1
|
Zheng M, Kong L, Gao J. Boron enabled bioconjugation chemistries. Chem Soc Rev 2024. [PMID: 39479937 PMCID: PMC11525960 DOI: 10.1039/d4cs00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Indexed: 11/02/2024]
Abstract
Novel bioconjugation reactions have been heavily pursued for the past two decades. A myriad of conjugation reactions have been developed for labeling molecules of interest in their native context as well as for constructing multifunctional molecular entities or stimuli-responsive materials. A growing cluster of bioconjugation reactions were realized by tapping into the unique properties of boron. As a rare element in human biology, boronic acids and esters exhibit remarkable biocompatibility. A number of organoboron reagents have been evaluated for bioconjugation, targeting the reactivity of either native biomolecules or those incorporating bioorthogonal functional groups. Owing to the dynamic nature of B-O and B-N bond formation, a significant portion of the boron-enabled bioconjugations exhibit rapid reversibility and accordingly have found applications in the development of reversible covalent inhibitors. On the other hand, stable bioconjugations have been developed that display fast kinetics and significantly expand the repertoire of bioorthogonal chemistry. This contribution presents a summary and comparative analysis of the recently developed boron-mediated bioconjugations. Importantly, this article seeks to provide an in-depth discussion of the thermodynamic and kinetic profiles of these boron-enabled bioconjugations, which reveals structure-reactivity relationships and provides guidelines for bioapplications.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Lingchao Kong
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
2
|
Das BK, Chowdhury A, Chatterjee S, Tripathi NM, Pati B, Dutta S, Bandyopadhyay A. Harnessing a bis-electrophilic boronic acid lynchpin for azaborolo thiazolidine (ABT) grafting in cyclic peptides. Chem Sci 2024:d4sc04348k. [PMID: 39144456 PMCID: PMC11320178 DOI: 10.1039/d4sc04348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>103 M-1 s-1) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions. The ABT-crosslinked peptides are fairly stable in endogenous environments, but can provide the linear diazaborine peptides via treatment with α-nucleophiles. This efficient peptide crosslinking protocol was further extended for regioselective bicyclizations and engineering of α-helical structures. Finally, ABT-grafted peptides were exploited in biorthogonal conjugation, leading to highly effective intracellular delivery of an apoptotic peptide (KLA) in cancer cells. The mechanism of action by which ABT-grafted KLA peptide induces apoptosis was also explored.
Collapse
Affiliation(s)
- Basab Kanti Das
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Bibekananda Pati
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Soumit Dutta
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
3
|
Zheng Y, Zhu X, Jiang M, Cao F, You Q, Chen X. Development and Applications of D-Amino Acid Derivatives-based Metabolic Labeling of Bacterial Peptidoglycan. Angew Chem Int Ed Engl 2024; 63:e202319400. [PMID: 38284300 DOI: 10.1002/anie.202319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Peptidoglycan, an essential component within the cell walls of virtually all bacteria, is composed of glycan strands linked by stem peptides that contain D-amino acids. The peptidoglycan biosynthesis machinery exhibits high tolerance to various D-amino acid derivatives. D-amino acid derivatives with different functionalities can thus be specifically incorporated into and label the peptidoglycan of bacteria, but not the host mammalian cells. This metabolic labeling strategy is highly selective, highly biocompatible, and broadly applicable, which has been utilized in various fields. This review introduces the metabolic labeling strategies of peptidoglycan by using D-amino acid derivatives, including one-step and two-step strategies. In addition, we emphasize the various applications of D-amino acid derivative-based metabolic labeling, including bacterial peptidoglycan visualization (existence, biosynthesis, and dynamics, etc.), bacterial visualization (including bacterial imaging and visualization of growth and division, metabolic activity, antibiotic susceptibility, etc.), pathogenic bacteria-targeted diagnostics and treatment (positron emission tomography (PET) imaging, photodynamic therapy, photothermal therapy, gas therapy, immunotherapy, etc.), and live bacteria-based therapy. Finally, a summary of this metabolic labeling and an outlook is provided.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
4
|
Zheng Y, Jiang M, Zhu X, Chen Y, Feng L, Zhu H. Metabolic labeling-mediated visualization, capture, and inactivation of Gram-positive bacteria via biotin-streptavidin interactions. Chem Commun (Camb) 2024. [PMID: 38477080 DOI: 10.1039/d4cc00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We introduce a biotinylated D-amino acid probe capable of metabolically incorporating into bacterial PG. Leveraging the robust affinity between biotin and streptavidin, the probe has demonstrated efficacy in imaging, capture, and targeted inactivation of Gram-positive bacteria through synergistic pairings with commercially available streptavidin-modified fluorescent dyes and nanomaterials. The versatility of the probe is underscored by its compatibility with a variety of commercially available streptavidin-modified reagents. This adaptability allows the probe to be applied across diverse scenarios by integrating with these commercial reagents.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Yuyuan Chen
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Lisha Feng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| |
Collapse
|
5
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
6
|
Haggett JG, Domaille DW. ortho-Boronic Acid Carbonyl Compounds and Their Applications in Chemical Biology. Chemistry 2024; 30:e202302485. [PMID: 37967030 DOI: 10.1002/chem.202302485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
Iminoboronates and diazaborines are related classes of compounds that feature an imine ortho to an arylboronic acid (iminoboronate) or a hydrazone that cyclizes with an ortho arylboronic acid (diazaborine). Rather than acting as independent chemical motifs, the arylboronic acid impacts the rate of imine/hydrazone formation, hydrolysis, and exchange with competing nucleophiles. Increasing evidence has shown that the imine/hydrazone functionality also impacts arylboronic acid reactivity toward diols and reactive oxygen and nitrogen species (ROS/RNS). Untangling the communication between C=N linked functionalities and arylboronic acids has revealed a powerful and tunable motif for bioconjugation chemistries and other applications in chemical biology. Here, we survey the applications of iminoboronates and diazaborines in these fields with an eye toward understanding their utility as a function of neighboring group effects.
Collapse
Affiliation(s)
- Jack G Haggett
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
- Quantitative Biology and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
7
|
van der Zouwen AJ, Jeucken A, van der Pol E, Boerema G, Slotboom DJ, Witte MD. The linkage-type and the exchange molecule affect the protein-labeling efficiency of iminoboronate probes. Org Biomol Chem 2023; 21:9173-9181. [PMID: 37947354 PMCID: PMC10686633 DOI: 10.1039/d3ob01269g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Reversible bioorthogonal conjugation reactions have been exploited in the chemoproteomic field to prepare protein labeling reagents and to visualize labeled proteins. We recently demonstrated that reversible iminoboronates can be used to prepare probes from fragment libraries and that the linkage subsequently can be used to detect the labeled proteins. In this study, we determined the effect of the stability of the iminoboronate linkage on the efficiency of the labeling protocol. Our study reveals that the linkage should be stable enough to allow for efficient targeting, but should be labile enough to detect the labeled protein. Acyl hydrazides were identified as the most suitable handles for the probe synthesis step. Anthranilic hydrazides and N-hydroxy semicarbazides were found to be the most efficient read-out molecules. With these novel exchange molecules, native probe-labeled proteins could be visualized under physiological conditions.
Collapse
Affiliation(s)
- Antonie J van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Aike Jeucken
- Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | - Elske van der Pol
- Chemical Biology II, Stratingh Institute for Chemistry, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Gerben Boerema
- Chemical Biology II, Stratingh Institute for Chemistry, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Dirk J Slotboom
- Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | - Martin D Witte
- Chemical Biology II, Stratingh Institute for Chemistry, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
8
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Palma F, Dell'Annunziata F, Folliero V, Foglia F, Marca RD, Zannella C, De Filippis A, Franci G, Galdiero M. Cupferron impairs the growth and virulence of Escherichia coli clinical isolates. J Appl Microbiol 2023; 134:lxad222. [PMID: 37796875 DOI: 10.1093/jambio/lxad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
AIMS Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Francesco Foglia
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
10
|
Chowdhury A, Chatterjee S, Kushwaha A, Nanda S, Dhilip Kumar TJ, Bandyopadhyay A. Sulfonyl Diazaborine 'Click' Chemistry Enables Rapid and Efficient Bioorthogonal Labeling. Chemistry 2023; 29:e202300393. [PMID: 37155600 DOI: 10.1002/chem.202300393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
Finding an ideal bioorthogonal reaction that responds to a wide range of biological queries and applications is of great interest in biomedical applications. Rapid diazaborine (DAB) formation in water by the reactions of ortho-carbonyl phenylboronic acid with α-nucleophiles is an attractive conjugation module. Nevertheless, these conjugation reactions demand to satisfy stringent criteria for bioorthogonal applications. Here we show that widely used sulfonyl hydrazide (SHz) offers a stable DAB conjugate by combining with ortho-carbonyl phenylboronic acid at physiological pH, competent for an optimal biorthogonal reaction. Remarkably, the reaction conversion is quantitative and rapid (k2 >103 M-1 s-1 ) at low micromolar concentrations, and it preserves comparable efficacy in a complex biological milieu. DFT calculations support that SHz facilitates DAB formation via the most stable hydrazone intermediate and the lowest energy transition state compared to other biocompatible α-nucleophiles. This conjugation is extremely efficient on living cell surfaces, enabling compelling pretargeted imaging and peptide delivery. We anticipate this work will permit addressing a wide range of cell biology queries and drug discovery platforms exploiting commercially available sulfonyl hydrazide fluorophores and derivatives.
Collapse
Affiliation(s)
- Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Apoorv Kushwaha
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Sidhanta Nanda
- Immunology Lab, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - T J Dhilip Kumar
- Quantum Dynamics Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
11
|
Padanha R, Cavadas RAN, Merino P, António JPM, Gois PMP. N-Terminal Cysteine Bioconjugation with (2-Cyanamidophenyl)boronic Acids Enables the Direct Formation of Benzodiazaborines on Peptides. Org Lett 2023. [PMID: 37466099 PMCID: PMC10391619 DOI: 10.1021/acs.orglett.3c01835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Benzodiazaborines (BDABs) have emerged as a valuable tool to produce stable and functional bioconjugates via a click-type transformation. However, the current available methods to install them on peptides lack bioorthogonality, limiting their applications. Here, we report a strategy to install BDABs directly on peptide chains using (2-cyanamidophenyl)boronic acids (2CyPBAs). The resulting BDAB is stabilized through the formation of a key intramolecular B-N bond. This technology was applied in the selective modification of N-terminal cysteine-containing functional peptides.
Collapse
Affiliation(s)
- Rita Padanha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rafaela A N Cavadas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - João P M António
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
12
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Rose NC, Sanchez AV, Tipple EF, Lynam JM, Spicer CD. Insight into ortho-boronoaldehyde conjugation via a FRET-based reporter assay. Chem Sci 2022; 13:12791-12798. [PMID: 36519041 PMCID: PMC9645387 DOI: 10.1039/d2sc04574e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2023] Open
Abstract
Ortho-boronoaldehydes react with amine-based nucleophiles with dramatically increased rates and product stabilities, relative to unfunctionalised benzaldehydes, leading to exciting applications across biological and material chemistry. We have developed a novel Förster resonance energy transfer (FRET)-based assay to provide key new insights into the reactivity of these boronoaldehydes, allowing us to track conjugation with unprecedented sensitivity and accuracy under standardised conditions. Our results highlight the key role played by reaction pH, buffer additives, and boronoaldehyde structure in controlling conjugation speed and stability, providing design criteria for further innovations and applications in the field.
Collapse
Affiliation(s)
- Nicholas C Rose
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Anaïs V Sanchez
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Eve F Tipple
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington YO10 5DD UK
| | - Christopher D Spicer
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| |
Collapse
|
14
|
Cho H, Lee S, Han MS. Investigation of a benzodiazaborine library to identify new pH-responsive fluorophores. Org Biomol Chem 2022; 20:4986-4992. [PMID: 35678608 DOI: 10.1039/d2ob00817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection of pH is important owing to its significance in various processes, such as clinical and industrial processes. Numerous fluorescent pH probes have been developed using a variety of fluorophores; however, most are only suitable for application in a narrow pH range (between 5 and 8) owing to the lack of diversity of the pH-sensitive units. Furthermore, probes suitable for sensing high pHs have rarely been studied despite the importance of reliable detection of high pH in various industrial processes. In this study, we prepared a benzodiazaborine (bDAB) library consisting of 238 different bDABs through combinatorial synthesis to investigate their suitability as fluorescent pH probes. Informed by the results of a fluorescence-based, high-throughput screening of the library, we identified four bDABs that exhibit promising pH-sensitive ratiometric fluorescence responses. Their pKas vary significantly, ranging from 7.29 to 12.44, indicating their suitability for the detection of basic pHs even in extremely basic environments (pH > 10). Furthermore, their fluorescence responses show high stability, anti-interference, and reversibility under various pH conditions.
Collapse
Affiliation(s)
- Hyungjin Cho
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Suji Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
15
|
Lu D, Li Y, Wang P, Wang Z, Yang D, Gong Y. Cu-Catalyzed C (sp3)–N Coupling and Alkene Carboamination Enabled by Ligand-Promoted Selective Hydrazine Transfer to Alkyl Radicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yadong Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Zijie Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Daoyi Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| |
Collapse
|
16
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
17
|
Li Z, Zhang L, Zhou Y, Zha D, Hai Y, You L. Dynamic Covalent Reactions Controlled by Ring‐Chain Tautomerism of 2‐Formylbenzoic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Li
- College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ling Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei You
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
18
|
Chatterjee S, Tripathi NM, Bandyopadhyay A. The modern role of boron as a 'magic element' in biomedical science: chemistry perspective. Chem Commun (Camb) 2021; 57:13629-13640. [PMID: 34846393 DOI: 10.1039/d1cc05481c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Boron was misconstrued as a toxic element for animals, which retarded the growth of boron-containing drug discovery in the last century. Nevertheless, modern applications of boronic acid derivatives are attractive in biomedical applications after the declaration that boron is a 'probable essential element' for humans by the WHO. Additionally, the approval of five boronic acid-containing drugs by the FDA has vastly impacted the use of boron in medicinal chemistry, chemical biology, drug delivery, biomaterial exploration, pharmacological improvements, and nutrition. This review article focuses on the chemistries attributed to boronic acids at physiological pH, enticing chemists to multidisciplinary applications. Prospective uses of boronic acid in pharma and chemical biology, along with prospects and challenges, are also part of the deliberation. Understanding these fundamental chemistries and interactions of boronic acid in biological systems will enable solving future challenges in drug discovery and executing space-age applications.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| |
Collapse
|
19
|
António JPM, Carvalho JI, André AS, Dias JNR, Aguiar SI, Faustino H, Lopes RMRM, Veiros LF, Bernardes GJL, Silva FA, Gois PMP. Diazaborines Are a Versatile Platform to Develop ROS‐Responsive Antibody Drug Conjugates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- João P. M. António
- Research Institute for Medicines (iMed.ULisboa) Faculdade de Farmácia Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Joana Inês Carvalho
- Research Institute for Medicines (iMed.ULisboa) Faculdade de Farmácia Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Ana S. André
- Centro de Investigação Interdisciplinar em Sanidade Animal Faculdade de Medicina Veterinária Universidade de Lisboa Av. Universidade Técnica 1300-477 Lisboa Portugal
| | - Joana N. R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal Faculdade de Medicina Veterinária Universidade de Lisboa Av. Universidade Técnica 1300-477 Lisboa Portugal
| | - Sandra I. Aguiar
- Centro de Investigação Interdisciplinar em Sanidade Animal Faculdade de Medicina Veterinária Universidade de Lisboa Av. Universidade Técnica 1300-477 Lisboa Portugal
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) Faculdade de Farmácia Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Ricardo M. R. M. Lopes
- Research Institute for Medicines (iMed.ULisboa) Faculdade de Farmácia Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1 1049-001 Lisboa Portugal
| | - Gonçalo J. L. Bernardes
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road CB2 1EW Cambridge United Kingdom
| | - Frederico A. Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal Faculdade de Medicina Veterinária Universidade de Lisboa Av. Universidade Técnica 1300-477 Lisboa Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa) Faculdade de Farmácia Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| |
Collapse
|
20
|
António JPM, Carvalho JI, André AS, Dias JNR, Aguiar SI, Faustino H, Lopes RMRM, Veiros LF, Bernardes GJL, da Silva FA, Gois PMP. Diazaborines Are a Versatile Platform to Develop ROS-Responsive Antibody Drug Conjugates*. Angew Chem Int Ed Engl 2021; 60:25914-25921. [PMID: 34741376 DOI: 10.1002/anie.202109835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugates (ADCs) are a new class of therapeutics that combine the lethality of potent cytotoxic drugs with the targeting ability of antibodies to selectively deliver drugs to cancer cells. In this study we show for the first time the synthesis of a reactive-oxygen-species (ROS)-responsive ADC (VL-DAB31-SN-38) that is highly selective and cytotoxic to B-cell lymphoma (CLBL-1 cell line, IC50 value of 54.1 nM). The synthesis of this ADC was possible due to the discovery that diazaborines (DABs) are a very effective ROS-responsive unit that are also very stable in buffer and in plasma. DFT calculations performed on this system revealed a favorable energetic profile (ΔGR=-74.3 kcal mol-1 ) similar to the oxidation mechanism of aromatic boronic acids. DABs' very fast formation rate and modularity enabled the construction of different ROS-responsive linkers featuring self-immolative modules, bioorthogonal functions, and bioconjugation handles. These structures were used in the site-selective functionalization of a VL antibody domain and in the construction of the homogeneous ADC.
Collapse
Affiliation(s)
- João P M António
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Joana Inês Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ana S André
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Joana N R Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Sandra I Aguiar
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ricardo M R M Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Frederico A da Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
21
|
Cai P, Schneider LA, Stress C, Gillingham D. Building Boron Heterocycles into DNA-Encoded Libraries. Org Lett 2021; 23:8772-8776. [PMID: 34723549 DOI: 10.1021/acs.orglett.1c03262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA-encoded library (DEL) technology uses DNA tags to track the synthetic history of individual members in a split-and-pool combinatorial synthesis scheme. DEL synthesis hinges on robust methodologies that tolerate combinatorial synthesis schemes while not destroying the information in DNA. We introduce here a DEL-compatible reaction that assembles a boron-containing pyridazine heterocycle. The heterocycle is unique because it can engage in reversible covalent interactions with alcohols─a feature that, until now, has not been deliberately engineered into DELs.
Collapse
Affiliation(s)
- Pinwen Cai
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Lukas A Schneider
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cedric Stress
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
22
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
23
|
Hu Y, Schomaker JM. Recent Developments and Strategies for Mutually Orthogonal Bioorthogonal Reactions. Chembiochem 2021; 22:3254-3262. [PMID: 34261195 DOI: 10.1002/cbic.202100164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade, several different metal-free bioorthogonal reactions have been developed to enable simultaneous double-click labeling with minimal-to-no competing cross-reactivities; such transformations are termed 'mutually orthogonal'. More recently, several examples of successful triple ligation strategies have also been described. In this minireview, we discuss selected aspects of the development of orthogonal bioorthogonal reactions over the past decade, including general strategies to drive future innovations to achieve simultaneous, mutually orthogonal click reactions in one pot.
Collapse
Affiliation(s)
- Yun Hu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
24
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
25
|
Asiimwe N, Al Mazid MF, Murale DP, Kim YK, Lee J. Recent advances in protein modifications techniques for the targeting
N‐terminal
cysteine. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Asiimwe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | | | | | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | - Jun‐Seok Lee
- Department of Pharmacology Korea University College of Medicine Seoul Korea
| |
Collapse
|
26
|
Wan W, Huang Y, Xia Q, Bai Y, Chen Y, Jin W, Wang M, Shen D, Lyu H, Tang Y, Dong X, Gao Z, Zhao Q, Zhang L, Liu Y. Covalent Probes for Aggregated Protein Imaging via Michael Addition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuqi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
27
|
Wan W, Huang Y, Xia Q, Bai Y, Chen Y, Jin W, Wang M, Shen D, Lyu H, Tang Y, Dong X, Gao Z, Zhao Q, Zhang L, Liu Y. Covalent Probes for Aggregated Protein Imaging via Michael Addition. Angew Chem Int Ed Engl 2021; 60:11335-11343. [DOI: 10.1002/anie.202015988] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuwen Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuqi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
28
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
29
|
Klass SH, Sofen LE, Hallberg ZF, Fiala TA, Ramsey AV, Dolan NS, Francis MB, Furst AL. Covalent capture and electrochemical quantification of pathogenic E. coli. Chem Commun (Camb) 2021; 57:2507-2510. [PMID: 33585846 PMCID: PMC9274617 DOI: 10.1039/d0cc08420d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pathogenic E. coli pose a significant threat to public health, as strains of this species cause both foodborne illnesses and urinary tract infections. Using a rapid bioconjugation reaction, we selectively capture E. coli at a disposable gold electrode from complex solutions and accurately quantify the pathogenic microbes using electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Sarah H Klass
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Laura E Sofen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zachary F Hallberg
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Tahoe A Fiala
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Nicholas S Dolan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
30
|
Groleau RR, James TD, Bull SD. The Bull-James assembly: Efficient iminoboronate complex formation for chiral derivatization and supramolecular assembly. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
António JPM, Faustino H, Gois PMP. A 2-formylphenylboronic acid (2FPBA)-maleimide crosslinker: a versatile platform for Cys-peptide-hydrazine conjugation and interplay. Org Biomol Chem 2021; 19:6221-6226. [PMID: 34198316 DOI: 10.1039/d1ob00917f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we describe the preparation of a heterobifunctional 2-formylphenylboronic acid (2-FPBA)-maleimide crosslinker and explore its versatility in the preparation of various bioconjugates. We demonstrate the straightforward attachment of hydrazine payloads to cysteine residues in peptides, as well as the crosslinking of different thiol-bearing peptides or payloads with N-terminal cysteine peptides. Importantly, the dynamic nature of the 2-FPBA handle enables an interplay between the thiazolidine and diazaborine forms, which allows obtaining various products controlled by (and in some cases independent of) the order of addition of the components.
Collapse
Affiliation(s)
- João P M António
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal. and Chimie ParisTech, PSL University, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal. and Association BLC3-Innovation and Technology Campus, Oliveira do Hospital, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
32
|
Chatterjee S, Anslyn EV, Bandyopadhyay A. Boronic acid based dynamic click chemistry: recent advances and emergent applications. Chem Sci 2020; 12:1585-1599. [PMID: 34163920 PMCID: PMC8179052 DOI: 10.1039/d0sc05009a] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Recently, reversible click reactions have found numerous applications in chemical biology, supramolecular chemistry, and biomedical applications. Boronic acid (BA)-mediated cis-diol conjugation is one of the best-studied reactions among them. An excellent understanding of the chemical properties and biocompatibility of BA-based compounds has inspired the exploration of novel chemistries using boron to fuel emergent sciences. This topical review focuses on the recent progress of iminoboronate and salicylhydroxamic-boronate constituted reversible click chemistries in the past decade. We highlight the mechanism of reversible kinetics and its applications in chemical biology, medicinal chemistry, biomedical devices, and material chemistry. This article also emphasizes the fundamental reactivity of these two conjugate chemistries with assorted nucleophiles at variable pHs, which is of utmost importance to any stimuli-responsive biological and material chemistry explorations.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| | - Eric V Anslyn
- Department of Chemistry, University of Texas 1 University Station A1590 Austin Texas 78712 USA
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| |
Collapse
|
33
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
34
|
Chio TI, Demestichas BR, Brems BM, Bane SL, Tumey LN. Expanding the Versatility of Microbial Transglutaminase Using α‐Effect Nucleophiles as Noncanonical Substrates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tak Ian Chio
- Department of Chemistry Binghamton University State University of New York 25 Murray Hill Rd Vestal NY 13850 USA
| | - Breanna R. Demestichas
- Department of Chemistry Binghamton University State University of New York 25 Murray Hill Rd Vestal NY 13850 USA
| | - Brittany M. Brems
- Department of Pharmaceutical Sciences Binghamton University State University of New York 96 Corliss Ave Johnson City NY 13790 USA
| | - Susan L. Bane
- Department of Chemistry Binghamton University State University of New York 25 Murray Hill Rd Vestal NY 13850 USA
| | - L. Nathan Tumey
- Department of Pharmaceutical Sciences Binghamton University State University of New York 96 Corliss Ave Johnson City NY 13790 USA
| |
Collapse
|
35
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
36
|
Chio TI, Demestichas BR, Brems BM, Bane SL, Tumey LN. Expanding the Versatility of Microbial Transglutaminase Using α-Effect Nucleophiles as Noncanonical Substrates. Angew Chem Int Ed Engl 2020; 59:13814-13820. [PMID: 32268004 DOI: 10.1002/anie.202001830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Indexed: 12/12/2022]
Abstract
The substrate promiscuity of microbial transglutaminase (mTG) has been exploited in various applications in biotechnology, in particular for the attachment of alkyl amines to glutamine-containing peptides and proteins. Here, we expand the substrate repertoire to include hydrazines, hydrazides, and alkoxyamines, resulting in the formation of isopeptide bonds with varied susceptibilities to hydrolysis or exchange by mTG. Furthermore, we demonstrate that simple unsubstituted hydrazine and dihydrazides can be used to install reactive hydrazide handles onto the side chain of internal glutamine residues. The distinct hydrazide handles can be further coupled with carbonyls, including ortho-carbonylphenylboronic acids, to form site-specific and functional bioconjugates with tunable hydrolytic stability. The extension of the substrate scope of mTG beyond canonical amines thus substantially broadens the versatility of the enzyme, providing a new approach to facilitate novel applications.
Collapse
Affiliation(s)
- Tak Ian Chio
- Department of Chemistry, Binghamton University, State University of New York, 25 Murray Hill Rd, Vestal, NY, 13850, USA
| | - Breanna R Demestichas
- Department of Chemistry, Binghamton University, State University of New York, 25 Murray Hill Rd, Vestal, NY, 13850, USA
| | - Brittany M Brems
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, 96 Corliss Ave, Johnson City, NY, 13790, USA
| | - Susan L Bane
- Department of Chemistry, Binghamton University, State University of New York, 25 Murray Hill Rd, Vestal, NY, 13850, USA
| | - L Nathan Tumey
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, 96 Corliss Ave, Johnson City, NY, 13790, USA
| |
Collapse
|
37
|
Jiang S, Wu X, Liu H, Deng J, Zhang X, Yao Z, Zheng Y, Li B, Yu Z. Ring‐Strain‐Promoted Ultrafast Diaryltetrazole–Alkyne Photoclick Reactions Triggered by Visible Light. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Hui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jiajie Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Bo Li
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
38
|
Koo SM, Vendola AJ, Momm SN, Morken JP. Alkyl Group Migration in Ni-Catalyzed Conjunctive Coupling with C(sp 3) Electrophiles: Reaction Development and Application to Targets of Interest. Org Lett 2020; 22:666-669. [PMID: 31909622 PMCID: PMC7054899 DOI: 10.1021/acs.orglett.9b04453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic conjunctive cross-coupling reaction is developed that allows the construction of chiral organoboronic esters from alkylboron ate complexes and alkyl iodide electrophiles. The process occurs most efficiently with a Ni/Pybox-comprised catalyst and with an acenapthoquinone-derived boron ligand. Because of the broad functional group tolerance of this reaction, it can be a versatile tool for organic synthesis. Applications to the construction of (R)-coniine and (-)-indolizidine 209D are described.
Collapse
Affiliation(s)
- Seung Moh Koo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alex J. Vendola
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Sarah Noemi Momm
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
39
|
Van Lijsebetten F, Holloway JO, Winne JM, Du Prez FE. Internal catalysis for dynamic covalent chemistry applications and polymer science. Chem Soc Rev 2020; 49:8425-8438. [DOI: 10.1039/d0cs00452a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we provide a concise analysis of internal catalysis as an attractive design principle to combine chemical robustness with reactivity in dynamic covalent chemistry applications and a material context.
Collapse
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences, Ghent University
- Ghent
| | - Joshua O. Holloway
- Polymer Chemistry Research group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences, Ghent University
- Ghent
| | - Johan M. Winne
- Laboratory of Organic Synthesis
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences
- Ghent University
- Ghent
| | - Filip E. Du Prez
- Polymer Chemistry Research group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences, Ghent University
- Ghent
| |
Collapse
|
40
|
Gu H, Ghosh S, Staples RJ, Bane SL. β-Hydroxy-Stabilized Boron-Nitrogen Heterocycles Enable Rapid and Efficient C-Terminal Protein Modification. Bioconjug Chem 2019; 30:2604-2613. [PMID: 31483610 DOI: 10.1021/acs.bioconjchem.9b00534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bioorthogonal chemistry has enabled the development of bioconjugates in physiological environments while averting interference from endogenous biomolecules. Reactions between carbonyl-containing molecules and alkoxyamines or hydrazines have experienced a resurgence in popularity in bioorthogonal chemistry owing to advances that allow the reactions to occur under physiological conditions. In particular, ortho-carbonyl-substituted phenylboronic acids (CO-PBAs) exhibit greatly accelerated rates of hydrazone and oxime formation via intramolecular Lewis acid catalysis. Unfortunately, the rate of the reverse reaction is also increased, yielding a kinetically less stable bioconjugate. When the substrate is a hydrazine derivative, an intramolecular reaction between the boronic acid and the hydrazone can lead to the formation of a heterocycle containing a boron-nitrogen bond. We have shown previously that α-amino hydrazides undergo rapid reaction with CO-PBAs to form highly stable, tricyclic products, and that this reaction is orthogonal to the popular azide-alkyne and tetrazine-alkene reactions. In this work, we explore a series of heteroatom-substituted hydrazides for their ability to form tricyclic products with two CO-PBAs, 2-formylphenylboronic acid (2fPBA), and 2-acetylphenylboronic acid (AcPBA). In particular, highly stable products were formed using β-hydroxy hydrazides and 2fPBA. C-Terminal β-hydroxy hydrazide proteins are available using conventional biochemical methods, which alleviates one of the difficulties with applications of bioorthogonal chemical reactions: site-specific incorporation of a reactive group into the biomolecular target. Using sortase-mediated ligation (SML), C-terminal threonine and serine hydrazides were appended to a model eGFP protein in high yield. Subsequent labeling with 2fPBA functionalized probes could be performed quickly and quantitatively at neutral pH using micromolar concentrations of reactants. The SML process was applied directly to an expressed protein in cellular extract, and the C-terminal modified target protein was selectively immobilized using 2fPBA-agarose. Elution from the agarose yielded a highly pure protein that retained the hydrazide functionality. This strategy should be generally applicable for rapid, efficient site-specific protein labeling, protein immobilization, and preparation of highly pure functionalized proteins.
Collapse
Affiliation(s)
- Han Gu
- Department of Chemistry , Binghamton University, State University of New York , Binghamton , New York 13902 , United States
| | - Saptarshi Ghosh
- Department of Chemistry , Binghamton University, State University of New York , Binghamton , New York 13902 , United States
| | - Richard J Staples
- Department of Chemistry and Chemical Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Susan L Bane
- Department of Chemistry , Binghamton University, State University of New York , Binghamton , New York 13902 , United States
| |
Collapse
|
41
|
Li K, Kelly MA, Gao J. Biocompatible conjugation of Tris base to 2-acetyl and 2-formyl phenylboronic acid. Org Biomol Chem 2019; 17:5908-5912. [PMID: 31145403 PMCID: PMC6581600 DOI: 10.1039/c9ob00726a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We describe the biocompatible conjugation of the Tris base to 2-formyl and 2-acetylphenylboronic acid (abbreviated as 2-FPBA and 2-APBA respectively), which have emerged as a versatile chemotype for fast biocompatible conjugation reactions. Tris base was found to react with 2-FPBA/APBA to give oxazolidinoboronate (OzB) complexes, analogous to the thiazolidinoboronate (TzB) and imidazolidinoboronate (IzB) complex formation that we recently reported. The Tris conjugations proceed well in complex biological media, and in contrast to the TzB/IzB complexes, the Tris conjugates exhibit superior kinetic stability (dissociation over days) as well as chemical stability against oxidation. We demonstrate the utility of such conjugation chemistries via a small molecule-induced peptide cyclization in blood serum.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| | - Michael A Kelly
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, USA.
| |
Collapse
|
42
|
Liang Y, Liu Q, Zhou Y, Chen S, Yang L, Zhu M, Wang Q. Counting and Recognizing Single Bacterial Cells by a Lanthanide-Encoding Inductively Coupled Plasma Mass Spectrometric Approach. Anal Chem 2019; 91:8341-8349. [DOI: 10.1021/acs.analchem.9b01130] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yong Liang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min Zhu
- PerkinElmer Instruments (Shanghai) Co. Ltd., Shanghai 201203, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Lab of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
43
|
Xu Y, Wang Y, Liu P, Chu GC, Xu H, Li YM, Wang J, Shi J. Catalyst free hydrazone ligation for protein labeling and modification using electron-deficient benzaldehyde reagents. Org Biomol Chem 2019; 16:7036-7040. [PMID: 30238118 DOI: 10.1039/c8ob01810c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bioorthogonal reactions have emerged as valuable tools for site-specific protein labeling and modification in vitro and in vivo. Hydrazone and oxime ligation has recently attracted considerable attention for wide applications in the conjugation of biomolecules. However, this kind of reaction has suffered from slow kinetics under physiological conditions and toxicity or complications of the reaction system due to catalysts. In this work we have developed an electron-deficient benzaldehyde reagent, which can be easily equipped with various types of bio-functional molecules for catalyst-free hydrazone ligation. The reagent can be equipped with not only small molecules such as fluorescence dyes or drugs, but also macromolecules like PEG. These can be precisely ligated to the C-terminus of proteins by an efficient hydrazone reaction at neutral pH and room temperature. The new reagent based catalyst-free hydrazone ligation provides a practical approach for the site specific modification of proteins.
Collapse
Affiliation(s)
- Yang Xu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lindl F, Lin S, Krummenacher I, Lenczyk C, Stoy A, Müller M, Lin Z, Braunschweig H. 1,2,3-Diazaborinin: ein BN-Analogon des Pyridins durch Borol-Ringerweiterung mit einem organischen Azid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Felix Lindl
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
- Institut für Nachhaltige Chemie & Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Shujuan Lin
- Departement Chemie; Universität für Wissenschaft und Technologie Hongkong; Clear Water Bay Kowloon, Hongkong China
| | - Ivo Krummenacher
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
- Institut für Nachhaltige Chemie & Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Carsten Lenczyk
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
- Institut für Nachhaltige Chemie & Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Andreas Stoy
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
- Institut für Nachhaltige Chemie & Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Marcel Müller
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
- Institut für Nachhaltige Chemie & Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| | - Zhenyang Lin
- Departement Chemie; Universität für Wissenschaft und Technologie Hongkong; Clear Water Bay Kowloon, Hongkong China
| | - Holger Braunschweig
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
- Institut für Nachhaltige Chemie & Katalyse mit Bor; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
45
|
António JPM, Russo R, Carvalho CP, Cal PMSD, Gois PMP. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev 2019; 48:3513-3536. [DOI: 10.1039/c9cs00184k] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes boronic acid's contribution to the development of bioconjugates with a particular focus on the molecular mechanisms underlying its role in the construction and function of the bioconjugate, namely as a bioconjugation warhead, as a payload and as part of a bioconjugate linker.
Collapse
Affiliation(s)
- João P. M. António
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Roberto Russo
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Cátia Parente Carvalho
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular
- Faculty of Medicine
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| |
Collapse
|
46
|
Parmar S, Pawar SP, Iyer R, Kalia D. Aldehyde-mediated bioconjugation via in situ generated ylides. Chem Commun (Camb) 2019; 55:14926-14929. [DOI: 10.1039/c9cc07443k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a technically simple approach for rapid, high-yielding and site-selective aldehyde-mediated bioconjugation for protein labelling and cellular applications.
Collapse
Affiliation(s)
- Sangeeta Parmar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462066
- India
| | - Sharad P. Pawar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462066
- India
| | - Ramkumar Iyer
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462066
- India
| | - Dimpy Kalia
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462066
- India
| |
Collapse
|
47
|
Ramsaywack S, Bos A, Vogels CM, Gray CA, Westcott SA. Preliminary investigations into the synthesis and antimicrobial activities of boron-containing capsaicinoids. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This preliminary study reports on the synthesis of two new boron-capsaicin derivatives containing either a short or long chain aliphatic tail group using an iridium catalyzed hydroboration reaction with pinacolborane. The boronate ester groups reside on the terminal position of the tail group and are necessary for the bioactivity of these compounds. Indeed, both compounds showed considerable activity against two Gram-positive bacteria, including Vancomycin-resistant Enterococcus. Vancomycin is considered the last resort medication for the treatment of septicemia, and new antibacterial agents that can treat sepsis are of paramount importance. The more lipophilic boron compound with the longer aliphatic chain also showed antifungal activity against Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Sharwatie Ramsaywack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Allyson Bos
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher A. Gray
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
48
|
Lindl F, Lin S, Krummenacher I, Lenczyk C, Stoy A, Müller M, Lin Z, Braunschweig H. 1,2,3-Diazaborinine: A BN Analogue of Pyridine Obtained by Ring Expansion of a Borole with an Organic Azide. Angew Chem Int Ed Engl 2018; 58:338-342. [DOI: 10.1002/anie.201811601] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Felix Lindl
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Shujuan Lin
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon, Hong Kong China
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Carsten Lenczyk
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Andreas Stoy
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Marcel Müller
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Zhenyang Lin
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon, Hong Kong China
| | - Holger Braunschweig
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
49
|
Scott RS, Veinot AJ, Stack DL, Gormley PT, Khuong BN, Vogels CM, Masuda JD, Baerlocher FJ, MacCormack TJ, Westcott SA. Synthesis, reactivity, and antimicrobial properties of boron-containing 4-ethyl-3-thiosemicarbazide derivatives. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The addition of 4-ethyl-3-thiosemicarbazide to benzaldehyde and boronic acid containing derivatives afforded the corresponding thiosemicarbazones (1–3) or benzodiazaborines (4–6) depending on the position of the boronic acid within the ring. All compounds have been characterized fully including an X-ray diffraction study of the methoxy-containing benzodiazaborine 6. Attempts to coordinate thiosemicarbazones 2 and 3 to palladium(II) acetate were unsuccessful; however, addition of the non-boron-containing derivative 1 to palladium afforded complex 7 whose molecular structure was determined by an X-ray diffraction study. The initial bioactivities of compounds 1–7 were examined against two fungi, Aspergillus niger and Saccharomyces cerevisiae, and two bacteria, Bacillus cereus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ryan S. Scott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Alex J. Veinot
- Department of Chemistry, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Darcie L. Stack
- Department of Chemistry, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Patrick T. Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - B. Ninh Khuong
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jason D. Masuda
- Department of Chemistry, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Felix J. Baerlocher
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Tyson J. MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
50
|
Akgun B, Hall DG. Boronic Acids as Bioorthogonal Probes for Site‐Selective Labeling of Proteins. Angew Chem Int Ed Engl 2018; 57:13028-13044. [DOI: 10.1002/anie.201712611] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/23/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Burcin Akgun
- Department of Chemistry—CCIS 4–010University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Dennis G. Hall
- Department of Chemistry—CCIS 4–010University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|