1
|
Contardi C, Mavliutova L, Serra M, Rubes D, Dorati R, Vistoli G, Macorano A, Sellergren B, De Lorenzi E. Rational Design of Highly Selective Sialyllactose-Imprinted Nanogels. Chemistry 2024:e202401232. [PMID: 38848047 DOI: 10.1002/chem.202401232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 07/26/2024]
Abstract
We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies. Then, a small library of MIP NGs imprinted with the α2,6-linked template was synthesized and tested by mobility shift Affinity Capillary Electrophoresis (msACE), to rapidly assess an affinity ranking. Finally, the best monomer 2-acrylamido PBA was selected for the synthesis of polymers targeting both sialyllactoses. The resulting MIP NGs display an affinity constant≈106 M-1 and selectivity towards imprinted glycans. This general procedure could be applied to any non-modified carbohydrate template possessing a reducing end.
Collapse
Affiliation(s)
- Cecilia Contardi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Liliia Mavliutova
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 21432, Malmö, Sweden
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Davide Rubes
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessio Macorano
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Börje Sellergren
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 21432, Malmö, Sweden
| | - Ersilia De Lorenzi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
2
|
Li Z, Zhang L, Han X, An Q, Chen M, Song Z, Dong L, Wang X, Yu Y. Synthesis and Characterization of Boronate Affinity Three-Dimensionally Ordered Macroporous Materials. Polymers (Basel) 2024; 16:1539. [PMID: 38891485 PMCID: PMC11174375 DOI: 10.3390/polym16111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Sample pretreatment is a key step for qualitative and quantitative analysis of trace substances in complex samples. Cis-dihydroxyl (cis-diol) group-containing substances exist widely in biological samples and can be selectively bound by boronate affinity adsorbents. Based on this, in this article, we proposed a simple method for the preparation of novel spherical three-dimensionally ordered macropore (3DOM) materials based on a combination of the boronate affinity technique and colloidal crystal template method. The prepared 3DOM materials were characterized using Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis, and results showed that they possessed the characteristics of a high specific surface area, high porosity, and more boronic acid recognition sites. The adsorption performance evaluation results showed that the maximum adsorption capacity of the boron affinity 3DOMs on ovalbumin (OVA) could reach to 438.79 mg/g. Kinetic and isothermal adsorption experiments indicated that the boronate affinity 3DOM material exhibited a high affinity and selectivity towards OVA and adenosine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the proteins in egg whites was conducted and proved that the glycoprotein in the egg whites could be separated and enriched with a good performance. Therefore, a novel boronate affinity 3DOM material a with highly ordered and interconnected pore structure was prepared and could be applied in the separation and enrichment of molecules with cis-diol groups from complex samples with a good selectivity, efficiency, and high throughput.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianhua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (Z.L.); (L.Z.); (X.H.); (Q.A.); (M.C.); (Z.S.); (L.D.)
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (Z.L.); (L.Z.); (X.H.); (Q.A.); (M.C.); (Z.S.); (L.D.)
| |
Collapse
|
3
|
Khairnar P, Saathoff JM, Cook DW, Hochstetler SR, Pandya U, Robinson SJ, Satam V, Donsbach KO, Gupton BF, Jin LM, Shanahan CS. Practical Synthesis of 6-Amino-1-hydroxy-2,1-benzoxaborolane: A Key Intermediate of DNDI-6148. Org Process Res Dev 2024; 28:1213-1223. [PMID: 38660377 PMCID: PMC11036395 DOI: 10.1021/acs.oprd.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Visceral leishmaniasis (VL), a parasitic, poverty-linked, neglected disease, is endemic across multiple regions of the world and fatal if untreated. There is an urgent need for a better and more affordable treatment for VL. DNDI-6148 is a promising drug candidate being evaluated for the treatment of VL; however, the current process for producing the key intermediate of DNDI-6148, 6-amino-1-hydroxy-2,1-benzoxaborolane, is expensive and difficult to scale up. Herein, we describe two practical approaches to synthesizing 6-amino-1-hydroxy-2,1-benzoxaborolane from inexpensive and readily available raw materials. Starting with 4-tolunitrile, the first approach is a five-step sequence involving a Hofmann rearrangement, resulting in an overall yield of 40%. The second approach utilizes 2-methyl-5-nitroaniline as the starting material and features borylation of aniline and continuous flow hydrogenation as the key steps, with an overall yield of 46%. Both routes bypass the nitration of 1-hydroxy-2,1-benzoxaborolane, which is challenging and expensive to scale. In particular, the second approach is more practical and scalable because of the mild operating conditions and facile isolation process.
Collapse
Affiliation(s)
- Pankaj
V. Khairnar
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - John M. Saathoff
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Daniel W. Cook
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Samuel R. Hochstetler
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Urvish Pandya
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Stephen J. Robinson
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Vijay Satam
- Drugs
for Neglected Diseases initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland
| | - Kai O. Donsbach
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - B. Frank Gupton
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Li-Mei Jin
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| | - Charles S. Shanahan
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284-3068, United States
| |
Collapse
|
4
|
Milanesi F, Roelens S, Francesconi O. Towards Biomimetic Recognition of Glycans by Synthetic Receptors. Chempluschem 2024; 89:e202300598. [PMID: 37942862 DOI: 10.1002/cplu.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Carbohydrates are abundant in Nature, where they are mostly assembled within glycans as free polysaccharides or conjugated to a variety of biological molecules such as proteins and lipids. Glycans exert several functions, including protein folding, stability, solubility, resistance to proteolysis, intracellular traffic, antigenicity, and recognition by carbohydrate-binding proteins. Interestingly, misregulation of their biosynthesis that leads to changes in glycan structures is frequently recognized as a mark of a disease state. Because of glycan ubiquity, carbohydrate binding agents (CBAs) targeting glycans can lead to a deeper understanding of their function and to the development of new diagnostic and prognostic strategies. Synthetic receptors selectively recognizing specific carbohydrates of biological interest have been developed over the past three decades. In addition to the success obtained in the effective recognition of monosaccharides, synthetic receptors recognizing more complex guests have also been developed, including di- and oligosaccharide fragments of glycans, shedding light on the structural and functional requirements necessary for an effective receptor. In this review, the most relevant achievements in molecular recognition of glycans and their fragments will be summarized, highlighting potentials and future perspectives of glycan-targeting synthetic receptors.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
5
|
Zangiabadi M, Bahrami F, Ghosh A, Yu H, Agrahari AK, Chen X, Zhao Y. Synthetic Catalysts for Selective Glycan Cleavage from Glycoproteins and Cells. J Am Chem Soc 2024; 146:4346-4350. [PMID: 38346011 PMCID: PMC11103250 DOI: 10.1021/jacs.3c13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In situ modification of glycans requires extraordinary molecular recognition of highly complex and subtly different carbohydrates, followed by reactions at precise locations on the substrate. We here report synthetic catalysts that under physiological conditions cleave a predetermined oligosaccharide block such as a branched trimannose or the entire N-glycan of a glycoprotein, while nontargeted glycoproteins stay intact. The method also allows α2-6-sialylated galactosides to be removed preferentially over the α2-3-linked ones from cell surfaces, highlighting the potential of these synthetic glycosidases for glycan editing.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Anand Kumar Agrahari
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
6
|
Wang G, Lyu X, Wang L, Wang M, Yang R. Highly efficient production and simultaneous purification of d-tagatose through one-pot extraction-assisted isomerization of d-galactose. Food Chem X 2023; 20:100928. [PMID: 38144734 PMCID: PMC10739900 DOI: 10.1016/j.fochx.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 12/26/2023] Open
Abstract
A one-pot extraction-assisted d-galactose-to-d-tagatose isomerization strategy was proposed based on the selective extraction of d-tagatose by phenylborate anions. 4-Vinylphenylboronic acid was selected with high extraction efficiency and selectivity towards d-tagatose. The extracted sugars could be desorbed through a two-staged stripping process with the purity of d-tagatose significantly increased. In-situ extraction-assisted d-galactose-to-d-tagatose isomerization was implemented for the first time ever reported, and the effect of boron-to-sugar ratio (boron: sugar) was investigated. The conversion yield of d-tagatose at 60 °C increased from ∼ 39 % (boron: sugar = 0.5) to ∼ 56 % (boron: sugar = 1) but then decreased to ∼ 44 % (boron: sugar = 1.5). With temperature increased to 70 °C, the conversion yield of d-tagatose was further improved to ∼ 61 % (boron: sugar = 1.5), with the minimized formation of byproducts. Moreover, high purity (∼83 %) and concentrated d-tagatose solution (∼40 g/L) was obtained after sequential desorption. The proposed extraction-assisted isomerization strategy achieved improving the yield and purity of d-tagatose, proving its feasibility in industrial applications.
Collapse
Affiliation(s)
- Guangzhen Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Mingming Wang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
7
|
Huynh CM, Mavliutova L, Sparrman T, Sellergren B, Irgum K. Elucidation of the Binding Orientation in α2,3- and α2,6-Linked Neu5Ac-Gal Epitopes toward a Hydrophilic Molecularly Imprinted Monolith. ACS OMEGA 2023; 8:44238-44249. [PMID: 38027366 PMCID: PMC10666243 DOI: 10.1021/acsomega.3c06836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
N-Acetylneuraminic acid and its α2,3/α2,6-glycosidic linkages with galactose (Neu5Ac-Gal) are major carbohydrate antigen epitopes expressed in various pathological processes, such as cancer, influenza, and SARS-CoV-2. We here report a strategy for the synthesis and binding investigation of molecularly imprinted polymers (MIPs) toward α2,3 and α2,6 conformations of Neu5Ac-Gal antigens. Hydrophilic imprinted monoliths were synthesized from melamine monomer in the presence of four different templates, namely, N-acetylneuraminic acid (Neu5Ac), N-acetylneuraminic acid methyl ester (Neu5Ac-M), 3'-sialyllactose (3SL), and 6'-sialyllactose (6SL), in a tertiary solvent mixture at temperatures varying from -20 to +80 °C. The MIPs prepared at cryotemperatures showed a preferential affinity for the α2,6 linkage sequence of 6SL, with an imprinting factor of 2.21, whereas the α2,3 linkage sequence of 3SL resulted in nonspecific binding to the polymer scaffold. The preferable affinity for the α2,6 conformation of Neu5Ac-Gal was evident also when challenged by a mixture of other mono- and disaccharides in an aqueous test mixture. The use of saturation transfer difference nuclear magnetic resonance (STD-NMR) on suspensions of crushed monoliths allowed for directional interactions between the α2,3/α2,6 linkage sequences on their corresponding MIPs to be revealed. The Neu5Ac epitope, containing acetyl and polyalcohol moieties, was the major contributor to the sequence recognition for Neu5Ac(α2,6)Gal(β1,4)Glc, whereas contributions from the Gal and Glc segments were substantially lower.
Collapse
Affiliation(s)
- Chau Minh Huynh
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | - Liliia Mavliutova
- Department
of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Tobias Sparrman
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Knut Irgum
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
8
|
Zangiabadi M, Ghosh A, Zhao Y. Nanoparticle Scanners for the Identification of Key Sequences Involved in the Assembly and Disassembly of β-Amyloid Peptides. ACS NANO 2023; 17:4764-4774. [PMID: 36857741 DOI: 10.1021/acsnano.2c11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of β-amyloid peptides (Aβ), implied in the development and progression of Alzheimer's disease, is driven by a complex set of intramolecular and intermolecular interactions involving both hydrophobic and polar residues. The key residues responsible for the forward assembling process may be different from those that should be targeted to disassemble already formed aggregates. Molecularly imprinted nanoparticle (MINP) receptors are reported in this work to strongly and selectively bind specific segments of Aβ40. Combined fluorescence spectroscopy, atomic force microscopy (AFM) imaging, and circular dichroism (CD) spectroscopy indicate that binding residues 21-30 near the loop region is most effective at inhibiting the aggregation of monomeric Aβ40, but residues 11-20 that include the internal β strand closer to the N-terminal represent the best target for disaggregating already formed aggregates in the polymerization phase. Once the aggregation proceeds to the saturation phase, binding residues 1-10 has the largest effect on the disaggregation, likely because of the accessibility of these amino acids relative to others to the MINP receptors.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
9
|
Zhang H, Zhao Q, Qiu J, Wang Z, Yang X. Synthesis of a magnetic micelle molecularly imprinted polymers to selective adsorption of rutin from Sophora japonica. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123492. [PMID: 36495684 DOI: 10.1016/j.jchromb.2022.123492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Rutin is a naturally active compound with biological and medical value. The traditional extraction and separation method not only destroys the structure and activity of rutin, but results in a low extraction rate. In this work, the magnetic micellar molecularly imprinted polymer of rutin with a selective recognition function, i.e., RMMMIP was synthesized from 4 to Vinylphenylboron acid and 4-Vinylpyridine as functional monomer, derivatives of cholic acid as amphiphilic molecules. The internal hydrophobic and external hydrophilic characteristics of micelle was used to weaken the solvation of rutin and strengthen the non-covalent interaction between functional monomer and rutin. Fe3O4, as the core, endowed the composite materials with good magnetic responsiveness and was easy to separate solid from liquid. Then its structure and adsorption were studied, adsorbing capacity and recognition specific factor of RMMMIP are 11.9 mg·g-1 and 3.55 respectively. RMMMIP was used for the separation of rutin from crude extracts of Sophora japonica Linn and showed a better selective adsorption capacity than quercetin, naringin and cyanidin-3-O-glucose. It indicated that RMMMIP as a specific adsorbent had the potential to be a practical way to purify rutin from rutin crude extracts in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - QianYu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - JunQiang Qiu
- Key Laboratory of Tropical Translation Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - ZhanHua Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China; School of Medicine and Health, Harbin Institute of Technology.
| |
Collapse
|
10
|
Zangiabadi M, Zhao Y. Synergistic Hydrolysis of Cellulose by a Blend of Cellulase-Mimicking Polymeric Nanoparticle Catalysts. J Am Chem Soc 2022; 144:17110-17119. [PMID: 36069714 PMCID: PMC10183977 DOI: 10.1021/jacs.2c06848] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-like catalysts by design have been a long sought-after goal of chemists but difficult to realize due to the challenges in the construction of multifunctionalized active sites with accurately positioned catalytic groups for complex substrates. Hydrolysis of cellulose is a key step in biomass utilization and requires multiple enzymes to work in concert to overcome the difficulty associated with hydrolyzing the recalcitrant substrate. We here report methods to construct synthetic versions of these enzymes through covalent molecular imprinting and strategic postmodification of the imprinted sites. The synthetic catalysts cleave a cellulose chain endolytically at multiple positions or exolytically from the nonreducing end by one or three glucose units at a time, all using the dicarboxylic acid motif found in natural cellulases. By mimicking the endocellulase, exocellulase, and β-glucosidase, the synthetic catalysts hydrolyze cellulose in a synergistic manner, with an activity at 90 °C in pH 6.5 buffer more than doubled that of Aspergillus niger cellulase at pH 5 and 37 °C and 44% of that of a commercial cellulase blend (from Novozyme). As robust cross-linked polymeric nanoparticles, the synthetic catalysts showed little changes in activity after preheating at 90 °C for 3 days and could be reused, maintaining 76% of activity after 10 reaction cycles.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
11
|
Kadhirvel P, Azenha M, Ivanova G, Pereira C, Silva AF. A simpler and greener alternative route for anchoring carbohydrates with structural integrity on silica and glass supports. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2121835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Porkodi Kadhirvel
- CIQ-UP, Departamento de Química e Bioquímica, Faculdade de Ciências, Institute of Molecular Sciences, Universidade do Porto, Porto, Portugal
| | - Manuel Azenha
- CIQ-UP, Departamento de Química e Bioquímica, Faculdade de Ciências, Institute of Molecular Sciences, Universidade do Porto, Porto, Portugal
| | - Galya Ivanova
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carlos Pereira
- CIQ-UP, Departamento de Química e Bioquímica, Faculdade de Ciências, Institute of Molecular Sciences, Universidade do Porto, Porto, Portugal
| | - António F. Silva
- CIQ-UP, Departamento de Química e Bioquímica, Faculdade de Ciências, Institute of Molecular Sciences, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Zhao Y. Molecularly imprinted materials for glycan recognition and processing. J Mater Chem B 2022; 10:6607-6617. [PMID: 35481837 PMCID: PMC9476894 DOI: 10.1039/d2tb00164k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
Abstract
Carbohydrates are the most abundant organic molecules on Earth and glycosylation is the most common posttranslational modification of proteins. Glycans are involved in a plethora of biological processes including cell adhesion, bacterial and viral infection, inflammation, and cancer development. Coincidently, glycosides were some of the earliest molecules imprinted and have been instrumental in the development of covalent molecular imprinting technology. This perspective illustrates recently developed molecularly imprinted materials for glycan binding and processing. Novel imprinting techniques and postmodification led to development of synthetic glycan-binding materials capable of competing with natural lectins in affinity and artificial glycosidases for selective hydrolysis of complex glycans. These materials are expected to significantly advance glycochemistry, glycobiology, and related areas such as biomass conversion.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| |
Collapse
|
13
|
Zangiabadi M, Zhao Y. Controlling enzyme reactions by supramolecular protection and deprotection of oligosaccharide substrates. Chem Commun (Camb) 2022; 58:9770-9773. [PMID: 35968858 DOI: 10.1039/d2cc03239b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protection/deprotection is a powerful strategy in the total synthesis of complex organic molecules but similar tools are nearly absent in enzymatic reactions. We here report supramolecular protective receptors that outcompete an enzyme in the binding of oligosaccharides. The strong binding inhibits the enzymatic reaction and addition of an even stronger ligand for the receptor releases the substrate. These receptors could be used to control products from the same substrate/enzyme mixture and regulate enzymatic reactions reversibly.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| |
Collapse
|
14
|
Chen K, Zhao Y. Dynamic Tuning in Synthetic Glycosidase for Selective Hydrolysis of Alkyl and Aryl Glycosides. J Org Chem 2022; 87:4195-4203. [PMID: 35254827 PMCID: PMC9089355 DOI: 10.1021/acs.joc.1c03029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes use sophisticated conformational control to optimize the dynamics of their protein framework for efficient catalysis. Although it is difficult to employ a similar strategy to improve catalysis in a synthetic enzyme, we here report that modulation of the dynamics of the substrate in the active site is readily achievable in a complex between a molecularly imprinted nanoparticle and its acid cofactor, through tuning of the size and shape of the imprinted site. As the alkyl glucoside substrate is bound with increasing strength and held in a more tightly fitted pocket, the acid-catalyzed glycan hydrolysis becomes more difficult. A larger, wider active site, although less able to bind the substrate, affords a higher catalytic activity, likely due to easier alignment of the substrate and the acid cofactor for a general acid catalysis. The substrate selectivity is controlled by both the tightness of the aglycon-binding site and the orientation of the glycan-binding boroxole group.
Collapse
Affiliation(s)
- Kaiqian Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
15
|
Monsalve-Atencio R, Montaño DF, Contreras-Calderón J. Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods. Crit Rev Food Sci Nutr 2022; 63:6820-6839. [PMID: 35170386 DOI: 10.1080/10408398.2022.2038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is one of the most consumed beverages in the world. Coffee provides to the consumer special sensorial characteristics, can help to prevent diseases, improves physical performance and increases focus. In contrast, coffee consumption supplies a significant source of substances with carcinogenic and genotoxic potential such as furan, hydroxymethylfurfural (HMF), furfural (F), and acrylamide (AA). The present review addresses the issues around the presence of such toxic substances formed in Maillard reaction (MR) during thermal treatments in food processing, from chemical and, toxicological perspectives, occurrences in coffee and other foods processed by heating. In addition, current strategies advantages and disadvantages are presented along with application of molecular imprinting technology (MIT) and poly (ionic liquid) s (PIL) as an alternative to reduce the furan, HMF, F and AA content in coffee and other foods.
Collapse
Affiliation(s)
- Robinson Monsalve-Atencio
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Diego F Montaño
- Department of Chemistry, Faculty of Basic Sciences, University of Pamplona, Pamplona, Norte de Santander, Colombia
| | - José Contreras-Calderón
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
16
|
Zhao Y. Substrate Protection in Controlled Enzymatic Transformation of Peptides and Proteins. Chembiochem 2021; 22:2680-2687. [PMID: 34058051 PMCID: PMC8453913 DOI: 10.1002/cbic.202100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Proteins are involved in practically every single biological process. The many enzymes involved in their synthesis, cleavage, and posttranslational modification (PTM) carry out highly specific tasks with no usage of protecting groups. Yet, the chemists' strategy of protection/deprotection potentially can be highly useful, for example, when a specific biochemical reaction catalyzed by a broad-specificity enzyme needs to be inhibited, during infection of cells by enveloped viruses, in the invasion and spread of cancer cells, and upon mechanistic investigation of signal-transduction pathways. Doing so requires highly specific binding of peptide substrates in aqueous solution with biologically competitive affinities. Recent development of peptide-imprinted cross-linked micelles allows such protection and affords previously impossible ways of manipulating peptides and proteins in enzymatic transformations.
Collapse
Affiliation(s)
- Yan Zhao
- Department of ChemistryIowa State UniversityAmesIA 50011–3111USA
| |
Collapse
|
17
|
Zhao X, Shi A, Ma Q, Yan X, Bian L, Zhang P, Wu J. Nanoparticles prepared from pterostilbene reduce blood glucose and improve diabetes complications. J Nanobiotechnology 2021; 19:191. [PMID: 34176494 PMCID: PMC8237509 DOI: 10.1186/s12951-021-00928-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Diabetes complications are the leading cause of mortality in diabetic patients. The common complications are decline in antioxidant capacity and the onset of micro-inflammation syndrome. At present, glucose-responsive nanoparticles are widely used, as they can release insulin-loaded ultrafine particles intelligently and effectively reduce blood sugar. However, the toxicology of this method has not been fully elucidated. The plant extracts of pterostilbene (PTE) have a wide range of biological applications, such as antioxidation and inflammatory response improvement. Therefore, we have proposed new ideas for the cross application of plant extracts and biomaterials, especially as part of a hypoglycaemic nano-drug delivery system. RESULTS Based on the PTE, we successfully synthesised poly(3-acrylamidophenyl boric acid-b-pterostilbene) (p[AAPBA-b-PTE]) nanoparticles (NPs). The NPs were round in shape and ranged between 150 and 250 nm in size. The NPs possessed good pH and glucose sensitivity. The entrapment efficiency (EE) of insulin-loaded NPs was approximately 56%, and the drug loading (LC) capacity was approximately 13%. The highest release of insulin was 70%, and the highest release of PTE was 85%. Meanwhile, the insulin could undergo self-regulation according to changes in the glucose concentration, thus achieving an effective, sustained release. Both in vivo and in vitro experiments showed that the NPs were safe and nontoxic. Under normal physiological conditions, NPs were completely degraded within 40 days. Fourteen days after mice were injected with p(AAPBA-b-PTE) NPs, there were no obvious abnormalities in the heart, liver, spleen, lung, or kidney. Moreover, NPs effectively reduced blood glucose, improved antioxidant capacity and reversed micro-inflammation in mice. CONCLUSIONS p(AAPBA-b-PTE) NPs were successfully prepared using PTE as raw material and effectively reduced blood glucose, improved antioxidant capacity and reduced the inflammatory response. This novel preparation can enable new combinations of plant extracts and biomaterials to adiministered through NPs or other dosage forms in order to regulate and treat diseases.
Collapse
Affiliation(s)
- Xi Zhao
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China
| | - Anhua Shi
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China
| | - Qiong Ma
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China
| | - Xueyan Yan
- College of Clinical Medical, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Ligong Bian
- College of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Junzi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, P.R. China.
| |
Collapse
|
18
|
Mavliutova L, Munoz Aldeguer B, Wiklander J, Wierzbicka C, Huynh CM, Nicholls IA, Irgum K, Sellergren B. Discrimination between sialic acid linkage modes using sialyllactose-imprinted polymers. RSC Adv 2021; 11:22409-22418. [PMID: 35480790 PMCID: PMC9034230 DOI: 10.1039/d1ra02274a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Glycosylation plays an important role in various pathological processes such as cancer. One key alteration in the glycosylation pattern correlated with cancer progression is an increased level as well as changes in the type of sialylation. Developing molecularly-imprinted polymers (MIPs) with high affinity for sialic acid able to distinguish different glycoforms such as sialic acid linkages is an important task which can help in early cancer diagnosis. Sialyllactose with α2,6′ vs. α2,3′ sialic acid linkage served as a model trisaccharide template. Boronate chemistry was employed in combination with a library of imidazolium-based monomers targeting the carboxylate group of sialic acid. The influence of counterions of the cationic monomers and template on their interactions was investigated by means of 1H NMR titration studies. The highest affinities were afforded using a combination of Br− and Na+ counterions of the monomers and template, respectively. The boronate ester formation was confirmed by MS and 1H/11B NMR, indicating 1 : 2 stoichiometries between sialyllactoses and boronic acid monomer. Polymers were synthesized in the form of microparticles using boronate and imidazolium monomers. This combinatorial approach afforded MIPs selective for the sialic acid linkages and compatible with an aqueous environment. The molecular recognition properties with respect to saccharide templates and glycosylated targets were reported. 2,6′- and 2,3′-sialyllactose imprinted polymers (MIPs) capable of discriminating between two modes of sialic acid linkages in glycans are reported.![]()
Collapse
Affiliation(s)
- Liliia Mavliutova
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | - Bruna Munoz Aldeguer
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | - Jesper Wiklander
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University 391 82 Kalmar Sweden
| | - Celina Wierzbicka
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| | | | - Ian A Nicholls
- Bioorganic and Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University 391 82 Kalmar Sweden
| | - Knut Irgum
- Department of Chemistry, Umeå University 901 87 Umeå Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University SE-20506 Malmö Sweden
| |
Collapse
|
19
|
Mavliutova L, Verduci E, Shinde SA, Sellergren B. Combinatorial Design of a Sialic Acid-Imprinted Binding Site. ACS OMEGA 2021; 6:12229-12237. [PMID: 34056377 PMCID: PMC8154165 DOI: 10.1021/acsomega.1c01111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aberrant glycosylation has been proven to correlate with various diseases including cancer. An important alteration in cancer progression is an increased level of sialylation, making sialic acid one of the key constituents in tumor-specific glycans and an interesting biomarker for a diversity of cancer types. Developing molecularly imprinted polymers (MIPs) with high affinity toward sialic acids is an important task that can help in early cancer diagnosis. In this work, the glycospecific MIPs are produced using cooperative covalent/noncovalent imprinting. We report here on the fundamental investigation of this termolecular imprinting approach. This comprises studies of the relative contribution of orthogonally interacting functional monomers and their synergetic behavior and the choice of different counterions on the molecular recognition properties for the sialylated targets. Combining three functional monomers targeting different functionalities on the template led to enhanced imprinting factors (IFs) and selectivities. This apparent cooperative effect was supported by 1H NMR and fluorescence titrations of monomers with templates or template analogs. Moreover, highlighting the role of the template counterion use of tetrabutylammonium (TBA) salt of sialic acid resulted in better imprinting than that of sodium salts supported by both in solution interaction studies and in MIP rebinding experiments. The glycospecific MIPs display high affinity for sialylated targets, with an overall low binding of other nontarget saccharides.
Collapse
|
20
|
Li X, Zangiabadi M, Zhao Y. Molecularly Imprinted Synthetic Glucosidase for the Hydrolysis of Cellulose in Aqueous and Nonaqueous Solutions. J Am Chem Soc 2021; 143:5172-5181. [DOI: 10.1021/jacs.1c01352] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
21
|
Fraschetti C, Letzel MC, Paletta M, Mattay J, Crestoni ME, Chiavarino B, Filippi A. Unprotected Galactosamine as a Dynamic Key for a Cyclochiral Lock. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:736-743. [PMID: 33499589 PMCID: PMC7944569 DOI: 10.1021/jasms.0c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The discrimination of d-galactosamine (G), representative of the amino-sugar class of compounds, has been probed through nano-ESI-FT-ICR mass spectrometry by isolating the relevant [C·H·G]+ proton-bound complexes with the enantiomers of the cyclochiral resorcin[4]arene C and allowing them to react toward three primary amines (B = EtNH2, iPrNH2, and (R)- and (S)-sBuNH2). The system under investigation presents several features that help to unveil the behavior of unprotected G in such a supramolecular architecture: (i) the hydrophobic derivatization of the C convex side forces the polar guest G to be coordinated by the cyclochiral concave region; (ii) protonated d-galactosamine exists as an anomeric mixture, dynamically interconverting throughout the experimental time-window; and (iii) different basicities of B allow the experiment to subtly tune the reactivity of the [C·H·G]+ complexes. Three [C·H·G]+ aggregate-types were found to exist, differing in both their origin and reactivity. The most reactive adducts ([C·H·G]ESI+), generated in the electrospray environment, undergo a G-to-B ligand exchange in competition with a partial isomerization to the unreactive [C·H·G]GAS+-type complexes. Finally, the poorly reactive [C·H·G]SOL+ aggregates are formed in solution over an hours-long time scale. A cyclochirality effect on the reactivity was found to depend on the considered [C·H·G]+ aggregate-type.
Collapse
Affiliation(s)
- Caterina Fraschetti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Matthias C. Letzel
- Organisch-Chemisches
Institut der Westf. Wilhelms Abt. Massenspektrometrie, Westfälische Wilhelms-Universität Münster, Room 252a, Corrensstraße 40, 48149 Münster, Germany
| | - Marlene Paletta
- Department
of Chemistry, Bielefeld University, P. O. Box 100131, D-33501 Bielefeld, Germany
| | - Jochen Mattay
- Department
of Chemistry, Bielefeld University, P. O. Box 100131, D-33501 Bielefeld, Germany
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonello Filippi
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza-Università
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
22
|
Li X, Zhao Y. Synthetic Glycosidase Distinguishing Glycan and Glycosidic Linkage in Its Catalytic Hydrolysis. ACS Catal 2020; 10:13800-13808. [PMID: 34123483 DOI: 10.1021/acscatal.0c04038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective hydrolysis of carbohydrates is vital to the processing of these molecules in biology but has rarely been achieved with synthetic catalysts. The challenge is especially difficult because the catalyst needs to distinguish the inversion of a single hydroxyl and the α or β glycosidic bonds that join monosaccharide building blocks. Here we report synthetic glycosidase prepared through molecular imprinting within a cross-linked micelle. The nanoparticle catalyst resembles natural enzymes in dimension, water-solubility, and a hydrophilic/hydrophobic surface-core topology. Its boronic acid-functionalized active site binds its targeted glycoside substrate and an acid cofactor simultaneously, with the acidic group in close proximity to the exocyclic glycosidic oxygen. The hydrophobically anchored acid cofactor is tunable in acidity and causes selective cleavage of the targeted glycoside in mildly acidic water. Selectivity for both the glycan and the α/β glycosidic bond can be rationally designed through the molecular imprinting process.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
23
|
Dar KK, Shao S, Tan T, Lv Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol Adv 2020; 45:107640. [DOI: 10.1016/j.biotechadv.2020.107640] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
|
24
|
Li X, Zhao Y. Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides. Chem Sci 2020; 12:374-383. [PMID: 34163603 PMCID: PMC8178952 DOI: 10.1039/d0sc05338d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| |
Collapse
|
25
|
Duan L, Zhao Y. Molecularly Imprinted Micelles for Fluorescent Sensing of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). REACT FUNCT POLYM 2020; 158. [PMID: 33716552 DOI: 10.1016/j.reactfunctpolym.2020.104759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used over-the-counter drugs and their uncontrolled disposal is a significant environmental concern. Although their fluorescent sensing is a desirable method of detection for its sensitivity and simplicity, the structural similarity of the drugs makes the design of selective sensors highly challenging. A thiourea-based fluorescent functional monomer was identified in this work to enable highly efficient synthesis of molecularly imprinted nanoparticle (MINP) sensors for NSAIDs such as Indomethacin or Tolmetin. Micromolar binding affinities were obtained in aqueous solution, with binding selectivities comparable to those reported for polyclonal antibodies. The detection limit was ~50 ng/mL in aqueous solution, and common carboxylic acids such as acetic acid, benzoic acid, and citric acid showed negligible interference.
Collapse
Affiliation(s)
- Likun Duan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
26
|
Nazarova A, Shurpik D, Padnya P, Mukhametzyanov T, Cragg P, Stoikov I. Self-Assembly of Supramolecular Architectures by the Effect of Amino Acid Residues of Quaternary Ammonium Pillar[5]arenes. Int J Mol Sci 2020; 21:E7206. [PMID: 33003555 PMCID: PMC7582551 DOI: 10.3390/ijms21197206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Novel water-soluble multifunctional pillar[5]arenes containing amide-ammonium-amino acid moiety were synthesized. The compounds demonstrated a superior ability to bind (1S)-(+)-10-camphorsulfonic acid (S-CSA) and methyl orange dye depending on the nature of the substituent, resulting in the formation one-to-one complexes with both guests. The formation of host-guest complexes was confirmed by ultraviolet (UV), circular dichroism (CD) and 1H NMR spectroscopy. This work demonstrates the first case of using S-CSA as a chiral template for the non-covalent self-assembly of architectures based on pillar[5]arenes. It was shown that pillar[5]arenes with glycine or L-alanine fragments formed aggregates with average hydrodynamic diameters (d) of 165 and 238 nm, respectively. It was established that the addition of S-CSA to the L-alanine-containing derivative led to the formation of micron-sized aggregates with d of 713 nm. This study may advance the design novel stereoselective catalysts and transmembrane amino acid channels.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Dmitriy Shurpik
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Pavel Padnya
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Timur Mukhametzyanov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Peter Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK;
| | - Ivan Stoikov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| |
Collapse
|
27
|
Duan L, Zangiabadi M, Zhao Y. Synthetic lectins for selective binding of glycoproteins in water. Chem Commun (Camb) 2020; 56:10199-10202. [PMID: 32748907 PMCID: PMC7484035 DOI: 10.1039/d0cc02892d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although synthetic mimics of lectins can be extremely useful in biological and biomedical research, molecular recognition of carbohydrates has been hampered by their strong solvation in water and subtle structural differences among analogues. Molecularly imprinted nanoparticle receptors were prepared with glycans directly cleaved from glycoproteins. Functionalized with boroxole groups in the binding sites, these water-soluble synthetic lectins bound the parent glycoproteins selectively in water with an association constant of Ka = 104-105 M-1. The strong binding enabled the receptors to protect the targeted glycans from enzymatic cleavage. When clicked onto magnetic nanoparticles, the receptors enabled facile isolation of glycoproteins from a mixture.
Collapse
Affiliation(s)
- Likun Duan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | | | |
Collapse
|
28
|
Zangiabadi M, Zhao Y. Selective Binding of Complex Glycans and Glycoproteins in Water by Molecularly Imprinted Nanoparticles. NANO LETTERS 2020; 20:5106-5110. [PMID: 32501718 PMCID: PMC7472588 DOI: 10.1021/acs.nanolett.0c01305] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Synthetic receptors to recognize biological glycans are in great need for modern glycoscience and technology, but their design and synthesis have been a daunting challenge due to strong solvation of carbohydrates in water and structural complexity of the guest. Molecular imprinting in surfactant micelles with amide cross-linkers provides a convenient one-pot method to prepare nanoparticle receptors for glycosides, glycans, and glycoproteins, taking advantage of hydrogen-bonding interactions near the surfactant/water interface. Biologically competitive micromolar binding affinities were obtained in water and subtle structural differences of glycans could be distinguished.
Collapse
|
29
|
Zhang Q, Chen Y, Lu R, Yao Y, Li C, Yu Y, Zhang S. Cross-linked small-molecule capsules with excitation wavelength-dependent photoluminescence and high loading capacity: design, synthesis and application in imaging-guided drug delivery. J Mater Chem B 2020; 8:2719-2725. [PMID: 32149293 DOI: 10.1039/c9tb02465d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cross-linked small-molecule micelles (cSMs) have found applications in many fields but their low loading capacity and non-fluorescence property hindered their further development. Herein, water-soluble organic nanoparticles were applied as templates to "stretch" the hydrophobic core of cSMs and photo-cross-linking was employed to supply photoluminescence. The resulting cross-linked small-molecule capsules (cSCs) not only reserve the superior properties of cSMs of accurate monomer, easy functionalization and robust stability, but also achieve high drug loading capacity and excitation wavelength-dependent fluorescence, where the drug loading contents (DLCs) for various hydrophobic drugs were more than 30-fold higher than that of cSMs, and the maximum quantum yield could be as high as 12.0%. Featuring these superiorities, the cSCs hold promising potential in many fields and an example of doxorubicin-loaded cSCs (DOX@cSCs) for multichannel imaging-guided drug delivery is shown in this work.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yun Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Ruilin Lu
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yongchao Yao
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Chuanqi Li
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yunlong Yu
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Shiyong Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China. and College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
30
|
Duan L, Zhao Y. Selective Binding of Dopamine and Epinephrine in Water by Molecularly Imprinted Fluorescent Receptors. Chem Asian J 2020; 15:1035-1038. [PMID: 32043821 PMCID: PMC7480134 DOI: 10.1002/asia.201901783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Indexed: 01/02/2023]
Abstract
Catecholamines play important roles in biology but their structural similarity makes it challenging to construct synthetic receptors with selective binding. A combination of covalent and noncovalent binding groups in the hydrophobic core of water-soluble nanoparticles enabled them to recognize dopamine and epinephrine with an association constant (Ka ) of 3-4×104 M-1 in water, an order of magnitude higher than those of previously reported synthetic hosts. In addition, minute structural changes among analogues were detected including the addition or removal of a single hydroxyl or methyl group.
Collapse
Affiliation(s)
- Likun Duan
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, U.S.A
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, U.S.A
| |
Collapse
|
31
|
Li Y, Liu B, Huang Z, Liu J. Engineering base-excised aptamers for highly specific recognition of adenosine. Chem Sci 2020; 11:2735-2743. [PMID: 34084332 PMCID: PMC8157715 DOI: 10.1039/d0sc00086h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors. For practical reasons, it is important to distinguish adenosine from ATP, although this has yet to be achieved despite extensive efforts made on selection of new aptamers. We herein report a strategy of excising an adenine nucleotide from the backbone of a one-site adenosine aptamer, and the adenine-excised aptamer allowed highly specific binding of adenosine. Cognate analytes including AMP, ATP, guanosine, cytidine, uridine, and theophylline all failed to bind to the engineered aptamer according to the SYBR Green I (SGI) fluorescence spectroscopy and isothermal titration calorimetry (ITC) results. Our A-excised aptamer has two binding sites: the original aptamer binding site in the loop and the newly created one due to base excision from the DNA backbone. ITC demonstrated that the A-excised aptamer strand can bind to two adenosine molecules, with a Kd of 14.8 ± 2.1 μM at 10 °C and entropy-driven binding. Since the wild-type aptamer cannot discriminate adenosine from AMP and ATP, we attributed this improved specificity to the excised site. Further study showed that these two sites worked cooperatively. Finally, the A-excised aptamer was tested in diluted fetal bovine serum and showed a limit of detection of 46.7 μM adenosine. This work provides a facile, cost-effective, and non-SELEX method to engineer existing aptamers for new features and better applications. The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors.![]()
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
32
|
Chen W, Tian X, He W, Li J, Feng Y, Pan G. Emerging functional materials based on chemically designed molecular recognition. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s42833-019-0007-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe specific interactions responsible for molecular recognition play a crucial role in the fundamental functions of biological systems. Mimicking these interactions remains one of the overriding challenges for advances in both fundamental research in biochemistry and applications in material science. However, current molecular recognition systems based on host–guest supramolecular chemistry rely on familiar platforms (e.g., cyclodextrins, crown ethers, cucurbiturils, calixarenes, etc.) for orienting functionality. These platforms limit the opportunity for diversification of function, especially considering the vast demands in modern material science. Rational design of novel receptor-like systems for both biological and chemical recognition is important for the development of diverse functional materials. In this review, we focus on recent progress in chemically designed molecular recognition and their applications in material science. After a brief introduction to representative strategies, we describe selected advances in these emerging fields. The developed functional materials with dynamic properties including molecular assembly, enzyme-like and bio-recognition abilities are highlighted. We have also selected materials with dynamic properties in contract to traditional supramolecular host–guest systems. Finally, the current limitations and some future trends of these systems are discussed.
Collapse
|
33
|
Zhang H. Molecularly Imprinted Nanoparticles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806328. [PMID: 31090976 DOI: 10.1002/adma.201806328] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy removal of templates, rapid binding kinetics, good dispersion and handling ability, undemanding functionalization and surface modification, and their high compatibility with various nanodevices and in vivo biomedical applications. Recent years have witnessed significant progress made in the preparation of advanced functional nanoMIPs, which has eventually led to the rapid expansion of the MIP applications from the traditional separation and catalysis fields to the burgeoning biomedical areas. Here, a comprehensive overview of key recent advances made in the preparation of nanoMIPs and their important biomedical applications (including immunoassays, drug delivery, bioimaging, and biomimetic nanomedicine) is presented. The pros and cons of each synthetic strategy for nanoMIPs and their biomedical applications are discussed and the present challenges and future perspectives of the biomedical applications of nanoMIPs are also highlighted.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
34
|
Li Y, Zhang Z, Liu B, Liu J. Incorporation of Boronic Acid into Aptamer-Based Molecularly Imprinted Hydrogels for Highly Specific Recognition of Adenosine. ACS APPLIED BIO MATERIALS 2019; 3:2568-2576. [DOI: 10.1021/acsabm.9b00936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
35
|
Yao Y, Xu D, Zhu Y, Dai X, Yu Y, Luo J, Zhang S. Dandelion flower-like micelles. Chem Sci 2019; 11:757-762. [PMID: 34123049 PMCID: PMC8146335 DOI: 10.1039/c9sc05741b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 11/21/2022] Open
Abstract
Dandelion flower-like micelles (DFMs) were prepared by self-assembly of polycaprolactone (PCL) functionalized surface cross-linked micelles (SCMs). Upon reductive stimuli, the SCMs can be released from the DFMs by non-Brownian motion at an average speed of 19.09 μm s-1. Similar to the property of dandelion flowers dispersing their seeds over a long distance, the DFMs demonstrated enhanced multicellular tumor spheroid (MTS) penetration, a useful property in the treatment of many diseases including cancer, infection-of-biofilm diseases and ocular problems.
Collapse
Affiliation(s)
- Yongchao Yao
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Deqiu Xu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 China
- Sichuan Guojian Inspection Co., Ltd. 646000 Luzhou Sichuan China
| | - Yuhong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xin Dai
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yunlong Yu
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
36
|
Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosens Bioelectron 2019; 149:111830. [PMID: 31710919 DOI: 10.1016/j.bios.2019.111830] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
As promising alternatives to natural receptors, artificial molecularly imprinted polymers (MIPs) have received great attention in biotechnology. Nevertheless, some bottlenecks limit their further development, including low adsorption capacity, poor recognition efficiency, slow response, and insipid aqueous compatibility. Ionic liquids (ILs) show the features of tailored structures and properties, high conductivity, good solubility, and excellent stability. Because of these advantages, they have found intensive use in MIPs by remedying the latter's shortcomings. In this review, we summarize the integration of ILs and MIPs for biorecognition and biosensing. The versatile roles of ILs in improving the performance of MIPs are firstly summarized, including serving as solvents, porogens, functional monomers, organic surface modifiers, dummy templates, and cross-linkers. Then, specific applications of IL-based MIPs in peptide recognition, protein sensing, and food safety analysis are discussed. Finally, future trends and challenges for the design and development of IL-based MIPs and their applications in the biorecognition and biosensing are proposed.
Collapse
|
37
|
Duan L, Zhao Y. Zwitterionic Molecularly Imprinted Cross-Linked Micelles for Alkaloid Recognition in Water. J Org Chem 2019; 84:13457-13464. [PMID: 31545044 DOI: 10.1021/acs.joc.9b01629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular imprinting within surface/core doubly cross-linked micelles afforded water-soluble nanoparticle receptors for their template molecules. Extremely strong imprinting effects were consistently observed, with the imprinting factor >100:1 in comparison to nonimprinted nanoparticles prepared without the templates. The ionic nature of the cross-linkable surfactant strongly impacted the imprinting and binding process. Imprinted receptors prepared with a zwitterionic cross-linkable surfactant (4) outperformed a similar cationic one (1) when the template was zwitterionic or cationic and preferred their templates over structural analogues regardless of their ionic characteristics. Electrostatic interactions, however, dominated the receptors made with the cationic surfactant. The same micellar imprinting applied to simple as well as complex alkaloids. Imprinted receptors from 4 were also shown to categorize their alkaloid guests according to their structural similarity.
Collapse
Affiliation(s)
- Likun Duan
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| | - Yan Zhao
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| |
Collapse
|
38
|
Chen K, Zhao Y. Effects of nano-confinement and conformational mobility on molecular imprinting of cross-linked micelles. Org Biomol Chem 2019; 17:8611-8617. [PMID: 31528942 PMCID: PMC7474537 DOI: 10.1039/c9ob01440c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular imprinting is a facile method to create guest-complementary binding sites in a cross-linked polymeric network. When performed within cross-linked micelles, the resulting molecularly imprinted nanoparticles (MINPs) exhibited an extraordinary ability to distinguish subtle structural changes in the guest, including the shift of a hydrophilic or hydrophobic group by 1 carbon and addition of a single methylene/methyl group. A high surface-cross-linking density prior to core-cross-linking was key to the high-fidelity imprinting, enhancing both the binding affinity of the imprinted micelle for the template and selectivity among structural analogues. Whereas the imprinted site closely complemented the hydrophilic surface anchoring group and rigid hydrophobic aromatic core, it was expanded significantly for a conformationally mobile small group (i.e., methoxy).
Collapse
Affiliation(s)
- Kaiqian Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|
39
|
Li X, Zhao Y. Chiral Gating for Size- and Shape-Selective Asymmetric Catalysis. J Am Chem Soc 2019; 141:13749-13752. [PMID: 31368701 DOI: 10.1021/jacs.9b06619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A poor or mediocre stereoselectivity is a key roadblock for a chiral catalyst to find practical adoptions. We report a facile method to create a tunable chiral space near a chiral catalyst to augment its selectivity. The space was created rationally through templated polymerization within cross-linked micelles, using readily available amino acid derivatives. It provided gated entrance of reactants to the catalyst, enabling a mediocre prolinamide to catalyze aldol condensation in water with excellent yields and ee, in a size- and shape-selective manner.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| | - Yan Zhao
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| |
Collapse
|
40
|
Hu L, Zhao Y. A Bait‐and‐Switch Method for the Construction of Artificial Esterases for Substrate‐Selective Hydrolysis. Chemistry 2019; 25:7702-7710. [DOI: 10.1002/chem.201900560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lan Hu
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| | - Yan Zhao
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| |
Collapse
|
41
|
Hu L, Arifuzzaman MD, Zhao Y. Controlling Product Inhibition through Substrate-Specific Active Sites in Nanoparticle-Based Phosphodiesterase and Esterase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lan Hu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - MD Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
42
|
Gunasekara RW, Zhao Y. Recognition and protection of glycosphingolipids by synthetic nanoparticle receptors. Chem Commun (Camb) 2019; 55:4773-4776. [PMID: 30946397 PMCID: PMC7474536 DOI: 10.1039/c9cc01694e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle receptors were synthesized through micellar imprinting to bind glycosphingolipids with 20-140 μM binding affinities, meanwhile distinguishing glycan composition, the number of acyl chains, and hydroxylation of acyl chains in the lipids. The strong binding enabled the receptors to protect their target glycolipids dispersed in lipid membranes from enzymatic degradation.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| |
Collapse
|
43
|
Zhang F, Wang D, Qin H, Feng L, Liang X, Qing G. Chemoselectivity of Pristine Cellulose Nanocrystal Films Driven by Carbohydrate-Carbohydrate Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13114-13122. [PMID: 30880380 DOI: 10.1021/acsami.9b00471] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biological photonic nanostructures comprising a hierarchically self-assembled cellulose nanocrystal (CNC) have been exploited for the development of sensing, optoelectronics, and energy materials. Although multiple techniques are used for controlling the optical response and chiral nematic structure of CNC-derived materials, the presence of external studies that pristine CNC has chemoselectivity is not yet reported to implement this destination. Here, we report that the CNC film without modification shows a high optical sensitivity for glucose through color variation from blue to red. Moreover, various glucose homologs or analogs that only differ in terms of the orientation of a hydroxyl group are selectively distinguished through the naked eye. The excellent chemoselectivity of CNC is attributed to carbohydrate-carbohydrate selective hydrogen-bonding interactions. Close binding with glucose induces the rearrangement of a CNC chain and strengthens the repulsive interaction, thus increasing the helical pitch of the chiral nematic structure of the CNC film and changing its macroscopic color. This CNC chemoselectivity presents an unprecedented control of chiral nematic mesoporous carbon through monosaccharide species. The results provide a simple but highly efficient method to tune the optical and structural properties of CNC nanomaterials and to apply them for practical biosensors, chiral separation, and energy applications.
Collapse
Affiliation(s)
- Fusheng Zhang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Dongdong Wang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology , Tianjin University of Science and Technology , 26 Yingkou Road , Tanggu District, Tianjin 300000 , China
| | - Liang Feng
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|
44
|
Tian R, Li K, Shi W, Ding C, Lu C. In situ visualization of hydrophilic spatial heterogeneity inside microfluidic chips by fluorescence microscopy. LAB ON A CHIP 2019; 19:934-940. [PMID: 30810141 DOI: 10.1039/c8lc01336e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescence visualization for hydrophilic spatial heterogeneity inside microfluidic chips is a long-standing challenge owing to the lack of fluorescent dyes with high contrast between the target and the background noise. Herein, we used boronic acid in aggregation-induced emission (AIE) molecules as an anchor group towards modified hydroxyl groups, and an in situ visualization approach for hydrophilic spatial heterogeneity inside microfluidic chips was demonstrated. This success is based on the high-contrast of fluorescent behaviors for AIE molecules in aqueous solution and their immobilization by hydroxyl groups inside the microfluidic channels. In comparison to conventional laboratory-based ex situ techniques, the proposed strategy provides a direct representation for hydrophilic spatial heterogeneity, including the quantity and distribution of hydroxyl groups. This discovery not only identifies a previously unknown variability in hydrophilic spatial heterogeneity inside microfluidic channels, but also guides an optimal hydrophilic modification method in the channels.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
45
|
Fuscaldo RS, Vontobel PHV, Boeira EO, Moro AV, Costa JSD. Synthesis of Amino- and Hydroxymethyl Benzoxaboroles: Prominent Scaffolds for Further Functionalization. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodrigo S. Fuscaldo
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Pedro H. V. Vontobel
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Eduam O. Boeira
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Angélica V. Moro
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| | - Jessie S. da Costa
- Instituto de Química; Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS; Brazil
| |
Collapse
|
46
|
Fa S, Zhao Y. Synthetic nanoparticles for selective hydrolysis of bacterial autoinducers in quorum sensing. Bioorg Med Chem Lett 2019; 29:978-981. [PMID: 30795855 DOI: 10.1016/j.bmcl.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
N-acyl homoserine lactones (AHLs) are signal molecules used by a large number of gram-negative bacteria in quorum sensing and their hydrolysis is known to inhibit biofilm formation. Micellar imprinting of AHL-like templates with catalytic functional monomers yielded water-soluble nanoparticles with AHL-shaped active site and nearby catalytic groups. Either Lewis acidic zinc ions or nucleophilic pyridyl ligands could be introduced through this strategy, yielding artificial enzymes for the hydrolysis of AHLs in a substrate-selective fashion.
Collapse
Affiliation(s)
- Shixin Fa
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA.
| |
Collapse
|
47
|
Zhang S, Zhao Y. Tuning surface-cross-linking of molecularly imprinted cross-linked micelles for molecular recognition in water. J Mol Recognit 2018; 32:e2769. [PMID: 30419606 DOI: 10.1002/jmr.2769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Molecular recognition in water is an important challenge in supramolecular chemistry. Surface-core double cross-linking of template-containing surfactant micelles by the click reaction and free radical polymerization yields molecularly imprinted nanoparticles (MINPs) with guest-complementary binding sites. An important property of MINP-based receptors is the surface-cross-linking between the propargyl groups of the surfactants and a diazide cross-linker. Decreasing the number of carbons in between the two azides enhanced the binding affinity of the MINPs, possibly by keeping the imprinted binding site more open prior to the guest binding. The depth of the binding pocket can be controlled by the distribution of the hydrophilic/hydrophobic groups of the template and was found to influence the binding in addition to electrostatic interactions between oppositely charged MINPs and guests. Cross-linkers with an alkoxyamine group enabled two-stage double surface-cross-linking that strengthened the binding constants by an order of magnitude, possibly by expanding the binding pocket of the MINP into the polar region. The binding selectivity among very similar isomeric structures also improved.
Collapse
Affiliation(s)
- Shize Zhang
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, USA
| |
Collapse
|
48
|
Zhao Y. Sequence-Selective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting. Chemistry 2018; 24:14001-14009. [PMID: 29694679 PMCID: PMC6150789 DOI: 10.1002/chem.201801401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Indexed: 11/09/2022]
Abstract
Sequence-selective recognition of peptides in water has been one of the most important and yet unsolved problems in bioorganic and supramolecular chemistry. The motivation comes from not only the importance of these molecules in biology but also the fundamental challenges involved in the research. Molecular imprinting in doubly cross-linked surfactant micelles offers a unique solution to this problem by creating a "supramolecular code" on the micelle surface that matches the structural features of the peptide chain. Hydrophobic "dimples" are constructed on imprinted micelles that match the hydrophobic side chains of the peptide precisely in size and shape. Polar binding functionalities are installed at correct positions to interact with specific acidic and basic groups on the peptide. Secondary hydrogen-bonding and electrostatic interactions are introduced through imprinting to enhance the binding affinity and specificity further. Binding affinities of tens of nanomolar are readily achieved in water for biological peptides with over a dozen residues. Excellent binding selectivity is observed even for subtly different peptides. The synthesis of these protein-sized nanoparticles involves a one-pot reaction complete within 2 days; purification requires nothing but precipitation and solvent washing. These features make the molecularly imprinted nanoparticles (MINPs) highly promising peptide-binding "artificial antibodies" for chemical and biological applications.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, U.S.A., Fax: (+1) 515-294-0105,
| |
Collapse
|
49
|
Hu L, Zhao Y. Molecularly imprinted artificial esterases with highly specific active sites and precisely installed catalytic groups. Org Biomol Chem 2018; 16:5580-5584. [PMID: 30051894 DOI: 10.1039/c8ob01584h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A difficult challenge in synthetic enzymes is the creation of substrate-selective active sites with accurately positioned catalytic groups. Covalent molecular imprinting in cross-linked micelles afforded such active sites in protein-sized, water-soluble nanoparticle catalysts. Our method allowed a systematic tuning of the distance of the catalytic group to the bound substrate. The catalysts displayed enzyme-like kinetics and easily distinguished substrates with subtle structural differences.
Collapse
Affiliation(s)
- Lan Hu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|
50
|
Arifuzzaman MD, Zhao Y. Artificial Zinc Enzymes with Fine-Tuned Active Sites for Highly Selective Hydrolysis of Activated Esters. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02292] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- MD Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|