1
|
Jabbarpoor M, LeBlanc J, Chen Z, Cadwallader D, Le CM. Pd-catalyzed Suzuki-type cross-coupling of 2-pyridyl carbamoyl fluorides. Chem Commun (Camb) 2024. [PMID: 39054900 DOI: 10.1039/d4cc02431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We describe a palladium-catalyzed Suzuki-type cross-coupling reaction of 2-pyridyl carbamoyl fluorides with boronic acids, which provides entry to medicinally relevant pyridyl amides. Mechanistic studies, including the synthesis and reactivity of carbamoyl Pd-F complexes, reveal the importance of both the fluoride electrophile and nitrogen directing group for aiding reactivity.
Collapse
Affiliation(s)
- Maryam Jabbarpoor
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Jesse LeBlanc
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Zichuan Chen
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Dusty Cadwallader
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Christine M Le
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
2
|
Piejko M, Moran J, Lebœuf D. Difunctionalization Processes Enabled by Hexafluoroisopropanol. ACS ORGANIC & INORGANIC AU 2024; 4:287-300. [PMID: 38855339 PMCID: PMC11157514 DOI: 10.1021/acsorginorgau.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024]
Abstract
In the past 5 years, hexafluoroisopropanol (HFIP) has been used as a unique solvent or additive to enable challenging transformations through substrate activation and stabilization of reactive intermediates. In this Review, we aim at describing difunctionalization processes which were unlocked when HFIP was involved. Specifically, we focus on cyclizations and additions to alkenes, alkynes, epoxides, and carbonyls that introduce a wide range of functional groups of interest.
Collapse
Affiliation(s)
- Maciej Piejko
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Institut
Universitaire de France (IUF), 75005 Paris, France
| | - David Lebœuf
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
3
|
Arumugam A, Senadi GC. Visible-light photocatalyzed C-N bond activation of tertiary amines: a three-component approach to synthesize quinazolines. Org Biomol Chem 2024; 22:1245-1253. [PMID: 38248577 DOI: 10.1039/d3ob02067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A metal-free three-component approach has been developed to prepare 2,4-disubstituted quinazolines from o-acylanilines, trialkylamines and ammonium chloride under visible-light using eosin Y as the photocatalyst. The notable features of this work include (i) the use of tertiary amines as an alkyl synthon and triethanolamine as a C2-OH synthon; (ii) good functional group tolerance with 52%-98% yields; (iii) proof of concept with o-amino benzaldehyde as a substrate to deliver 2-methyl quinazoline 3pa; and (iv) gram-scale synthesis of compounds 3ga, 3ja and 3ma. A reductive quenching mechanism was proposed based on the control studies and redox potential values.
Collapse
Affiliation(s)
- Ajithkumar Arumugam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Wang L, Chen R, Wu S, Sun J, Han Y, Li W, Yan CG. Synthesis of Bis-Heterocycles Bearing Methyleneindole Motifs by Pd-Catalyzed Domino Reaction. J Org Chem 2024; 89:1941-1955. [PMID: 38261608 DOI: 10.1021/acs.joc.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A highly robust, general, and practically simple palladium-catalyzed domino bicyclization strategy is presented to synthesize nitrogen-containing bis-heterocycles bearing methylene indole motifs from alkyne-tethered carbamoyl chlorides and β,γ- or γ,δ-unsaturated hydrazones. The salient features of this transformation include broad substrate scope, good functional group tolerance, ease for scale-up, and convenient conversion.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruixin Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuaijie Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, P. R. China
| | - Chao-Guo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
5
|
McKnight EA, Arora R, Pradhan E, Fujisato YH, Ajayi AJ, Lautens M, Zeng T, Le CM. BF 3-Catalyzed Intramolecular Fluorocarbamoylation of Alkynes via Halide Recycling. J Am Chem Soc 2023; 145:11012-11018. [PMID: 37172320 DOI: 10.1021/jacs.3c03982] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A BF3-catalyzed atom-economical fluorocarbamoylation reaction of alkyne-tethered carbamoyl fluorides is reported. The catalyst acts as both a fluoride source and Lewis acid activator, thereby enabling the formal insertion of alkynes into strong C-F bonds through a halide recycling mechanism. The developed method provides access to 3-(fluoromethylene) oxindoles and γ-lactams with excellent stereoselectivity, including fluorinated derivatives of known protein kinase inhibitors. Experimental and computational studies support a stepwise mechanism for the fluorocarbamoylation reaction involving a turnover-limiting cyclization step, followed by internal fluoride transfer from a BF3-coordinated carbamoyl adduct. For methylene oxindoles, a thermodynamically driven Z-E isomerization is facilitated by a transition state with aromatic character. In contrast, this aromatic stabilization is not relevant for γ-lactams, which results in a higher barrier for isomerization and the exclusive formation of the Z-isomer.
Collapse
Affiliation(s)
- E Ali McKnight
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ramon Arora
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ekadashi Pradhan
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yuriko H Fujisato
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ayonitemi J Ajayi
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
6
|
Sharma S, Monga Y, Gupta A, Singh S. 2-Oxindole and related heterocycles: synthetic methodologies for their natural products and related derivatives. RSC Adv 2023; 13:14249-14267. [PMID: 37179999 PMCID: PMC10173257 DOI: 10.1039/d3ra02217j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Natural goods, medications, and pharmaceutically active substances all contain substituted oxindoles. Generally, the C-3 stereocenter of the substituents of oxindoles and their absolute arrangement have a substantial impact on the bioactivity of these substances. In this case, the desire for contemporary probe and drug-discovery programs for the synthesis of chiral compounds using desirable scaffolds with high structural diversity further drives research in this field. Also, the new synthetic techniques are generally simple to apply for the synthesis of other similar scaffolds. Herein, we review the distinct approaches for the synthesis of diverse useful oxindole scaffolds. Specifically, the research findings on the naturally existing 2-oxindole core and a variety of synthetic compounds having a 2-oxindole core are discussed. We present an overview of the construction of oxindole-based synthetic and natural products. In addition, the chemical reactivity of 2-oxindole and its related derivatives in the presence of chiral and achiral catalysts are thoroughly discussed. The data compiled herein provides broad information related to the bioactive product design, development, and applications of 2-oxindoles and the reported techniques will be helpful for the investigation of novel reactions in the future.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| | - Yukti Monga
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Ashu Gupta
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Shivendra Singh
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| |
Collapse
|
7
|
Zhao H, Ding S, Li D, Chai M, Dai L, Li J, Jiang Y, Weng T, Wang J. Stereoselective Construction of Unsymmetrically Linked Heterocycles via Palladium-Catalyzed Alkyne Insertion/Cycloimidoylation Cascade. J Org Chem 2023; 88:1613-1624. [PMID: 36642919 DOI: 10.1021/acs.joc.2c02660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel strategy to access unsymmetrically linked heterocycles via palladium-catalyzed acylcycloimidoylation of alkyne-tethered carbamoyl chlorides with isocyanides has been developed. Functionalized isocyanides were successfully applied as imine-containing heterocycle precursors to capture the vinyl-PdII intermediate, which was generated from a syn-carbopalladation of alkyne, followed by subsequent intramolecular C-H bond activation/imidoylative Heck reactions. Methylene oxindoles within Z-tetrasubstituted olefins were obtained in high yields with excellent stereoselectivities. Broad functional groups were well tolerated under mild reaction conditions.
Collapse
Affiliation(s)
- Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Lixiong Dai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jing Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People's Republic of China
| | - Yuchen Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tongqing Weng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
8
|
Maiti S, Roy S, Ghosh P, Kasera A, Maiti D. Photo‐Excited Nickel‐Catalyzed Silyl‐Radical‐Mediated Direct Activation of Carbamoyl Chlorides To Access (Hetero)aryl Carbamides**. Angew Chem Int Ed Engl 2022; 61:e202207472. [DOI: 10.1002/anie.202207472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sudip Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sayan Roy
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Pintu Ghosh
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aashi Kasera
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
- IDP in Climate Studies Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
9
|
Tang J, Zhang L, Wu W, Yang S, Jiang H. Palladium‐Catalyzed Enantioselective Cyclization of 1,6‐Enynes through Intramolecular Chlorine Transfer as a Novel Strategy for Asymmetric Halopalladation. Chemistry 2022; 28:e202202528. [DOI: 10.1002/chem.202202528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Junlong Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Liren Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
10
|
Maiti S, Roy S, Ghosh P, Kasera A, Maiti D. Photo‐Excited Nickel‐Catalyzed Silyl‐Radical‐Mediated Direct Activation of Carbamoyl Chlorides To Access (Hetero)aryl Car‐bamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sudip Maiti
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry INDIA
| | - Sayan Roy
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry INDIA
| | - Pintu Ghosh
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry INDIA
| | - Aashi Kasera
- IIT Bombay: Indian Institute of Technology Bombay Department of Chemistry INDIA
| | - Debabrata Maiti
- Indian Institute of Technology-Bombay Department of Chemistry Powai 400076 Mumbai INDIA
| |
Collapse
|
11
|
Yu W, Jiao X, Fan Y, Zhu S, Chu L. Metallaphotoredox‐Enabled Intermolecular Carbobromination of Alkynes with Alkenyl Bromides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Xiaorui Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Yanmin Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| |
Collapse
|
12
|
Arora R, Rodríguez JF, Whyte A, Lautens M. Accessing Unsymmetrically Linked Heterocycles through Stereoselective Palladium‐Catalyzed Domino Cyclization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ramon Arora
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - José F. Rodríguez
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Andrew Whyte
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
13
|
Arora R, Rodríguez JF, Whyte A, Lautens M. Accessing Unsymmetrically Linked Heterocycles through Stereoselective Palladium-Catalyzed Domino Cyclization. Angew Chem Int Ed Engl 2022; 61:e202112288. [PMID: 34739741 DOI: 10.1002/anie.202112288] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/23/2022]
Abstract
A palladium-catalyzed strategy is presented to synthesize unsymmetrically linked heterocycles within stereoselective tetrasubstituted olefins. This reaction is proposed to occur via a vinyl-PdII intermediate capable of initiating the cyclization of various alkyne-tethered nucleophiles. Products are formed in up to 96 % yield and excellent stereoselectivities are obtained using low catalyst loadings. This transformation was scalable up to 1 mmol and mechanistic studies suggest a syn-carbopalladation of the carbamoyl chloride followed by PdII -catalyzed cyclization of alkyne-tethered nucleophiles.
Collapse
Affiliation(s)
- Ramon Arora
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - José F Rodríguez
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
14
|
Han YF, Lv GF, Li Y, Wu LJ, Ouyang XH, Li JH. Transient Chelating Group-Controlled Stereoselective Rh(I)-Catalyzed Silylative Aminocarbonylation of 2-Alkynylanilines: Entry to (Z)-3-(Silylmethylene)indolin-2-ones. Chem Sci 2022; 13:9425-9431. [PMID: 36092994 PMCID: PMC9383873 DOI: 10.1039/d2sc03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
A new, mild acryl transient chelating group-controlled stereoselective Rh(I)-catalyzed silylative aminocarbonylation of 2-alkynylanilines with CO and silanes for producing (Z)-3-(silylmethylene)indolin-2-ones is presented. By using an acryl transient chelating group 2-alkynylanilines...
Collapse
Affiliation(s)
- Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology Changsha 410004 China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
15
|
Chen C, Huang Y, Ding J, Liu L, Zhu B. Palladium‐Catalyzed Carbamoyl‐Carbamoylation/ Carboxylation/Thioesterification of Alkene‐Tethered Carbamoyl Chlorides Using Mo(CO)
6
as the Carbonyl Source. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Yujie Huang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
16
|
Harnedy J, Hareram MD, Tizzard GJ, Coles SJ, Morrill LC. Electrochemical oxidative Z-selective C(sp 2)-H chlorination of acrylamides. Chem Commun (Camb) 2021; 57:12643-12646. [PMID: 34762080 DOI: 10.1039/d1cc05824j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An electrochemical method for the oxidative Z-selective C(sp2)-H chlorination of acrylamides has been developed. This catalyst and organic oxidant free method is applicable across various substituted tertiary acrylamides, and provides access to a broad range of synthetically useful Z-β-chloroacrylamides in good yields (22 examples, 73% average yield). The orthogonal derivatization of the products was demonstrated through chemoselective transformations and the electrochemical process was performed on gram scale in flow.
Collapse
Affiliation(s)
- James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Mishra Deepak Hareram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Graham J Tizzard
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
17
|
Loup J, Larin EM, Lautens M. Iron-Catalyzed Reductive Cyclization by Hydromagnesiation: A Modular Strategy Towards N-Heterocycles. Angew Chem Int Ed Engl 2021; 60:22345-22351. [PMID: 34409717 DOI: 10.1002/anie.202106996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/29/2021] [Indexed: 12/15/2022]
Abstract
A reductive cyclization to prepare a variety of N-heterocycles, through the use of ortho-vinylanilides, is reported. The reaction is catalyzed by an inexpensive and bench-stable iron complex and generally occurs at ambient temperature. The transformation likely proceeds through hydromagnesiation of the vinyl group, and trapping of the in situ generated benzylic anion by an intramolecular electrophile to form the heterocycle. This iron-catalyzed strategy was shown to be broadly applicable and was utilized in the synthesis of substituted indoles, oxindoles and tetrahydrobenzoazepinoindolone derivatives. Mechanistic studies indicated that the reversibility of the hydride transfer step depends on the reactivity of the tethered electrophile. The synthetic utility of our approach was further demonstrated by the formal synthesis of a reported bioactive compound and a family of natural products.
Collapse
Affiliation(s)
- Joachim Loup
- Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Egor M Larin
- Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
18
|
Iron‐Catalyzed Reductive Cyclization by Hydromagnesiation: A Modular Strategy Towards
N
‐Heterocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Rodríguez JF, Zhang A, Bajohr J, Whyte A, Mirabi B, Lautens M. Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José F. Rodríguez
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Anji Zhang
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jonathan Bajohr
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Andrew Whyte
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Bijan Mirabi
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
20
|
Rodríguez JF, Zhang A, Bajohr J, Whyte A, Mirabi B, Lautens M. Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angew Chem Int Ed Engl 2021; 60:18478-18483. [PMID: 34157191 DOI: 10.1002/anie.202103323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Hexafluoroisopropanol (HFIP) was employed as an additive for the generation of 3-(chloromethylene)oxindoles via the chloroacylation of alkyne-tethered carbamoyl chlorides. This reaction avoids the use of a metal catalyst and accesses products in high yields and stereoselectivities. Additionally, this reaction is scalable and proved amenable to a series of product derivatizations, including the synthesis of nintedanib. The reactivity of alkene-tethered carbamoyl chlorides with hexafluoroisopropanol (HFIP) was harnessed towards the synthesis of 2-quinolinones.
Collapse
Affiliation(s)
- José F Rodríguez
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan Bajohr
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
21
|
Chen C, Liu L, Sun W, Zhu B. Palladium‐Catalyzed Aryl‐Carbamoylation of Alkene‐Tethered Carbamoyl Chlorides: Access to Diverse Aryl‐Functionalized Oxindoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
22
|
Neto JSS, Zeni G. Recent Developments in the Cyclization of Alkynes and Nitrogen Compounds for the Synthesis of Indole Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
23
|
Larin EM, Torelli A, Loup J, Lautens M. One-Pot, Three-Step Synthesis of Benzoxazinones via Use of the Bpin Group as a Masked Nucleophile. Org Lett 2021; 23:2720-2725. [PMID: 33689389 DOI: 10.1021/acs.orglett.1c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utilization of the Bpin group as a pronucleophile to facilitate the assembly of cyclic carbamates has been achieved. This one-pot process involves an initial copper-catalyzed borylation, a subsequent C-B bond oxidation to generate the reactive alcohol intermediate, and a cyclization. We report the use of this efficient, scalable, and simple method toward the synthesis of a wide range of benzoxazinone scaffolds, including enantioselective results. Subsequent transformations into useful scaffolds showcase the utility of this strategy.
Collapse
Affiliation(s)
- Egor M Larin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Joachim Loup
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Xu L, Zhu S, Huo L, Chen F, Yu W, Chu L. Radical 1,2-addition of bromoarenes to alkynes via dual photoredox and nickel catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00365h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A 1,2-addition of aryl bromides to alkynes enabled by the photocatalytic generation of bromine radicals via photoredox and nickel catalysis is reported.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Liping Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Wei Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
25
|
Shrestha M, Wu X, Huang W, Qu J, Chen Y. Recent advances in transition metal-catalyzed reactions of carbamoyl chlorides. Org Chem Front 2021. [DOI: 10.1039/d0qo01648a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review highlights the recent advancements of carbamoyl chlorides in transition metal-catalyzed reactions to access various amide-containing molecules and heterocycles.
Collapse
Affiliation(s)
- Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
| |
Collapse
|
26
|
Wang D, Wang S, Hao W, Tu S, Jiang B. Dual Palladium/Scandium Catalysis toward Rotationally Hindered
C3‐Naphthylated
Indoles from
β‐Alkynyl
Ketones and
o
‐Alkynyl
Anilines. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Shi‐Chao Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Wen‐Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Shu‐Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| |
Collapse
|
27
|
Zidan M, McCallum T, Swann R, Barriault L. Formal Bromine Atom Transfer Radical Addition of Nonactivated Bromoalkanes Using Photoredox Gold Catalysis. Org Lett 2020; 22:8401-8406. [DOI: 10.1021/acs.orglett.0c03030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Montserrat Zidan
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| | - Terry McCallum
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| | - Rowan Swann
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| | - Louis Barriault
- Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
28
|
Chen MY, Pannecoucke X, Jubault P, Besset T. Pd-Catalyzed Selective Chlorination of Acrylamides at Room Temperature. Org Lett 2020; 22:7556-7561. [PMID: 32941046 DOI: 10.1021/acs.orglett.0c02750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this Letter, the transition-metal-catalyzed chlorination of alkenes is reported. In the presence of the commercially available and inexpensive N-chlorosuccinimide and without additive, the Pd-catalyzed chlorination of acrylamides by C-H bond activation was developed at room temperature under air. Under these mild reaction conditions, the versatility of the methodology was demonstrated as an array of acrylamides was functionalized to selectively provide the corresponding difficult-to-synthesize chlorinated olefins as a single Z stereoisomer. Mechanistic studies were conducted to get insights into the reaction mechanism, and post-functionalization reactions further demonstrated the synthetic utility of the approach toward the access to high value-added chlorinated compounds.
Collapse
Affiliation(s)
- Mu-Yi Chen
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Xavier Pannecoucke
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Philippe Jubault
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
29
|
Marchese AD, Larin EM, Mirabi B, Lautens M. Metal-Catalyzed Approaches toward the Oxindole Core. Acc Chem Res 2020; 53:1605-1619. [PMID: 32706589 DOI: 10.1021/acs.accounts.0c00297] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oxindole scaffold is a privileged structural motif that is found in a variety of bioactive targets and natural products. Moreover, derivatives of the oxindole structure are widely present in a number of biologically relevant compounds and are key intermediates in the synthesis of diverse natural products and pharmaceuticals. Therefore, novel methods to obtain oxindoles remain of high priority in synthetic organic chemistry.Over the past several decades, novel transition-metal-catalyzed methodologies have been applied toward the synthesis of a variety of heterocycles. A detailed mechanistic understanding facilitates the disruption of traditional catalytic pathways to access useful synthetic intermediates. The strategies employed have generally revolved around the generation of high-energy organometallic intermediates, which undergo cyclization reactions through domino processes. Domino cyclization methodologies are therefore attractive, as they allow facile access to functionalized oxindoles containing all-carbon quaternary centers or tetrasubstituted olefins with high chemo- and stereoselectivities. Furthermore, these developed synthetic strategies can often be easily applied in the syntheses of other related scaffolds.In this Account, we discuss the three unique strategies that our group has leveraged for the synthesis of valuable oxindole scaffolds. The first section in this Account outlines the use of an initial oxidative addition to a C(sp2)-X bond, followed by a migratory insertion, yielding a neopentyl species amenable to a variety of subsequent functionalizations. From this reactive neopentyl metal species, we have reported C-X reductive eliminations, anionic capture cascade reactions, and intramolecular C-H functionalization processes. The second section of this Account summarizes our group's findings on 1,2-insertions of a metal-nucleophile species across an unsaturation, generating a reactive organometallic intermediate; subsequent reactions with tethered electrophiles form the desired heterocyclic core. We have explored a wide array of transition metal-catalyzed strategies using this approach, including rhodium-catalyzed conjugate additions, an asymmetric copper-catalyzed borylcupration, and a palladium(II)-catalyzed chloropalladation protocol. The final section of this Account details the use of dual-metal catalysis to perform a cyclization through a C-H functionalization-allylation domino reaction. Throughout this Account, we provide details of mechanistic studies that better enabled our understanding of the domino processes.Overall, our group has developed methods exploiting the unique reactivity of palladium, nickel, copper, rhodium, and ruthenium catalysts to develop methods toward a wide array of oxindole scaffolds. On the basis of the utility, diversity, and applicability of the strategies developed, we believe that they will prove to be highly useful in the syntheses of other important targets and inspire further development and mechanistic understanding of various metal-catalyzed processes.
Collapse
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Egor M. Larin
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
30
|
Zhang C, Wu X, Wang C, Zhang C, Qu J, Chen Y. Pd/Cu-Catalyzed Domino Cyclization/Deborylation of Alkene-Tethered Carbamoyl Chloride and 1,1-Diborylmethane. Org Lett 2020; 22:6376-6381. [DOI: 10.1021/acs.orglett.0c02211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chenhuan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
31
|
Marchese AD, Wollenburg M, Mirabi B, Abel-Snape X, Whyte A, Glorius F, Lautens M. Nickel-Catalyzed Enantioselective Carbamoyl Iodination: A Surrogate for Carbamoyl Iodides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00841] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Marco Wollenburg
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Bijan Mirabi
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Xavier Abel-Snape
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Whyte
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
32
|
Yamaguchi A, Inuki S, Tokimizu Y, Oishi S, Ohno H. Gold(I)-Catalyzed Cascade Cyclization of Anilines with Diynes: Controllable Formation of Eight-Membered Ring-Fused Indoles and Propellane-Type Indolines. J Org Chem 2020; 85:2543-2559. [PMID: 31913037 DOI: 10.1021/acs.joc.9b03256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heterocycle-fused indoles or indolines are distributed widely in a variety of natural products, bioactive agents, and pharmaceuticals. Herein, we describe the development of gold-catalyzed cascade reactions of anilines with diynes to form eight-membered ring-fused indoles and propellane-type indolines, both of which proceed through an intramolecular 5-endo-dig hydroamination followed by an 8-endo-dig cycloisomerization. Controllable formation of eight-membered ring-fused indoles and propellane-type indolines was achieved through selection of the ligands and/or solvents. Protic solvents such as alcohols or IPr ligand favored the formation of eight-membered ring-fused indoles, whereas the use of Buchwald's type ligands and/or nonpolar solvents gave propellane-type indoline predominantly. This reaction provides rapid access to two types of fused nitrogen heterocycles from simple aniline derivatives.
Collapse
Affiliation(s)
- Ayuta Yamaguchi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Yusuke Tokimizu
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
33
|
He D, Huang L, Li J, Wu W, Jiang H. Palladium-Catalyzed Nitrile-Assisted C(sp3)–Cl Bond Formation for Synthesis of Dichlorides. Org Lett 2019; 21:8308-8311. [DOI: 10.1021/acs.orglett.9b03066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dandan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
34
|
Lu G, Huangfu X, Wu Z, Tang G, Zhao Y. Palladium‐Catalyzed Domino Heck/Phosphorylation towards 3,3‐Disubstituted Phosphinonyloxindoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Guozhang Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Xinlei Huangfu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Zi'ang Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
- Institute of Drug Discovery TechnologyNingbo University Ningbo, Zhejiang 450052 People's Republic of China
| |
Collapse
|
35
|
Larin EM, Lautens M. Intramolecular Copper(I)‐Catalyzed Interrupted Click–Acylation Domino Reaction. Angew Chem Int Ed Engl 2019; 58:13438-13442. [DOI: 10.1002/anie.201907448] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Egor M. Larin
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
36
|
Larin EM, Lautens M. Intramolecular Copper(I)‐Catalyzed Interrupted Click–Acylation Domino Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Egor M. Larin
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
37
|
Saini KM, Saunthwal RK, Kumar S, Verma AK. On water: iodine-mediated direct construction of 1,3-benzothiazines from ortho-alkynylanilines by regioselective 6-exo-dig cyclization. Org Biomol Chem 2019; 17:2657-2662. [PMID: 30762860 DOI: 10.1039/c9ob00128j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, we report the 6-exo-dig ring closure of ortho-alkynylanilines with readily available aroyl isothiocyanate. An environmentally benign, metal- and base-free, iodine promoted cascade synthesis of highly functionalized (benzo[1,3]thiazin-2-yl)benzimidic acids has been accomplished via in situ generated ortho-alkynylthiourea. The established methodology employs the abundant chemical feedstock of ortho-alkynylanilines and aroyl isothiocyanates and could be applied in the late-stage synthesis of pharmaceutically active 1,3-benzothiazine containing molecules. Furthermore, the discovered protocol exclusively delivers bis (benzo[1,3]thiazin-2-yl)dibenzimidic acid products and preserves the iodo-olefin substitution pattern which can be exploited by further derivatization.
Collapse
Affiliation(s)
- Kapil Mohan Saini
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | | | | | |
Collapse
|
38
|
Sun W, Chen C, Qi Y, Zhao J, Bao Y, Zhu B. Palladium-catalyzed cascade reactions of alkene-tethered carbamoyl chlorides with N-tosyl hydrazones: synthesis of alkene-functionalized oxindoles. Org Biomol Chem 2019; 17:8358-8363. [DOI: 10.1039/c9ob01672d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient approach for the construction of alkene-functionalized oxindoles was developed via palladium-catalyzed cascade reactions of alkene-tethered carbamoyl chlorides with N-tosyl hydrazones.
Collapse
Affiliation(s)
- Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Yuan Qi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Yinwei Bao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| |
Collapse
|
39
|
Li Z, Duan W. Palladium‐Catalyzed C−H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4‐Chlorine Migration. Angew Chem Int Ed Engl 2018; 57:16041-16045. [DOI: 10.1002/anie.201808866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Zhen Li
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
| | - Wei‐Liang Duan
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
40
|
Li Z, Duan W. Palladium‐Catalyzed C−H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4‐Chlorine Migration. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Li
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
| | - Wei‐Liang Duan
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
41
|
Whyte A, Burton KI, Zhang J, Lautens M. Enantioselective Intramolecular Copper‐Catalyzed Borylacylation. Angew Chem Int Ed Engl 2018; 57:13927-13930. [DOI: 10.1002/anie.201808460] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Katherine I. Burton
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jingli Zhang
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- School of Chemistry, Chemical Engineering and Life SciencesWuhan University of Technology 122 Luoshi Road Wuhan 430074 China
| | - Mark Lautens
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
42
|
Bisht GS, Pandey AM, Chaudhari MB, Agalave SG, Kanyal A, Karmodiya K, Gnanaprakasam B. Ru-Catalyzed dehydrogenative synthesis of antimalarial arylidene oxindoles. Org Biomol Chem 2018; 16:7223-7229. [PMID: 30255181 DOI: 10.1039/c8ob01852a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ru(ii)-NHC catalyzes α-olefination of 2-oxindoles using diaryl methanols in the absence of an acceptor. A wide array of symmetrical and unsymmetrical diaryl methanols undergoes dehydrogenative coupling with 2-oxindole selectively to generate various substituted 3-(diphenylmethylene)indolin-2-one derivatives in good yields and produces environmentally benign by-products, H2 and H2O. This methodology was successfully applied for the synthesis of a bioactive drug i.e. TAS-301. The biological activities of the synthesized 3-(diphenylmethylene)indolin-2-one derivatives were screened against the Plasmodium falciparum parasite and found to exhibit a significant activity with IC50 = 2.24 μM.
Collapse
Affiliation(s)
- Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, India.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hong SY, Son J, Kim D, Chang S. Ir(III)-Catalyzed Stereoselective Haloamidation of Alkynes Enabled by Ligand Participation. J Am Chem Soc 2018; 140:12359-12363. [PMID: 30217108 DOI: 10.1021/jacs.8b08134] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Described herein is the application of a strategy of ligand participation for the Ir-catalyzed imido transfer into alkynes. On the basis of a stoichiometric [3 + 2] cycloaddition of Cp*Ir(III)(κ2- N, O-chelate) with alkynyl dioxazolone, a catalytic haloamidation was developed for the first time by employing [Cp*IrCl2]2 precatalyst and NaX salts (X = Cl or Br) as practical halide sources to furnish synthetically versatile Z-(halovinyl)lactams with excellent stereoselectivity.
Collapse
Affiliation(s)
- Seung Youn Hong
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Korea.,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science , Daejeon 34141 , Korea
| | - Junsoo Son
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Korea.,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science , Daejeon 34141 , Korea
| | - Dongwook Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Korea.,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science , Daejeon 34141 , Korea
| | - Sukbok Chang
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Korea.,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science , Daejeon 34141 , Korea
| |
Collapse
|
44
|
Whyte A, Burton KI, Zhang J, Lautens M. Enantioselective Intramolecular Copper‐Catalyzed Borylacylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Katherine I. Burton
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jingli Zhang
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- School of Chemistry, Chemical Engineering and Life SciencesWuhan University of Technology 122 Luoshi Road Wuhan 430074 China
| | - Mark Lautens
- Davenport Research LaboratoriesDepartment of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
45
|
Abstract
A novel nickel-catalyzed cycloisomerization reaction forming a new carbon-carbon bond while preserving the carbon-halogen bond has been developed. A cheap and readily available Ni-catalyst is employed to generate nitrogen containing heterocycles in good to excellent yields and the procedure is readily scalable. The more readily available aryl bromides were also cyclized with the addition of potassium iodide to generate the respective alkyl iodides. A rare dual ligand system employing a bisphosphine and bisphosphine monoxide was used to achieve enantioenriched products.
Collapse
Affiliation(s)
- Hyung Yoon
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Austin D Marchese
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
46
|
Tribedi S, Hadad CM, Sunoj RB. Origin of stereoselectivity in the amination of alcohols using cooperative asymmetric dual catalysis involving chiral counter-ions. Chem Sci 2018; 9:6126-6133. [PMID: 30090300 PMCID: PMC6053974 DOI: 10.1039/c8sc01433g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/23/2018] [Indexed: 02/04/2023] Open
Abstract
Asymmetric catalysis using two chiral catalysts in combination using one-pot reaction conditions is in its initial stages of development and understanding. We employ density functional theory (SMD(toluene)/M06/6-31G**,SDD(Ir)) computations to shed light on the action of chiral phosphoric acid and a chiral Cp*Ir(diamine) in stereoinduction in an asymmetric amination reaction of an alcohol. First, the protonation of the Ir-diamine complex by the phosphoric acid forms an ion-pair of the active catalytic dyad. Both chiral catalysts are involved throughout the catalytic cycle, thus constituting an important example of true cooperative catalysis. A borrowing hydrogen mechanism operates, wherein the phosphate abstracts the hydroxyl proton of the alcohol while the electrophilic Ir(iii) simultaneously extracts the α-hydrogen to form a [Ir]-H species. The ketone thus derived from the alcohol through dehydrogenation condenses with aniline to form an imine. In the diastereocontrolling transition state, the hydride adds to the activated iminium, held in position in the chiral pocket of the catalytic dyad through a network of noncovalent interactions (C-H···π, N-H···O and C-H···O). The enantioselectivity in this DYKAT process is identified as taking place at an earlier stage of the catalytic cycle prior to the diastereo-determining transition state.
Collapse
Affiliation(s)
- Soumi Tribedi
- Department of Chemistry , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India .
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , USA
| | - Raghavan B Sunoj
- Department of Chemistry , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India .
| |
Collapse
|
47
|
Shukla RK, Pal K, Volla CMR. PdII
-Catalyzed Cascade Synthesis of Chromane Derivatives Initiated by cis
-Chloropalladation or trans
-Acetoxypalladation. Chem Asian J 2018; 13:2435-2439. [DOI: 10.1002/asia.201800649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/22/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Kuntal Pal
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Chandra M. R. Volla
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| |
Collapse
|
48
|
Trost BM, Zhang L, Lam TM. Synthesis of the Aminocyclitol Core of Jogyamycin via an Enantioselective Pd-Catalyzed Trimethylenemethane (TMM) Cycloaddition. Org Lett 2018; 20:3938-3942. [PMID: 29939033 DOI: 10.1021/acs.orglett.8b01518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of β-nitroenamines as a new class of acceptors in the enantioselective Pd-catalyzed trimethylenemethane cycloaddition afforded differentiated 1,2-dinitrogen bearing cyclopentanes with three contiguous stereocenters. The utility of these acceptors was demonstrated with the efficient construction of the core of jogyamycin and aminocyclopentitols. Further elaboration of the cycloadducts provided a concise synthetic approach toward joygamycin.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry , Stanford University , Stanford , California 94305-5580 , United States
| | - Lei Zhang
- Department of Chemistry , Stanford University , Stanford , California 94305-5580 , United States
| | - Tom M Lam
- Department of Chemistry , Stanford University , Stanford , California 94305-5580 , United States
| |
Collapse
|
49
|
Triantafyllakis M, Sfakianaki K, Kalaitzakis D, Vassilikogiannakis G. The Power of Triplet and Singlet Oxygen in Synthesis: 2-Oxindoles, 3-Hydroxy-2-oxindoles, and Isatins from Furans. Org Lett 2018; 20:3631-3634. [DOI: 10.1021/acs.orglett.8b01404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Myron Triantafyllakis
- Department of Chemistry, University of Crete, VasilikaVouton, 71003, Iraklion, Crete, Greece
| | - Kalliopi Sfakianaki
- Department of Chemistry, University of Crete, VasilikaVouton, 71003, Iraklion, Crete, Greece
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, VasilikaVouton, 71003, Iraklion, Crete, Greece
| | | |
Collapse
|
50
|
Lian B, Zhang L, Li SJ, Zhang LL, Fang DC. Pd IV Species Mediation in Pd II-Catalyzed Direct Alkylation of Arenes with Oxiranes: A DFT Study. J Org Chem 2018; 83:3142-3148. [PMID: 29485873 DOI: 10.1021/acs.joc.7b03236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction mechanisms of Pd(OAc)2-catalyzed dehydrogenative alkylation of 2-phenylpyridine with oxirane were investigated using DFT calculations. The most plausible reaction pathway was confirmed as a PdII/IV/II catalytic cycle consisting of four processes: C-H activation, ring-opening oxidative addition of oxirane, reductive elimination, and recovery of the catalyst. According to the B2PLYP/DGDZVP computational data, the oxidative addition of oxirane for converting PdII to PdIV was assigned to be the rate-determining step with a free-energy barrier of 28.1 kcal·mol-1. For comparison, we also studied the alternative PdII-only pathway without a change of oxidation state and found that it was hindered kinetically by a high free-energy barrier of 75.1 kcal·mol-1 occurring for the ring-opening migratory insertion of oxirane. In addition, the small-ring strain of oxirane should be responsible for the feasible C-O bond-cleavage and subsequent PdII → PdIV conversion, because the designed four-, five-, and six-membered-ring reagents did not display such an oxidative addition reactivity. Lastly, an extended reactivity order among oxirane, PhI, PhBr, and PhCl toward oxidative addition onto PdII to form PdIV was proposed in this article based on the computed kinetic parameters.
Collapse
Affiliation(s)
- Bing Lian
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Lei Zhang
- College of Chemistry , Beijing Normal University , Beijing 100875 , China.,School of Science , Tianjin Chengjian University , Tianjin 300384 , China
| | - Shi-Jun Li
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Lu-Lu Zhang
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - De-Cai Fang
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|