1
|
Zhao CL, Gao R, Niu Y, Cai B, Zhu Y. Exploring the diffusion of DNA strands into nanoporous structures for establishing a universal electrochemical biosensor. Chem Sci 2025; 16:2420-2428. [PMID: 39790983 PMCID: PMC11707798 DOI: 10.1039/d4sc05833j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode. The NPG electrode can not only distinguish and quantify short DNA strands but can also prevent the diffusion of long DNA, thereby minimizing or eliminating background interference. Leveraging these findings, we developed a universal DNA-based NPG electrochemical biosensing platform for the detection of different types of biomolecules. As a proof-of-concept, this sensing platform was integrated with nuclease-assisted target-recycling recognition and amplification reactions to achieve sensitive and specific detection of single-stranded DNA, microRNA-21, and carcino-embryonic antigen, with detection limits of 4.09, 27.4, and 0.28 fM, respectively. The demonstrated universality, sensitivity, specificity, and capability for analyzing complex samples ensure a comprehensive and robust detection approach for nucleic acid-based molecular diagnosis.
Collapse
Affiliation(s)
- Cong-Lin Zhao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Runlei Gao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yinzheng Niu
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| | - Ye Zhu
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| |
Collapse
|
2
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
3
|
Sajeevan A, Sukumaran RA, Panicker LR, Kotagiri YG. Trends in ready-to-use portable electrochemical sensing devices for healthcare diagnosis. Mikrochim Acta 2025; 192:80. [PMID: 39808331 DOI: 10.1007/s00604-024-06916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations. Enhanced levels of healthcare management can be attained by the implementation of rapid diagnostic procedures and cognitive data analysis. Therefore, there is a constant need for smart therapeutics, analytical tools, and diagnostic systems to improve health and well-being. The past decade witnessed enormous growth in the sensing detection systems integrated into smartphones with printed electrodes and wearable patches for the screening of various healthcare diagnostics biomarkers and therapeutic drugs. This review focuses on the expansion of point-of-care technologies and their incorporation into a broader array of portable devices, a critical aspect in the context of decentralized societies and their healthcare systems. Discussions are broadly focused on the different sensing platforms such as solid electrodes, screen-printed electrodes, and paper-based sensing strategies for the detection of various biomarkers and therapeutic drugs. We also discuss the next-generation healthcare wearable sensing device importance and future research possibilities. Finally, the portable electrochemical sensing devices and their future perspective developments towards healthcare diagnosis are critically summarized.
Collapse
Affiliation(s)
- Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Reshmi A Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
| |
Collapse
|
4
|
Zheng X, Huang Z, Zhang Q, Li G, Song M, Peng R. Aptamer-functionalized nucleic acid nanotechnology for biosensing, bioimaging and cancer therapy. NANOSCALE 2025; 17:687-704. [PMID: 39585179 DOI: 10.1039/d4nr04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Nucleic acids have enabled the fabrication of self-assemblies and dynamic operations. Among different functional nucleic acids, aptamers can specifically bind to a wide range of targets, including proteins, viral antigens, living cells and even tissues, and have thus emerged as molecular recognition tools in molecular medicine. Hence, aptamer-functionalized nucleic acid nanotechnology offers applications of biosensing, bioimaging, and cancer therapy. In this review, after a brief overview of nucleic acid nanotechnology, we focus on the integration of aptamers with nucleic acid nanotechnology, including self-assembly constructions and dynamic molecular manipulations. The emerging applications in molecular medicine are subsequently reviewed with aptamer-based self-assemblies and aptamer-involved dynamic molecular manipulation. For convenience, applications are broadly categorized into biosensing, bioimaging, and cancer therapy. Finally, challenges and potential development of nucleic acid nanotechnology are discussed.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, P. R. China
| | - Zhiyong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Guoli Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, P. R. China
| | - Minghui Song
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
5
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
6
|
Wu X, Liu Y, Zhang D, Yu J, Zhang M, Feng S, Zhang L, Fu T, Tan Y, Bing T, Tan W. Efficient Strategy to Discover DNA Aptamers Against Low Abundance Cell Surface Proteins in Scarce Samples. J Am Chem Soc 2024; 146:26667-26675. [PMID: 39297443 DOI: 10.1021/jacs.4c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Molecular recognition probes targeting cell surface proteins such as aptamers play crucial roles in precise diagnostics and therapy. However, the selection of aptamers against low-abundance proteins in situ on the cell surface, especially in scarce samples, remains an unmet challenge. In this study, we present a single-round, single-cell aptamer selection method by employing a digital DNA sequencing strategy, termed DiDS selection, to address this dilemma. This approach incorporates a molecular identification card for each DNA template, thereby mitigating biases introduced by multiple PCR amplifications and ensuring the accurate identification of aptamer candidates. Through DiDS selection, we successfully obtained a series of high-quality aptamers against cell lines, clinical specimens, and neurons. Subsequent analyses for target identification revealed that aptamers derived from DiDS selection exhibit recognition capabilities for proteins with varying abundance levels. In contrast, multiple rounds of selection resulted in the enrichment of only one aptamer targeting a high-abundance target. Moreover, the comprehensive profiling of cell surfaces at the single-cell level, utilizing an enriched aptamer pool, revealed unique molecular patterns for each cell line. This streamlined approach holds promise for the rapid generation of specific recognition molecules targeting cell surface proteins across a broad range of expression levels and expands its applications in cell profiling, specific probe identification, biomarker discovery, etc.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuqing Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dengwei Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingjing Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mingxin Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shuwei Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lifei Zhang
- Zhejiang Cancer Hospital, the Hematology Department, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yamin Tan
- Zhejiang Cancer Hospital, the Hematology Department, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tao Bing
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Wang Z, Chen Z, Ma Z, Han H. Label-Free Mode Based on Ferrocene/PEDOT:PSS-PPy for Molecularly Imprinted Electrochemically Ultrasensitive Detection of Amino Acids. Anal Chem 2024; 96:14298-14305. [PMID: 39171532 DOI: 10.1021/acs.analchem.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Generally, molecularly imprinted (MIP) electrochemical sensors for amino acids operate in a "label-like" mode. That is, after an amino acid is specifically recognized by an imprinted cavity at the sensing interface, the amino acid itself provides the sensing signal for quantitative detection. However, poorly electroactive amino acids impede electron transfer at the sensing interface and require high potentials to drive the reaction; thus, more interfering reactions tend to be triggered in practical applications, causing enhanced background noise in the detection. To address these issues, a "label-free" mode of the MIP sensor based on the ferrocene (Fc)/PEDOT:PSS-polypyrrole (PPy) composite was designed for the first time. The Fc/PEDOT:PSS-PPy is drop coated on the electrode surface as a substrate, and MIP polymers with specific recognition ability are immobilized on the substrate via electrostatic adsorption. As a proof of concept, l-tyrosine (l-Tyr) was selected as a model analyte and the "label-free" mode MIP/Fc/PEDOT:PSS-PPy sensor was constructed. The limit of detection (LOD) and linearity range of the MIP/Fc/PEDOT:PSS-PPy sensor were 2.31 × 10-11 M and from 100 pM to 5 mM, respectively. Compared with the label-like mode, the LOD was three orders of magnitude lower, the linear range was increased by three orders of magnitude, and the sensitivity was improved by more than four times. This work provides a universal and effective concept for MIP electrochemical sensing of amino acids.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhaoxuanxuan Chen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
8
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
9
|
Qiao Y, Shi Y, Ji M, Wang Z, Bai X, Zhang K, Yin K, Zhang Y, Chen X, Zhang Y, Lu J, Zhao J, Liu K, Yuan B. Selection and identification of a prohibitin 2-binding DNA aptamer for tumor tissue imaging and targeted chemotherapy. Int J Biol Macromol 2024; 259:129002. [PMID: 38176501 DOI: 10.1016/j.ijbiomac.2023.129002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Tumor cell-targeting molecules play a vital role in cancer diagnosis, targeted therapy, and biomarker discovery. Aptamers are emerging as novel targeting molecules with unique advantages in cancer research. In this work, we have developed several DNA aptamers through cell-based systematic evolution of ligands by exponential enrichment (Cell-SELEX). The selected SYL-6 aptamer can bind to a variety of cancer cells with high signal. Tumor tissue imaging demonstrated that SYL-6-Cy5 fluorescent probe was able to recognize multiple clinical tumor tissues but not the normal tissues, which indicates great potential of SYL-6 for clinical tumor diagnosis. Meanwhile, we identified prohibitin 2 (PHB2) as the molecular target of SYL-6 using mass spectrometry, pull-down and RNA interference assays. Moreover, SYL-6 can be used as a delivery vehicle to carry with doxorubicin (Dox) chemotherapeutic agents for antitumor targeted chemotherapy. The constructed SYL-6-Dox can not only selectively kill tumor cells in vitro, but also inhibit tumor growth with reduced side effects in vivo. This work may provide a general tumor cell-targeting molecule and a potential biomarker for cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanli Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Pathology, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| | - Mengmeng Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhaoting Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xue Bai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kai Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yangyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yueteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, Henan, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, Henan, China.
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
10
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
11
|
Fan X, Chu Z, Zhu M, Song Y, Zhao Y, Meng B, Gong X, Zhang D, Jiang Y, Wu L, Tamiya K, Yu X, Zhai R, Dai X, Fang X. Precise Control of Trypsin Immobilization by a Programmable DNA Tetrahedron Designed for Ultrafast Proteome Digestion and Accurate Protein Quantification. Anal Chem 2023; 95:15875-15883. [PMID: 37851939 DOI: 10.1021/acs.analchem.3c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In proteomics research, with advantages including short digestion times and reusable applications, immobilized enzyme reactors (IMERs) have been paid increasing attention. However, traditional IMERs ignore the reasonable spatial arrangement of trypsin on the supporting matrixes, resulting in the partial overlapping of the active domain on trypsin and reducing digesting efficiency. In this work, a DNA tetrahedron (DNA TET)-based IMER Fe3O4-GO-AuNPs-DNA TET-Trypsin was designed and prepared. The distance between vertices of DNA TETs effectively controls the distribution of trypsin on the nanomaterials; thus, highly efficient protein digestion and accurate quantitative results can be achieved. Compared to the in-solution digestion (12-16 h), the sequence coverage of bovine serum albumin was up to 91% after a 2-min digestion by the new IMER. In addition, 3328 proteins and 18,488 peptides can be identified from HeLa cell protein extract after a 20-min digestion. For the first time, human growth hormone reference material was rapidly and accurately quantified after a 4-h digestion by IMER. Therefore, this new IMER has great application potential in proteomics research and SI traceable quantification.
Collapse
Affiliation(s)
- Xiaoxue Fan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- College of Life Sciences, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, PR China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Manman Zhu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Yumeng Song
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- College of Life Sciences, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, PR China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Di Zhang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Liqing Wu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Keiichi Tamiya
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing 100191, PR China
| | - Xiaoping Yu
- College of Life Sciences, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, PR China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| |
Collapse
|
12
|
Zhu W, Wang J, Luo H, Luo B, Li X, Liu S, Li C. Electrical Characterization and Analysis of Single Cells and Related Applications. BIOSENSORS 2023; 13:907. [PMID: 37887100 PMCID: PMC10605054 DOI: 10.3390/bios13100907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/28/2023]
Abstract
Biological parameters extracted from electrical signals from various body parts have been used for many years to analyze the human body and its behavior. In addition, electrical signals from cancer cell lines, normal cells, and viruses, among others, have been widely used for the detection of various diseases. Single-cell parameters such as cell and cytoplasmic conductivity, relaxation frequency, and membrane capacitance are important. There are many techniques available to characterize biomaterials, such as nanotechnology, microstrip cavity resonance measurement, etc. This article reviews single-cell isolation and sorting techniques, such as the micropipette separation method, separation and sorting system (dual electrophoretic array system), DEPArray sorting system (dielectrophoretic array system), cell selector sorting system, and microfluidic and valve devices, and discusses their respective advantages and disadvantages. Furthermore, it summarizes common single-cell electrical manipulations, such as single-cell amperometry (SCA), electrical impedance sensing (EIS), impedance flow cytometry (IFC), cell-based electrical impedance (CEI), microelectromechanical systems (MEMS), and integrated microelectrode array (IMA). The article also enumerates the application and significance of single-cell electrochemical analysis from the perspectives of CTC liquid biopsy, recombinant adenovirus, tumor cells like lung cancer DTCs (LC-DTCs), and single-cell metabolomics analysis. The paper concludes with a discussion of the current limitations faced by single-cell analysis techniques along with future directions and potential application scenarios.
Collapse
Affiliation(s)
- Weitao Zhu
- Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China; (W.Z.); (J.W.)
| | - Jiaao Wang
- Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China; (W.Z.); (J.W.)
| | - Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
| | - Binwen Luo
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Xue Li
- Sichuan Hanyuan County People’s Hospital, Hanyuan 625300, China;
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
13
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
14
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
15
|
Zhang Y, Zhu M, Zhu J, Xu F, Chen Y. Nanoproteomics deciphers the prognostic value of EGFR family proteins-based liquid biopsy. Anal Biochem 2023; 671:115133. [PMID: 37011758 DOI: 10.1016/j.ab.2023.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Monitoring tumor-associated protein status in serum can effectively track tumors and avoid time-consuming, costly, and invasive tissue biopsy. Epidermal growth factor receptor (EGFR) family proteins are often recommended in the clinical management of multiple solid tumors. However, the low-abundance of serum EGFR (sEGFR) family proteins hinders the depth-understanding of their function and tumor management. Herein, a nanoproteomics approach coupling with aptamer-modified MOFs (NMOFs-Apt) with mass spectrometry was developed for the enrichment and quantitative analysis of sEGFR family proteins. This nanoproteomics approach exhibited high sensitivity and specificity for sEGFR family protein quantification, with the limit of quantification as low as 1.00 nM. After detecting 626 patients' sEGFR family proteins with various malignant tumors, we concluded that the levels of serum proteins had a moderate concordance with tissue counterparts. Metastatic breast cancer patients with a high level of serum human epidermal growth factor receptor 2 (sHER2) and a low level of sEGFR had a poor prognosis, and patients with a sHER2 decrease of more than 20% had longer disease-free time after receiving chemotherapy. This nanoproteomics method provided a simple and effective approach for low-abundant serum protein detection and our results clarified the potential of sHER2 and sEGFR as cancer markers.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Mingchen Zhu
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; State Key Laboratory of Reproductive Medicine, 210029, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing, 210029, China.
| |
Collapse
|
16
|
Xu X, Ma M, Sun T, Zhao X, Zhang L. Luminescent Guests Encapsulated in Metal-Organic Frameworks for Portable Fluorescence Sensor and Visual Detection Applications: A Review. BIOSENSORS 2023; 13:bios13040435. [PMID: 37185510 PMCID: PMC10136468 DOI: 10.3390/bios13040435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic frameworks (MOFs) have excellent applicability in several fields and have significant structural advantages, due to their open pore structure, high porosity, large specific surface area, and easily modifiable and functionalized porous surface. In addition, a variety of luminescent guest (LG) species can be encapsulated in the pores of MOFs, giving MOFs a broader luminescent capability. The applications of a variety of LG@MOF sensors, constructed by doping MOFs with LGs such as lanthanide ions, carbon quantum dots, luminescent complexes, organic dyes, and metal nanoclusters, for fluorescence detection of various target analyses such as ions, biomarkers, pesticides, and preservatives are systematically introduced in this review. The development of these sensors for portable visual fluorescence sensing applications is then covered. Finally, the challenges that these sectors currently face, as well as the potential for future growth, are briefly discussed.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Muyao Ma
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Tongxin Sun
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xin Zhao
- Ecology and Environmental Monitoring Center of Jilin Province, Changchun 130011, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| |
Collapse
|
17
|
Wang R, Wang X, Xie S, Zhang Y, Ji D, Zhang X, Cui C, Jiang J, Tan W. Molecular elements: novel approaches for molecular building. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220024. [PMID: 36633277 PMCID: PMC9835600 DOI: 10.1098/rstb.2022.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Classically, a molecular element (ME) is a pure substance composed of two or more atoms of the same element. However, MEs, in the context of this review, can be any molecules as elements bonded together into the backbone of synthetic oligonucleotides (ONs) with designed sequences and functions, including natural A, T, C, G, U, and unnatural bases. The use of MEs can facilitate the synthesis of designer molecules and smart materials. In particular, we discuss the landmarks associated with DNA structure and related technologies, as well as the extensive application of ONs, the ideal type of molecules for intervention therapy aimed at correcting disease-causing genetic errors (indels). It is herein concluded that the discovery of ON therapeutics and the fabrication of designer molecules or nanostructures depend on the ME concept that we previously published. Accordingly, ME will be our focal point as we discuss related research directions and perspectives in making molecules and materials. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Ruowen Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China,Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Xueqiang Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Hangzhou, Zhejiang 310018, People's Republic of China,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Sitao Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Hangzhou, Zhejiang 310018, People's Republic of China,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yanyan Zhang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Dingkun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China,Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China,Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Hangzhou, Zhejiang 310018, People's Republic of China,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China,Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, University of Florida Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
18
|
Lv J, Zhen X, Li D, Liao G, Long Z, Zhang N, Liu X, Bing T, Shangguan D. Generation of an Aptamer Targeting Receptor-Type Tyrosine-Protein Phosphatase F. Anal Chem 2023; 95:1228-1233. [PMID: 36594741 DOI: 10.1021/acs.analchem.2c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-SELEX is a powerful tool to generate aptamers that specifically bind the native molecules on living cells. Here, we report an aptamer ZAJ4a generated by cell-SELEX. The molecular target of ZAJ4a was pulled down by the enriched cell-SELEX pool and identified to be the receptor-type tyrosine-protein phosphatase F (PTPRF) through a stable isotope labeling using amino acids in cell culture (SILAC)-based quantitative proteomic method. ZAJ4a showed high binding affinity with nanomolar range to cancer cells expressing PTPRF. Meanwhile, PTPRF was proven to highly express on several cancer cell lines using ZAJ4a as a molecular probe and to highly express in many kinds of cancer samples using gene expression profiling interactive analysis (GEPIA2) from the TCGA and GTEx databases. These results indicate that the aptamer generated by cell-SELEX showed good specificity at the molecular level. This cell-SELEX and target identification strategies show great potential for identifying biomarkers on the cell surface.
Collapse
Affiliation(s)
- Jing Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiaoxiao Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Dandan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Guomiao Liao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhenhao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Jing P, Wang Y, Sun W, Li G, Zhang Z, Xu Q, Li H. A biocatalytic peptidobiosensing molecular bridge for detecting osteosarcoma marker protein. Front Chem 2023; 10:1112111. [PMID: 36712990 PMCID: PMC9877232 DOI: 10.3389/fchem.2022.1112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
A biosensing scheme requiring only one-step sample incubation before signal collection, and using a compact "three-in-one" probe of target-binding, signal conversion, and amplification, may greatly simplify the design of biosensors. Therefore, sparing the multi-step addition of enzymes, protein, and nanomaterial, as well as the associated complexity and non-specific interactions. In this work, a peptide probe aimed at such compact features has been designed, based on protein-triggered, conformation-driven, and Cu (II) facilitated side-chain di-tyrosine cyclization. This design can use target-probe recognition to induce discriminated cross-linking and self-cleavage of the probe, resulting in retention or dissociation of a signal amplification motif from the search and consequently quantitative detection performance. The method has also been tested preliminarily in fractioned osteosarcoma clinical samples, showing an acceptable coherence between signal readout and clinical diagnosis. On the basis of these early findings, it is reasonable to assume that the proposed probe will be beneficial for the next development of tumor screening and prognosis sensors.
Collapse
Affiliation(s)
- Pengwei Jing
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yantai, China
| | - Ying Wang
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Weixue Sun
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yantai, China
| | - Guishi Li
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yantai, China
| | - Zuofu Zhang
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yantai, China,*Correspondence: Zuofu Zhang, ; Qiang Xu, xuqiang—; Hao Li,
| | - Qiang Xu
- Articulation Surgery and Sport Medicine Ward, Yantai Yuhuangding Hospital, Yantai, China,*Correspondence: Zuofu Zhang, ; Qiang Xu, xuqiang—; Hao Li,
| | - Hao Li
- School of Biological Science and Technology, University of Jinan, Jinan, China,*Correspondence: Zuofu Zhang, ; Qiang Xu, xuqiang—; Hao Li,
| |
Collapse
|
20
|
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023; 11:1092901. [PMID: 36873354 PMCID: PMC9978196 DOI: 10.3389/fbioe.2023.1092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China
| | - Zhenqiang He
- Clinical Medical College of Hebei University, Baoding, China.,Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Weiying Ge
- Department of Radiology, Hebei University Affiliated Hospital, Baoding, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China.,Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, China.,Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
ZIF-8 base-aptamer "gate-lock" probes enable the visualization of a cascade response between deoxynivalenol and cytochrome c inside living cells. Mikrochim Acta 2022; 190:39. [PMID: 36585487 DOI: 10.1007/s00604-022-05619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022]
Abstract
Zeolitic imidazolate framework (ZIF-8) base-aptamer "gate-lock" biomaterial probes have been synthesized for monitoring intracellular deoxynivalenol (DON) and cytochrome c (cyt c) levels. The aptamer and organic fluorescent dye were regarded as a recognition element and a sensing element, respectively. In the presence of DON, the aptamers of DON and cyt c were specifically bound with the DON and induced cyt c, leading to the dissociation of aptamers from the porous surface of the probes. The gate was subsequently opened to release methylene blue (MB) and Rhodamine 6G (Rh6G), and their fluorescence (emission of MB at 700 nm and Rh6G at 550 nm) significantly recovered within 6 h. Cell imaging successfully monitored the exposure of DON and the biological process of cyt c discharge triggered by the activation of the DON-induced apoptosis pathway. In addition, the response between DON and cyt c was observed during the apoptosis process, which is of high significance for the comprehensive and systematic development of mycotoxins cytotoxicity.
Collapse
|
22
|
Zhang Y, Chen X, Qiao Y, Yang S, Wang Z, Ji M, Yin K, Zhao J, Liu K, Yuan B. DNA Aptamer Selected against Esophageal Squamous Cell Carcinoma for Tissue Imaging and Targeted Therapy with Integrin β1 as a Molecular Target. Anal Chem 2022; 94:17212-17222. [PMID: 36459499 DOI: 10.1021/acs.analchem.2c03863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), poses a serious threat to human health. It is urgently needed to develop recognition tools and discover molecular targets for early diagnosis and targeted therapy of esophageal cancer. Here, we developed several DNA aptamers that can bind to ESCC KYSE410 cells with a nanomolar range of dissociation constants by using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). The selected A2 aptamer is found to strongly bind with multiple cancer cells, including several ESCC cell lines. Tissue imaging displayed that the A2 aptamer can specifically recognize clinical ESCC tissues but not the adjacent tissues. Moreover, we identified integrin β1 as the binding target of A2 through pull-down and RNA interference assays. Meanwhile, molecular docking and mutation assays suggested that A2 probably binds to integrin β1 through the nucleotides of DA16-DG21, and competitive binding and structural alignment assays indicated that A2 shares the overlapped binding sites with laminin and arginine-glycine-aspartate ligands. Furthermore, we engineered A2-induced targeted therapy for ESCC. By constructing A2-tethered DNA nanoassemblies carrying multiple doxorubicin (Dox) molecules as antitumor agents, inhibition of tumor cell growth in vitro and in vivo was achieved. This work provides a useful targeting tool and a potential molecular target for cancer diagnosis and targeted therapy and is helpful for understanding the integrin mechanism and developing integrin inhibitors.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shuang Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhaoting Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengmeng Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kai Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan 450000, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
23
|
Liu M, Wang Z, Li S, Deng Y, He N. Identification of PHB2 as a Potential Biomarker of Luminal A Breast Cancer Cells Using a Cell-Specific Aptamer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51593-51601. [PMID: 36346944 DOI: 10.1021/acsami.2c12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precise diagnosis of breast cancer molecular subtypes remains a great challenge in clinics. The present molecular biomarkers are not specific enough to classify breast cancer subtypes precisely, which requests for more accurate and specific molecular biomarkers to be discovered. Aptamers evolved by the cell-systematic evolution of ligands by exponential enrichment (SELEX) method show great potential in the discovery and identification of cell membrane targets via aptamer-based cell membrane protein pull-down, which has been regarded as a novel and powerful weapon for the discovery and identification of new molecular biomarkers. Herein, a cell membrane protein PHB2 was identified as a potential molecular biomarker specifically expressed in the cell membranes of MCF-7 breast cancer cells using a DNA aptamer MF3Ec. Further experiments demonstrated that the PHB2 protein is differentially expressed in the cell membranes of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells and MCF-10A cells, and the binding molecular domains of aptamer MF3Ec and anti-PHB2 antibodies to the PHB2 protein are different due to there being no obvious competitions between aptamer MF3Ec and anti-PHB2 antibodies in the binding to the cell membranes of target MCF-7 cells. Due to those four cells belonging to luminal A, HER2-positive, and triple-negative breast cancer cell subtypes and human normal mammary epithelial cells, respectively, the PHB2 protein in the cell membrane may be a potential biomarker for precise diagnosis of the luminal A breast cancer cell subtype, which is endowed with the ability to differentiate the luminal A breast cancer cell subtype from HER2-positive and triple-negative breast cancer cell subtypes and human normal mammary epithelial cells, providing a new molecular biomarker and therapeutic target for the accurate and precise classification and diagnostics and personalized therapy of breast cancer.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, P. R. China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Song Li
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Yan Deng
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
24
|
Xu H, Ye BC. Integrated microfluidic platforms for tumor-derived exosome analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zhang T, Wu S, Qin H, Wu H, Liu X, Li B, Zheng X. An Optically Controlled Virtual Microsensor for Biomarker Detection In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205760. [PMID: 36074977 DOI: 10.1002/adma.202205760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Current technologies for the real-time analysis of biomarkers in vivo, such as needle-type microelectrodes and molecular imaging methods based on exogenous contrast agents, are still facing great challenges in either invasive detection or lack of active control of the imaging probes. In this study, by combining the design concepts of needle-type microelectrodes and the fluorescence imaging method, a new technique is developed for detecting biomarkers in vivo, named as "optically controlled virtual microsensor" (OCViM). OCViM is established by the organic integration of a specially shaped laser beam and fluorescent nanoprobe, which serve as the virtual handle and sensor tip, respectively. The laser beam can trap and manipulate the nanoprobe in a programmable manner, and meanwhile excite it to generate fluorescence emission for biosensing. On this basis, fully active control of the nanoprobe is achieved noninvasively in vivo, and multipoint detection can be realized at sub-micrometer resolution by shifting a nanoprobe among multiple positions. By using OCViM, the overexpression and heterogenous distribution of biomarkers in the thrombus is studied in living zebrafish, which is further utilized for the evaluation of antithrombotic drugs. OCViM may provide a powerful tool for the mechanism study of thrombus progression and the evaluation of antithrombotic drugs.
Collapse
Affiliation(s)
- Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
26
|
Duan N, Yao T, Li C, Wang Z, Wu S. Surface-enhanced Raman spectroscopy relying on bimetallic Au–Ag nanourchins for the detection of the food allergen β-lactoglobulin. Talanta 2022; 245:123445. [DOI: 10.1016/j.talanta.2022.123445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/04/2023]
|
27
|
Song L, Tian F, Liu Z. Lanthanide doped metal-organic frameworks as a ratiometric fluorescence biosensor for visual and ultrasensitive detection of serotonin. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Zhou JM, Han FL, Zhang HL, Sun Y, Li ZH, Wang T, Zhang KH. Aptamer-Based Triple Serum Fluorescence Intensity Assay: A Novel and Feasible Method for the Clinical Diagnosis of Primary Hepatic Carcinoma. Front Oncol 2022; 12:897775. [PMID: 35747812 PMCID: PMC9210211 DOI: 10.3389/fonc.2022.897775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Aptamers are artificial ligands that bind to biological targets with high specificity and affinity. We previously selected a group of aptamers against the serum of primary hepatic carcinoma (PHC) via systematic evolution of ligands by exponential and enrichment (SELEX) method, and some of the aptamers were valuable for PHC diagnosis in polyacrylamide gel electrophoresis (PAGE) analysis. Here, we used aptamers to develop a novel method suitable for the clinical diagnosis of PHC. Methods The intensities of serum autofluorescence, cell-free DNA (cfDNA)-related fluorescence and aptamer-related fluorescence, named the aptamer-based triple serum fluorescence intensity (ATSFI), were sequentially measured at 8 °C and 37 °C in one tube by using a real-time polymerase chain reaction (PCR) system as a fluorimeter in patients with PHC (n=346) or liver cirrhosis (n=321). The diagnostic performances of ATSFI indicators alone and in combination were evaluated by area under the receiver operator characteristic curve (AUROC), and the underlying clinical mechanisms were analyzed by bivariate correlation. Results The measurement of ATSFI was high throughput, rapid, convenient, and low cost. The aptamer-related fluorescence indicator SEA-SE37 was the most valuable for PHC diagnosis among all fluorescence indicators and superior to alpha-fetoprotein (AFP) (AUROC 0.879 vs. 0.836). The logistic model of ATSFI indicators exhibited excellent diagnostic performance for PHC, including AFP-negative, early and small PHCs, with AUROCs of 0.935-0.950 and accuracies of 86.8-88.3%. The diagnostic performance was further improved when ATSFI indicators were combined with AFP, with AUROCs of approximately 0.95 and accuracies of approximately 90%, suggesting ATSFI was independent of but complementary to AFP in PHC diagnosis. ATSFI models were highly valuable in clinical decision-making. The aptamer-related fluorescence intensity was generally independent of the clinicopathological characteristics of PHC but correlated with laboratory characteristics of PHC serum. Conclusions The ATSFI assay is a novel, robust and feasible method for the clinical diagnosis of PHC.
Collapse
Affiliation(s)
| | | | | | | | | | - Ting Wang
- *Correspondence: Kun-He Zhang, ; Ting Wang,
| | | |
Collapse
|
29
|
Zhao L, Wang H, Fu J, Wu X, Liang XY, Liu XY, Wu X, Cao LL, Xu ZY, Dong M. Microfluidic-based exosome isolation and highly sensitive aptamer exosome membrane protein detection for lung cancer diagnosis. Biosens Bioelectron 2022; 214:114487. [DOI: 10.1016/j.bios.2022.114487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
|
30
|
Liu Y, Kong L, Li H, Yuan R, Chai Y. Electrochemical Aptamer Biosensor Based on ATP-Induced 2D DNA Structure Switching for Rapid and Ultrasensitive Detection of ATP. Anal Chem 2022; 94:6819-6826. [PMID: 35471959 DOI: 10.1021/acs.analchem.2c00613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a two-dimensional (2D) DNA structure with multiple ATP aptamers was elegantly designed to establish an electrochemical biosensor for rapid and sensitive detection of ATP based on ATP-induced structure switching. Concretely, the prepared 2D DNA structure containing numerous ATP aptamers as ATP-specific toehold switches could not only immobilize a large number of methylene blue (MB) for generating a remarkable electrochemical signal, but also greatly increase the local concentration of ATP aptamers to obviously enhance the capture efficiency of ATP. Once the target ATP interacted with the toehold switches, the 2D DNA structure could be sharply collapsed to trigger the burst release of MB from the electrode surface, ultimately resulting in a significantly decreased electrochemical signal for ultrasensitive detection of target ATP over a short period of time. Impressively, by dexterously adjusting the length of the ATP-specific toehold switches to 15-base, optimization of the binding affinity between ATP and the toehold switches was achieved for cutting down the detection time to 30 min and achieving a low detection limit of 0.3 pM, which addressed the shortcoming of time-consuming and poor sensitivity in the previous sensors with a small quantity of ATP aptamers and deficient binding affinity to ATP. Consequently, this strategy opened a promising avenue for ultrasensitive and rapid detection of various biomolecules in biomedical application and disease diagnosis.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Lingqi Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Hao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
31
|
Zheng Y, Zhang L, Zhao J, Li L, Wang M, Gao P, Wang Q, Zhang X, Wang W. Advances in aptamers against Aβ and applications in Aβ detection and regulation for Alzheimer's disease. Theranostics 2022; 12:2095-2114. [PMID: 35265201 PMCID: PMC8899576 DOI: 10.7150/thno.69465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, causing profound social and economic implications. Early diagnosis and treatment of AD have faced great challenges due to the slow and hidden onset. β-amyloid (Aβ) protein has been considered an important biomarker and therapeutic target for AD. Therefore, non-invasive, simple, rapid and real-time detection methods for AD biomarkers are particularly favored. With the development of Aβ aptamers, the specific recognition between aptamers and Aβ plays a significant role in AD theranostics. On the one hand, aptamers are applied to construct biosensors for Aβ detection, which provides possibilities for early diagnosis of AD. On the other hand, aptamers are used for regulating Aβ aggregation process, which provides potential strategies for AD treatment. Many excellent reviews have summarized aptamers for neurodegenerative diseases or biosensors using specific recognition probes for Aβ detection applications in AD. In this review, we highlight the crucial role of the design, classification and applications of aptamers on Aβ detection as well as inhibition of Aβ aggregation for AD.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Peifeng Gao
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
32
|
Liu C, Tian F, Deng J, Sun J. Thermomicrofluidic Biosensing Systems ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Xiong H, Liu L, Wang Y, Jiang H, Wang X. Engineered Aptamer-Organic Amphiphile Self-Assemblies for Biomedical Applications: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104341. [PMID: 34622570 DOI: 10.1002/smll.202104341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Currently, nucleic acid aptamers are exploited as robust targeting ligands in the biomedical field, due to their specific molecular recognition, little immunogenicity, low cost, ect. Thanks to the facile chemical modification and high hydrophilicity, aptamers can be site-specifically linked with hydrophobic moieties to prepare aptamer-organic amphiphiles (AOAs), which spontaneously assemble into aptamer-organic amphiphile self-assemblies (AOASs). These polyvalent self-assemblies feature with enhanced target-binding ability, increased resistance to nuclease, and efficient cargo-loading, making them powerful platforms for bioapplications, including targeted drug delivery, cell-based cancer therapy, biosensing, and bioimaging. Besides, the morphology of AOASs can be elaborately manipulated for smarter biomedical functions, by regulating the hydrophilicity/hydrophobicity ratio of AOAs. Benefiting from the boom in DNA synthesis technology and nanotechnology, various types of AOASs, including aptamer-polymer amphiphile self-assemblies, aptamer-lipid amphiphile self-assemblies, aptamer-cell self-assemblies, ect, have been constructed with great biomedical potential. Particularly, stimuli-responsive AOASs with transformable structure can realize site-specific drug release, enhanced tumor penetration, and specific target molecule detection. Herein, the general synthesis methods of oligonucleotide-organic amphiphiles are firstly summarized. Then recent progress in different types of AOASs for bioapplications and strategies for morphology control are systematically reviewed. The present challenges and future perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
34
|
Shigdar S, Agnello L, Fedele M, Camorani S, Cerchia L. Profiling Cancer Cells by Cell-SELEX: Use of Aptamers for Discovery of Actionable Biomarkers and Therapeutic Applications Thereof. Pharmaceutics 2021; 14:28. [PMID: 35056924 PMCID: PMC8781458 DOI: 10.3390/pharmaceutics14010028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The identification of tumor cell-specific surface markers is a key step towards personalized cancer medicine, allowing early assessment and accurate diagnosis, and development of efficacious targeted therapies. Despite significant efforts, currently the spectrum of cell membrane targets associated with approved treatments is still limited, causing an inability to treat a large number of cancers. What mainly limits the number of ideal clinical biomarkers is the high complexity and heterogeneity of several human cancers and still-limited methods for molecular profiling of specific cancer types. Thanks to the simplicity, versatility and effectiveness of its application, cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology is a valid complement to the present strategies for biomarkers' discovery. We and other researchers worldwide are attempting to apply cell-SELEX to the generation of oligonucleotide aptamers as tools for both identifying new cancer biomarkers and targeting them by innovative therapeutic strategies. In this review, we discuss the potential of cell-SELEX for increasing the currently limited repertoire of actionable cancer cell-surface biomarkers and focus on the use of the selected aptamers as components of innovative conjugates and nano-formulations for cancer therapy.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Geelong 3220, Australia;
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong 3220, Australia
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, S. Andrea Delle Dame-Via L. De Crecchio 7, 80138 Naples, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy; (L.A.); (M.F.); (S.C.)
| |
Collapse
|
35
|
Duan N, Song M, Mi W, Wang Z, Wu S. Effectively Selecting Aptamers for Targeting Aromatic Biogenic Amines and Their Application in Aptasensing Establishment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14671-14679. [PMID: 34809428 DOI: 10.1021/acs.jafc.1c05934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is necessary to detect the biogenic amine (BA) content in food due to their toxicological effects and their role as an index of freshness for protein-rich foods. Aptamer-based techniques have the potential to provide alternative methods for sensitive and efficient monitoring of BAs. Herein, we described the selection and characterization of DNA aptamers for tyramine (TYR) and β-phenethylamine (PHE) using a one-pot coupled with separate selection strategy. During the selection process, melting curve analysis was developed to monitor the enrichment of the aptamer species, and a saturation of the selection was found at the 14th round. Based on the fluorescence assay, aptamers TYR-2 and PHE-2 showed high affinity to TYR and PHE with the dissociation constant values of 64.28 ± 10.4 and 71.64 ± 11.47 nM, respectively. The circular dichromatic and molecular docking technologies were employed for the preliminary binding mechanism analysis. The obtained aptamers TYR-2 and PHE-2 were used in a fluorescence method for the TYR and PHE determination with limits of detection of 0.34 and 0.39 ng/mL, respectively. In addition, the developed aptasensor was further applied to the TYR and PHE detection in pork and beer samples, and the recovery rate was between 95.6 and 104.2%. It was demonstrated that the selected aptamers had enormous potential as a molecular probe for the identification and determination of BAs.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingqian Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Weiyu Mi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
36
|
Jiang X, Sun C, Zhang C, Cheng S. Highly responsive biosensors based on organic field-effect transistors under light irradiation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Correction to: DNA Nanotechnology for Multimodal Synergistic Theranostics. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Chen X, Zhang Y, Shi Y, Niu T, Li B, Guo L, Qiao Y, Zhao J, Yuan B, Liu K. Evolution of DNA aptamers against esophageal squamous cell carcinoma using cell-SELEX. Analyst 2021; 146:4180-4187. [PMID: 34105524 DOI: 10.1039/d1an00634g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Esophageal cancer is the ninth most common cancer and the sixth most common cause of cancer-related death worldwide, and the esophageal squamous cell carcinoma (ESCC) subtype accounts for about 90% of all cases of esophageal cancer globally. Currently, ESCC is usually diagnosed in late stages, and targeted therapy is lacking. Therefore, the development of ESCC-specific recognition molecules for an early detection and targeted treatment of ESCC is urgently needed. Aptamers are an excellent molecular recognition tool with unique advantages. In this manuscript, three aptamers (S2, S3, and S8) specific to ESCC cells were successfully screened via cell-SELEX. The experimental results displayed the high affinities of the three aptamers for target KYSE150 cells with dissociation constants in the nanomolar range. The specificity evaluation showed that S2 only bound target KYSE150 cells, but S3 and S8 were capable of targeting a series of ESCC cells. Moreover, several truncated aptamers were generated through sequence optimization. In particular, an ultrashort aptamer S3-2-3 with only 18 bases was successfully obtained; after labeling with Cy5 dyes, it was feasible for the specific imaging of ESCC tissues. Furthermore, the target types of the selected aptamers were preliminarily identified as membrane proteins, and target proteins could be captured by S3-2-3, which may be useful for biomarker discovery. Therefore, the selected aptamers hold great potential for clinical diagnosis, biomarker discovery, and the targeted therapy of ESCC.
Collapse
Affiliation(s)
- Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. and Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanli Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Tingting Niu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Bo Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. and Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China and China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Linyan Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. and Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. and Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. and Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. and Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China and China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China and Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Guo Y, Li K, Gao Y, Zhao S, Shi M, Li J, Liu Z, Wang Z, He L. CLEC3B Identified as a Potential Lung Cancer Biomarker in Serum by Aptamer‐Capture Technology. ChemistrySelect 2021. [DOI: 10.1002/slct.202100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanbin Guo
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Kun Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Yue Gao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Shuhua Zhao
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Ming Shi
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Jian Li
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhiwei Liu
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Zhaoxia Wang
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| | - Lei He
- College of Environment & Chemical Engineering Yanshan University Qinhuangdao Hebei Province 066004 China
| |
Collapse
|
40
|
|
41
|
Li J, Yang F, Jiang B, Zhou W, Xiang Y, Yuan R. The synchronization of multiple signal amplifications for label-free and sensitive aptamer-based sensing of a protein biomarker. Analyst 2021; 145:7858-7863. [PMID: 33020770 DOI: 10.1039/d0an01491e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The abnormal variation of the mucin 1 (MUC1) protein level is associated with the development of multiple cancers, and the monitoring of trace MUC1 can be useful for early disease diagnosis. Here, on the basis of the synchronization of DNA-fueled sequence recycling and dual rolling circle amplification (RCA), the establishment of a non-label and highly sensitive fluorescent aptamer-based detection strategy for the MUC1 protein biomarker is described. The target MUC1 binds the aptamer hairpin probe and causes its structure switching to release an ssDNA tail to trigger the recycling of the complex via two toehold-mediated strand displacement reactions under assistance of a fuel DNA. Such a recycling amplification leads to the formation of a partial dsDNA duplex with two primers at both ends, which cooperatively bind the circular DNA ring template to start the dual RCA to produce many G-quadruplex sequences. The protoporphyrin IX dye further associates with the G-quadruplex structures to show a dramatically elevated fluorescent signal for sensitively detecting MUC1 with a low detection limit of 0.5 pM. The established aptamer-based detecting strategy is also highly selective and can realize assay of MUC1 in diluted human serums, highlighting its potential for the detection of different protein biomarkers at low contents.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | | | | | | | | | | |
Collapse
|
42
|
Fan Z, Yao B, Ding Y, Xie M, Zhao J, Zhang K, Huang W. Electrochemiluminescence aptasensor for Siglec-5 detection based on MoS 2@Au nanocomposites emitter and exonuclease III-powered DNA walker. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 334:129592. [PMID: 33584010 PMCID: PMC7869706 DOI: 10.1016/j.snb.2021.129592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/03/2023]
Abstract
Lectins are highly specific binding proteins for glycoproteins which widely exist in living organisms, playing a vital role in exploring the biological evolution process, such as cellular proliferation, differentiation, carcinogenesis and apoptosis. Therefore, the content monitoring of lectin becomes particularly significant and urgent in the bioanalytical application. In this work, we fabricated an aptasensor, majorly capitalizing the eminent affinity between sialic acid-binding immunoglobulin (Ig)-like lectin 5 (Siglec-5) and nucleic acids aptamer (K19), with nontoxic MoS2@Au nanocomposites as electrochemiluminescence (ECL) emitters based on exonuclease III (Exo III)-powered DNA walker for the bioassays of Siglec-5. The DNA track was constructed on the emitters' surface, providing a reliable platform for the DNA walker's autonomous move. In the assay, the primer DNA in the DNA duplex was replaced by Siglec-5 due to the aptamer interactions and repeatedly released to participate in the movement of the DNA walker, further triggering cascade signal amplification. Finally, our aptasensor indicates significant potential for assays of Siglec-5 with a detection limit of 8.9 pM.
Collapse
Affiliation(s)
- Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bo Yao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| |
Collapse
|
43
|
Zhao Z, Yang H, Zhao W, Deng S, Zhang K, Deng R, He Q, Gao H, Li J. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. J Mater Chem B 2021; 8:3623-3630. [PMID: 31934712 DOI: 10.1039/c9tb02388g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Programmed biosensors with tunable quantification range and sensitivity would greatly broaden their application in medical diagnosis, food safety and environmental analysis. Herein, we proposed a graphene-nucleic acid biointerface-engineered biosensor, allowing target molecules to be detected with adjustable dynamic ranges and sensitivities. The biosensors were programmed by simply tuning the poly A tail of aptamer probes. The tuning of the poly A tail would allow the interaction between aptamer probes and graphene oxide (GO) to be modulated, in turn programing the competitive binding processes of aptamer probes to target molecules and GO. The biosensors, termed affinity-tunable aptasensors (atAptasensors) could be easily tuned with different dynamic ranges by using aptamer probes with different tail lengths, and the dynamic range could be extended to be over 3 orders by a combined use of multiple aptamer probes. Remarkably, the specificity of aptamer probes could be increased by increasing the interaction between aptamer probes and GO. Reliability of atAptasensor for ATP detection was tested in serum and milk samples, and we also applied atAptasensor for culture-independent analysis of microorganism pollution.
Collapse
Affiliation(s)
- Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sun C, Li R, Song Y, Jiang X, Zhang C, Cheng S, Hu W. Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer Diagnosis. Anal Chem 2021; 93:6188-6194. [DOI: 10.1021/acs.analchem.1c00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chenfang Sun
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, China
| | - Rui Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, China
| | - Yaru Song
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaoqian Jiang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250011, China
| | - Shanshan Cheng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Wenping Hu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
45
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
46
|
Lin N, Wu L, Xu X, Wu Q, Wang Y, Shen H, Song Y, Wang H, Zhu Z, Kang D, Yang C. Aptamer Generated by Cell-SELEX for Specific Targeting of Human Glioma Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9306-9315. [PMID: 33030015 DOI: 10.1021/acsami.0c11878] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The most prevalent primary brain tumors are gliomas, which start in the glial cells. Although there have been significant technological advances in surgery and radio-chemotherapy, the prognosis and survival of patients with malignant gliomas remain poor. For routine diagnosis of glioma, computed tomography and magnetic resonance imaging primarily depend on anatomical changes and fail to detect the cellular changes that occur early in the development of malignant gliomas. Therefore, it is urgent to find effective molecular diagnostic tools to detect early stages of malignant gliomas. Currently, cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) technology is one effective tool to obtain DNA or RNA aptamers capable of differentiating the molecular signatures among different types of cell lines. Using cell-SELEX, we generated and characterized an aptamer, termed S6-1b, that can distinguish the molecular differences between glioma cell line SHG44 and human astrocytes. Under the conditions of 4 and 37 °C, respectively, the dissociation constants of aptamer-cell interaction were both measured in the low nanomolar range. The aptamer S6-1b also exhibited excellent selectivity, making it suitable for use in a complex biological environment. Furthermore, the aptamer can effectively target glioma cells for in vivo fluorescence imaging of tumors. The target type of aptamer S6-1b was identified as a cell membrane protein. Our work indicates that aptamer S6-1b has diagnostic and therapeutic potential to specifically deliver imaging or therapeutic agents to malignant gliomas.
Collapse
Affiliation(s)
- Ningqin Lin
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Liang Wu
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xing Xu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiaoyi Wu
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yuzhe Wang
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Haicong Shen
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyao Wang
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dezhi Kang
- Department of Neurosurgery, Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
47
|
Ying XD, Chen JX, Tu DY, Zhuang YC, Wu D, Shen L. Tetraphenylpyrazine-Based Luminescent Metal-Organic Framework for Chemical Sensing of Carcinoids Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6421-6429. [PMID: 33523641 DOI: 10.1021/acsami.0c20893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A new non-interpenetrated three-dimensional (3D) pillared-layered TPP-based LMOF [Zn3(TPyTPP)0.5(BDC)3]·8DMF (denoted as Zn-MOF 1) was successfully prepared (TPyTPP = tetrakis(4-(pyridin-4-yl)phenyl)pyrazine and H2BDC = 1,4-benzenedicarboxylic acid). Zn-MOF 1 was characterized by single-crystal X-ray diffraction, PXRD, IR, N2 adsorption, thermogravimetric analysis, and luminescent spectrum. Impressively, luminescent sensing studies reveal that activated Zn-MOF 1 not only displays excellent luminescence-quenching efficiency with the values of high Ksv and low LODs toward 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA), respectively, but also possesses outstanding sensing characteristics in terms of fast response, high sensitivity, and specific selectivity. Zn-MOF 1 performs as efficient sensing of carcinoid biomarkers to provide a fresh detection platform for the diagnosis of carcinoids. In addition, the sensing mechanism was also explored on the basis of ultraviolet-visible (UV-vis) absorption, DFT calculations, and structural analysis.
Collapse
Affiliation(s)
- Xu-Dong Ying
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jian-Xiang Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Dan-Yu Tu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yi-Cao Zhuang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Di Wu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Liang Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
48
|
Electrical properties characterization of single yeast cells by dielectrophoretic motion and electro-rotation. Biomed Microdevices 2021; 23:11. [PMID: 33547978 DOI: 10.1007/s10544-021-00550-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
The electrical parameters of single cells are label-free and intrinsic properties that can reflect the physiological characteristics. In recent years, many measurement methods based on impedance spectroscopy and rotation spectrum analysis have been developed. However, most of these works need to measure the response at whole frequency range to obtain DEP spectra and estimate the electrical parameters by fitting method, which are time-consuming and limit the measurement throughput. Therefore, improving the measurement throughput for single cells is an essential problem to be solved addressed. In this paper we present a microfluidic chip that combines dielectrophoretic motion and electro-rotation technology for single-cell electrical properties characterization. Since the movement and rotation speed of single cell in mediums are related to the electrical parameters of itself, electric signals and medium, the electrical properties can be obtained by measuring and analyzing the movement trajectory and rotation speed of the cell. Numerical simulations were performed to analyze the electric field distribution of the chip under different signal configurations, which predict the movement trajectory and rotation state, and determine the values of electric field on the cells. Based on the simulation results, cell focusing, dielectrophoretic motion and electro-rotation were successfully realized. By analyzing the movement trajectory and rotation speed, the conductivity of wall and the permittivity of membrane of yeast cells were characterized. The measurement method avoids the time-consuming of the traditional rotational spectra method, and can realize rapid and efficiency and single-cell electrical characterization.
Collapse
|
49
|
Chen J, Li H, Xie H, Xu D. A novel method combining aptamer-Ag 10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Anal Chim Acta 2020; 1132:20-27. [PMID: 32980107 DOI: 10.1016/j.aca.2020.07.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/04/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
The β-lactam drugs resistance poses a serious threat to human health throughout the world. Klebsiella pneumoniae carbapenemase 2 (KPC-2) is a carbapenemase that produced in bacteria can hydrolyze carbapenems, which typically considered as the antibiotics of last resort. Therefore, there is an urgent need to quickly and accurately detect whether bacteria express KPC-2. In this paper, a PDMS/glass microfluidic biochip integrated with aptamer-modified Ag10NPs nano-biosensors was developed for rapid, simple and specific pathogenic bacteria detection, more importantly, the biochip was combined with bright field imaging, then the captured bacteria could be observed and counted directly without using extra chemical labeling. KPC-2-expressing Escherichia coli (KPC-2 E.coli) was used as the target bacterium with a detected limit of 102 CFU and capture efficiency exceeded 90%. This method is remarkably specific towards KPC-2 E.coli over other non-resistant bacteria, and pathogen assay only takes ∼1 h to complete in a ready-to-use microfluidic biochip. Furthermore, the effective capture and fast counting of microfluidic biochip system demonstrates its potential for the rapid detection of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China.
| |
Collapse
|
50
|
Zhang Y, Du X, Deng S, Li C, He Q, He G, Zhou M, Wang H, Deng R. Dual Triple Helix-Aptamer Probes for Mix-and-Read Detecting Antibiotics in Fish and Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9524-9529. [PMID: 32786851 DOI: 10.1021/acs.jafc.0c03801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic abuse in agricultural products leads to serious food safety issues. To this end, we proposed a mix-and-read and enzyme-free amplified assay for antibiotics based on a dual triple helix-aptamer probe, potentially applicable for on-site monitoring of antibiotic residues. A dual triple helix-aptamer probe can leverage the response toward target molecules without enzyme-based amplification, rendering it sensitive and robust for profiling target molecules. The proposed assay allowed mix-and-read detection of chloramphenicol with a detection limit of 0.18 nM. Besides, it accommodated for specifically resolving chloramphenicol among other antibiotics. Chloramphenicol residual in aquatic products in fish and milk can be precisely determined. Thus, the aptamer probe deems to enrich the toolbox for managing antibiotic use.
Collapse
Affiliation(s)
- Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xiaosheng Du
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Haibo Wang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|