones with emphasis on reaction scope and mechanism.
Collapse
Affiliation(s)
- Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
32
|
Zhu B, Zhu L, Xia J, Huang S, Huang X. Gold-catalyzed cycloisomerization of enynamides: Regio- and stereoselective approach to tetracyclic spiroindolines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Nicolaou KC, Chen Q, Li R, Anami Y, Tsuchikama K. Total Synthesis of the Monomeric Unit of Lomaiviticin A. J Am Chem Soc 2020; 142:20201-20207. [DOI: 10.1021/jacs.0c10660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qifeng Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ruofan Li
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, Houston, Texas 77054, United States
| |
Collapse
|
34
|
Abstract
Lankacidins are a class of polyketide natural products isolated from Streptomyces spp. that show promising antimicrobial activity. Owing to their complex molecular architectures and chemical instability, structural assignment and derivatization of lankacidins are challenging tasks. Herein we describe three fully synthetic approaches to lankacidins that enable access to new structural variability within the class. We use these routes to systematically generate stereochemical derivatives of both cyclic and acyclic lankacidins. Additionally, we access a new series of lankacidins bearing a methyl group at the C4 position, a modification intended to increase chemical stability. In the course of this work, we discovered that the reported structures for two natural products of the lankacidin class were incorrect, and we determine the correct structures of 2,18-seco-lankacidinol B and iso-lankacidinol. We also evaluate the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro. This work grants insight into the rich chemical complexity of this class of antibiotics and provides an avenue for further structural derivatization.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jinagsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037 Jiangsu, China
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Yanmin Yao
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Seul Ki Yeon
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
35
|
|
36
|
Li X, Xu J, Li Y, Kramer S, Skrydstrup T, Lian Z. Silylcarboxylic Acids as Bifunctional Reagents: Application in Palladium‐Catalyzed External‐CO‐Free Carbonylative Cross‐Coupling Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiong Li
- Department of Dermatology State Key Laboratory of Biotherapy and Cancer Center West China Hospital and West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| | - Jie Xu
- Department of Dermatology State Key Laboratory of Biotherapy and Cancer Center West China Hospital and West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| | - Yue Li
- Department of Dermatology State Key Laboratory of Biotherapy and Cancer Center West China Hospital and West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| | - Søren Kramer
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav WiedsVej 14 8000 Aarhus C Denmark
| | - Zhong Lian
- Department of Dermatology State Key Laboratory of Biotherapy and Cancer Center West China Hospital and West China School of Pharmacy Sichuan University Chengdu 610041 People's Republic of China
| |
Collapse
|
37
|
Affiliation(s)
- Jin‐Bao Peng
- School of Biotechnology and Health SciencesWuyi University Jiangmen, Guangdong 529020 People's Republic of China
| |
Collapse
|
38
|
Yuan Z, Zeng Y, Feng Z, Guan Z, Lin A, Yao H. Constructing chiral bicyclo[3.2.1]octanes via palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Nat Commun 2020; 11:2544. [PMID: 32439921 PMCID: PMC7242361 DOI: 10.1038/s41467-020-16221-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transition-metal-catalyzed tandem Heck/carbonylation reaction has emerged as a powerful tool for the synthesis of structurally diverse carbonyl molecules, as well as natural products and pharmaceuticals. However, the asymmetric version was rarely reported, and remains a challenging topic. Herein, we describe a palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Alcohols, phenols and amines are employed as versatile coupling reagents for the construction of multifunctional chiral bicyclo[3.2.1]octanes with one all-carbon quaternary and two tertiary carbon stereogenic centers in high diastereo- and enantioselectivities. This study represents an important progress in both the asymmetric tandem Heck/carbonylation reactions and enantioselective difunctionalization of internal alkenes.
Collapse
Affiliation(s)
- Zhenbo Yuan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ziwen Feng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zhe Guan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
39
|
Fu W, Wang L, Yang Z, Shen JS, Tang F, Zhang J, Cui X. Facile access to versatile aza-macrolides through iridium-catalysed cascade allyl-amination/macrolactonization. Chem Commun (Camb) 2020; 56:960-963. [DOI: 10.1039/c9cc07372h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Direct access to benzo-fused aza-macrolides was successfully realised via the first iridium-catalysed intermolecular decarboxylative couplings of vinylethylene carbonates with isatoic anhydrides under relatively mild conditions.
Collapse
Affiliation(s)
- Wei Fu
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Lianhui Wang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Jiang-Shan Shen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Fei Tang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Jiayi Zhang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| |
Collapse
|
40
|
Santos Junior VCD, Martínez LC, Plata-Rueda A, Fernandes FL, Tavares WDS, Zanuncio JC, Serrão JE. Histopathological and cytotoxic changes induced by spinosad on midgut cells of the non-target predator Podisus nigrispinus Dallas (Heteroptera: Pentatomidae). CHEMOSPHERE 2020; 238:124585. [PMID: 31437628 DOI: 10.1016/j.chemosphere.2019.124585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Broad-spectrum insecticides used in pest control are a risk for non-target insects. Their compatibility to the insecticide spinosad, used in agriculture and forestry as a biological control tool, needs to be evaluated. Podisus nigrispinus Dallas (Heteroptera: Pentatomidae) is a predatory bug used in the pest management of agricultural and forest systems where spinosad is also frequently applied. The aim of this study was to evaluate the toxicity, histopathology and cytotoxicity in midgut cells of P. nigrispinus exposed to spinosad. The toxicity test was performed to determine the lethal concentrations of spinosad after exposure by ingestion. The histopathology and cytotoxicity caused by spinosad were analyzed in the three midgut regions (anterior, middle and posterior) of P. nigrispinus during different exposure periods. Spinosad, at low concentrations, was toxic to P. nigrispinus [LC50 = 3.15 (3.02-3.26) μg.L-1]. Cell degeneration features such as cytoplasm vacuolization, chromatin condensation and release of cell fragments to the midgut lumen were observed in this organ. Cell death via apoptosis was found in the three midgut regions of this predator after exposure to the insecticide. Spinosad is toxic to P. nigrispinus, and causes histological and cytological damage followed by cell death in the midgut, suggesting a dangerous effect on a beneficial non-target insect.
Collapse
Affiliation(s)
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Angelica Plata-Rueda
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, 38810-000, Rio Paranaíba, Minas Gerais, Brazil.
| | - Flávio Lemes Fernandes
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, 38810-000, Rio Paranaíba, Minas Gerais, Brazil.
| | | | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
41
|
Wang Z. Advances in the Asymmetric Total Synthesis of Natural Products Using Chiral Secondary Amine Catalyzed Reactions of α,β-Unsaturated Aldehydes. Molecules 2019; 24:E3412. [PMID: 31546876 PMCID: PMC6767148 DOI: 10.3390/molecules24183412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
Chirality is one of the most important attributes for its presence in a vast majority of bioactive natural products and pharmaceuticals. Asymmetric organocatalysis methods have emerged as a powerful methodology for the construction of highly enantioenriched structural skeletons of the target molecules. Due to their extensive application of organocatalysis in the total synthesis of bioactive molecules and some of them have been used in the industrial synthesis of drugs have attracted increasing interests from chemists. Among the chiral organocatalysts, chiral secondary amines (MacMillan's catalyst and Jorgensen's catalyst) have been especially considered attractive strategies because of their impressive efficiency. Herein, we outline advances in the asymmetric total synthesis of natural products and relevant drugs by using the strategy of chiral secondary amine catalyzed reactions of α,β-unsaturated aldehydes in the last eighteen years.
Collapse
Affiliation(s)
- Zhonglei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
42
|
pH-responsive ultrasonic self-assembly spinosad-loaded nanomicelles and their antifungal activity to Fusarium oxysporum. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2‐Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Fan Teng
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Jian Liu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
| | - Weiming Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Shuang Luo
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Qiang Zhu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| |
Collapse
|
44
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2-Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019; 58:9225-9229. [PMID: 31074567 DOI: 10.1002/anie.201904838] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 01/16/2023]
Abstract
An efficient one-pot assembly of all-carbon spiro-oxindole compounds from non-oxindole-based materials has been developed through a palladium-catalyzed asymmetric Heck/carbonylative lactonization and lactamization sequence. Diversified spirooxindole γ-and δ-lactones/lactams were accessed in high yields with good to excellent enantioselectivities (up to 99 % ee) under mild reaction conditions. The natural product coixspirolactam A was conveniently synthesized by applying the current methodology, and thus its absolute configuration was elucidated for the first time. Asymmetric synthesis of an effective CRTH2 receptor antagonist has also been demonstrated utilizing this method in the key step.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jian Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
45
|
Total Synthesis of trans-Resorcylide via Macrocyclic Stille Carbonylation. J Antibiot (Tokyo) 2019; 72:482-485. [PMID: 30760840 DOI: 10.1038/s41429-019-0145-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 11/08/2022]
Abstract
The resorcylic macrolides are important natural products with a wide range of remarkable biological activities. So far, most of the reported resorcylic macrolide syntheses use either macrolactonization or ring closing metathesis to build the corresponding macrocycle. In continuation of our efforts in developing novel carbonylation reactions to facilitate natural product total synthesis, we report herein a total synthesis of trans-resorcylide (1) featuring a palladium-catalyzed macrocyclic Stille carbonylation to build its 12-membered macrocycle.
Collapse
|
46
|
Ma K, Martin BS, Yin X, Dai M. Natural product syntheses via carbonylative cyclizations. Nat Prod Rep 2019; 36:174-219. [PMID: 29923586 DOI: 10.1039/c8np00033f] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the application of various transition metal-catalyzed/mediated carbonylative cyclization reactions in natural product total synthesis.
Collapse
Affiliation(s)
- Kaiqing Ma
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Brandon S. Martin
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Xianglin Yin
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Mingji Dai
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| |
Collapse
|
47
|
Li J, Ahmed TS, Xu C, Stoltz BM, Grubbs RH. Concise Syntheses of Δ 12-Prostaglandin J Natural Products via Stereoretentive Metathesis. J Am Chem Soc 2018; 141:154-158. [PMID: 30537831 DOI: 10.1021/jacs.8b12816] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Δ12-Prostaglandin J family is recently discovered and has potent anticancer activity. Concise syntheses of four Δ12-prostaglandin J natural products (7-8 steps in the longest linear sequences) are reported, enabled by convergent stereoretentive cross-metathesis. Exceptional control of alkene geometry was achieved through stereoretention.
Collapse
Affiliation(s)
- Jiaming Li
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Tonia S Ahmed
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Chen Xu
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518000 , China
| | - Brian M Stoltz
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Robert H Grubbs
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
48
|
Davis DC, Hoch DG, Wu L, Abegg D, Martin BS, Zhang ZY, Adibekian A, Dai M. Total Synthesis, Biological Evaluation, and Target Identification of Rare Abies Sesquiterpenoids. J Am Chem Soc 2018; 140:17465-17473. [PMID: 30461272 DOI: 10.1021/jacs.8b07652] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abiespiroside A (1), beshanzuenone C (2), and beshanzuenone D (3) belong to the Abies sesquiterpenoid family. Beshanzuenones C (2) and D (3) are isolated from the critically endangered Chinese fir tree species Abies beshanzuensis and demonstrated weak inhibiting activity against protein tyrosine phosphatase 1B (PTP1B). We describe herein the first total syntheses of these Abies sesquiterpenoids relying on the sustainable and inexpensive chiral pool molecule (+)-carvone. The syntheses feature a palladium-catalyzed hydrocarbonylative lactonization to install the 6,6-fused bicyclic ring system and a Dreiding-Schmidt reaction to build the oxaspirolactone moiety of these target molecules. Our chemical total syntheses of these Abies sesquiterpenoids have enabled (i) the validation of beshanzuenone C's weak PTP1B inhibiting potency, (ii) identification of new synthetic analogs with promising and selective protein tyrosine phosphatase SHP2 inhibiting potency, and (iii) preparation of azide-tagged probe molecules for target identification via a chemoproteomic approach. The latter has resulted in the identification and evaluation of DNA polymerase epsilon subunit 3 (POLE3) as one of the novel cellular targets of these Abies sesquiterpenoids and their analogs. More importantly, via POLE3 inactivation by probe molecule 29 and knockdown experiment, we further demonstrated that targeting POLE3 with small molecules may be a novel strategy for chemosensitization to DNA damaging drugs such as etoposide in cancer.
Collapse
Affiliation(s)
- Dexter C Davis
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Dominic G Hoch
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Daniel Abegg
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Brandon S Martin
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zhong-Yin Zhang
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Medicinal Chemistry and Molecular Pharmacology , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Alexander Adibekian
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Mingji Dai
- Department of Chemistry, Center for Cancer Research and Institute for Drug Discovery , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
49
|
Trost BM, Bai WJ, Stivala CE, Hohn C, Poock C, Heinrich M, Xu S, Rey J. Enantioselective Synthesis of des-Epoxy-Amphidinolide N. J Am Chem Soc 2018; 140:17316-17326. [DOI: 10.1021/jacs.8b11827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Craig E. Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Christoph Hohn
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Caroline Poock
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Marc Heinrich
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Shiyan Xu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jullien Rey
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
50
|
Zhang WW, Gao TT, Xu LJ, Li BJ. Macrolactonization of Alkynyl Alcohol through Rh(I)/Yb(III) Catalysis. Org Lett 2018; 20:6534-6538. [DOI: 10.1021/acs.orglett.8b02858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Wen Zhang
- Department of Chemistry, Renmin University of China, Beijing 100084, China
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tao-Tao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li-Jin Xu
- Department of Chemistry, Renmin University of China, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|