1
|
Zhang Z, Li X, Cheng Y, Yao Y, Li R, Liu Q, Yang H, Chen X. Stimuli-Responsive Photoluminescent Molecular Tweezers for Highly Enantioselective Discrimination of Chiral Primary Amines. Anal Chem 2024; 96:19632-19640. [PMID: 39600136 DOI: 10.1021/acs.analchem.4c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
To address the challenge of chiral recognition in terms of efficiency and generality, we propose a novel fluorescence sensing approach by rationally designing metal-ion-responsive chiral molecular tweezers. The flexible and adaptable molecular tweezers enable facile recognition of 31 structurally varied chiral primary amine compounds, including amino acids, amino acid esters, and chiral amines. Notably, upon stimulation by zinc ions, the chiral molecular tweezers demonstrate a higher enantioselective fluorescence response. Combined density functional theory calculations reveal that the chiral sensing mechanism relies on differential reaction rates and potential hydrogen-bonding interactions between the two enantiomers and the chiral receptor, which results in one of the enantiomers forming a more abundant, stable, and structurally rigid complex with the receptor, resulting in a significant increase in the fluorescence intensity and enantioselectivity. The stimuli-responsive molecular tweezers approach provides a novel strategy for precise stereocontrol and universality of chiral recognition, offering a promising tool for applications in various fields.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoxing Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
2
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2024. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
3
|
Tang X, Pang J, Dong J, Liu Y, Bu XH, Cui Y. Supramolecular Assembly Frameworks (SAFs): Shaping the Future of Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202406956. [PMID: 38713527 DOI: 10.1002/anie.202406956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024]
Abstract
Supramolecular assembly frameworks (SAFs) represent a new category of porous materials, utilizing non-covalent interactions, setting them apart from metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). This category includes but is not restricted to hydrogen-bonded organic frameworks and supramolecular organic frameworks. SAFs stand out for their outstanding porosity, crystallinity, and stability, alongside unique dissolution-recrystallization dynamics that enable significant structural and functional modifications. Crucially, their non-covalent assembly strategies allow for a balanced manipulation of porosity, symmetry, crystallinity, and dimensions, facilitating the creation of advanced crystalline porous materials unattainable through conventional covalent or coordination bond synthesis. Despite their considerable promise in overcoming several limitations inherent to MOFs and COFs, particularly in terms of solution-processability, SAFs have received relatively little attention in recent literature. This Minireview aims to shed light on standout SAFs, exploring their design principles, synthesis strategies, and characterization methods. It emphasizes their distinctive features and the broad spectrum of potential applications across various domains, aiming to catalyze further development and practical application within the scientific community.
Collapse
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiandong Pang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
An S, Han J, Kim D, Lee H, Jung OS. Coordinating nature of M 6L 12 double-stranded macrocycles: co-ligand competition of perchlorate, water, and acetonitrile depending on metal(II) ions. Dalton Trans 2024; 53:9692-9699. [PMID: 38766972 DOI: 10.1039/d4dt00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Self-assembly of M(ClO4)2 (M(II) = Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)) with dicyclopentyldi(pyridine-3-yl)silane (L) as a donor in a mixture of acetonitrile and toluene produces crystals consisting of M6L12 double-stranded macrocycles. The geometry around the M(II) cations is a typical octahedral arrangement, but the metallamacrocycles' outer axial coordination environment is sensitive to the M(II) cations. The conformation of the unique metallamacrocycles is informatively dependent on the nature of the coordination around the M(II) cations via subtle co-ligand competition among perchlorate anions, water, and acetonitrile. Both the coordinated acetonitriles and the solvate molecules of the crystals are removed at 170 °C, thereby transforming the crystals into new crystals that return to their original form in the mixture of toluene and acetonitrile. Catalytic oxidation of 3,5-di-tert-butylcatechol using [Cu6(ClO4)8(CH3CN)4L12]4ClO4·5C7H8 is much faster than those using the transformed product, [Cu(ClO4)2L2], and a simple mixture of Cu(ClO4)2 + L.
Collapse
Affiliation(s)
- Seonghyeon An
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Jihun Han
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Dongwon Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Haeri Lee
- Department of Chemistry, Hannam University, Daejun 34054, Republic of Korea.
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Zhang C, Zhang Y, Wang X, Shi C, Lin Z, Zhao Z, Zhao D, Li M, Chen X. Modulation of Charge Transport from Two-Dimensional Perovskites to Industrial Charge Transport Layers by the Organic Spacer-Dependent Exciton-Phonon Interactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59946-59954. [PMID: 38102995 DOI: 10.1021/acsami.3c14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In the past decade, two-dimensional (2D) perovskite surface treatment has emerged as a promising strategy to improve the performance of three-dimensional (3D) perovskite solar cells (PSCs). However, systematic studies on the impact of organic spacers of 2D perovskites on charge transport in 2D/3D PSCs are still lacking. Here, using 2D perovskite film/C60 heterostructures with different organic spacers [butylamine (BA), phenylethylamine (PEA), and 3-fluorophenethylamine (m-F-PEA)], we systematically investigated the carrier diffusion and interfacial transfer process. Using a 2D perovskite film with a thickness of ∼7 nm, we observed subtle differences in electron transfer time between 2D perovskites and C60 layers, which can be attributed to limited thickness and similar electron coupling strength. However, with the thickness of 2D perovskite increasing, electron transfer efficiency in the (BA)2PbI4/C60 heterostructure exhibits the most rapid decrease due to poor carrier diffusion of (BA)2PbI4 caused by stronger exciton-phonon interactions compared to (PEA)2PbI4 and (m-F-PEA)2PbI4 in thickness-dependent charge transfer research. Meanwhile, the fill factor of 2D/3D PSC treated with BAI exhibits the most rapid decrease compared to PEAI- and m-F-PEAI-treated 2D/3D PSCs with the concentration increase of passivators. This study indicates that it is easier to enhance open-circuit voltages and minimize the decrease of fill factor by increasing the concentration of passivators in 2D/3D PSCs when using passivators with a rigid molecular structure.
Collapse
Affiliation(s)
- Chi Zhang
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Yao Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xingtao Wang
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Congbo Shi
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Zizhen Lin
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Zhiguo Zhao
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Dongming Zhao
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Menglei Li
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| | - Xiongfei Chen
- Huaneng Clean Energy Research Institute, Beijing 102209, China
| |
Collapse
|
6
|
Liang RX, Zhang YP, Zhang JH, Gong YN, Huang B, Wang BJ, Xie SM, Yuan LM. Engineering thiol-ene click chemistry for the preparation of a chiral stationary phase based on a [4+6]-type homochiral porous organic cage for enantiomeric separation in normal-phase and reversed-phase high performance liquid chromatography. J Chromatogr A 2023; 1711:464444. [PMID: 37837712 DOI: 10.1016/j.chroma.2023.464444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this study, a new chiral stationary phase (CSP) was fabricated by covalent bonding of a [4+6]-type homochiral porous organic cage (POC) CC19-R onto thiolated silica via a thiol-ene click reaction. The CC19-R was synthesized via Schiff-base reaction between 2-hydroxybenzene-1,3,5-tricarbaldehyde and (1R, 2R)-(-)-1,2-diaminocyclohexane. The enantioseparation capability of the resulting CC19-R-based CSP was systematically evaluated upon separating various chiral compounds or chiral pharmaceuticals in normal phase HPLC (NP-HPLC) and reversed phase HPLC (RP-HPLC), including alcohols, organic acids, ketones, diols, esters, and amines. Fifteen racemates were enantioseparated in NP-HPLC and 11 racemates in RP-HPLC. Some racemates have been well separated, such as 4-chlorobenzhydrol, cetirizine (in the form of dihydrochloride), 1,2-diphenyl-1,2-ethanediol, and 3-(benzyloxy)propane-1,2-diol whose resolution values reached 3.66, 4.23, 6.50, and 3.50, respectively. When compared with a previously reported chiral POC-based column (NC1-R column), eight racemates were not separated on the NC1-R column in NP-HPLC and five racemates were not separated in RP-HPLC, but were well resolved on this column, revealing that the enantioselectivity and separable range of chiral POCs-type columns could be significantly widened using this fabricated CC19-R column. Moreover, the resolution performance of the CC19-R column was also compared with commercial Chiralpak AD-H [CSP: Amylose tris(3,5-dimethylphenylcarbamate)] and Chiralcel OD-H [CSP: Cellulose tris(3,5-dimethylphenylcarbamate)] columns. The column also can separate some racemates that could not be separated or not well be separated by the two commercial columns, showing its good complementarity to the two commercial columns on chiral separation. In addition, the column also had good stability and reproducibility with the relative standard deviation (n = 5) of the retention time and resolution lower than 1.0% and 1.8%, respectively, after it had undergone multiple injections (100, 200, 300, and 400 times). This work indicated that the features of good resolution ability and simple synthesis methods using with this POC-based CSP provided chiral POCs with potential application prospects in HPLC racemic separation.
Collapse
Affiliation(s)
- Rui-Xue Liang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China
| | - You-Ping Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China.
| | - Ya-Nan Gong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China
| | - Bin Huang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, PR China
| |
Collapse
|
7
|
Huang B, Li K, Ma QY, Xiang TX, Liang RX, Gong YN, Wang BJ, Zhang JH, Xie SM, Yuan LM. Homochiral Metallacycle Used as a Stationary Phase for Capillary Gas Chromatographic Separation of Chiral and Achiral Compounds. Anal Chem 2023; 95:13289-13296. [PMID: 37615071 DOI: 10.1021/acs.analchem.3c02438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Metallacycles are a novel class of supramolecular materials with circular structures, internal cavities, and abundant host-guest chemical properties that have exhibited good application prospects in many fields. However, to the best of our knowledge, no research on the use of metallacycles as stationary phases for gas chromatographic (GC) separations has been published yet. In this work, we report for the first time the use of a homochiral metallacycle, [ZnCl2L]2, as a stationary phase for GC separations. [ZnCl2L]2 was synthesized by reaction of (S)-(1-isonicotinoylpyrrolidin-2-yl)methyl-isonicotinate (L) with ZnCl2 via coordination-driven self-assembly. The [ZnCl2L]2-coated column displayed an excellent separation performance not only of organic isomers but also of racemic compounds. Sixteen racemates (including alcohols, esters, amino acid derivatives, ethers, organic acids, and epoxides) and 21 isomeric compounds (including positional, structural, and cis/trans-isomers) were well separated on the [ZnCl2L]2-coated column. Impressively, some racemates were resolved with high resolution values (Rs), including 1,2-butanediol diacetate (Rs = 25.86), ethyl 3-hydroxybutyrate (Rs = 20.97), 1,3-butanediol diacetate (Rs = 18.09), and threonine derivative (Rs = 18.61). Compared with the commercial β-DEX 120 column for separation of the tested racemates, the [ZnCl2L]2-coated column exhibited good enantioseparation complementarity, enabling separation of some racemates that could not be separated, or were not well resolved, by the β-DEX 120 column. In addition, many organic mixtures, such as n-alkanes, alkylbenzenes, n-alcohols, and a Grob test mixture, were also well separated on the [ZnCl2L]2-coated column. The column also has good reproducibility and thermal stability on separation. This work not only reveals the great potential of metallacycles for GC separations but also opens up a new application of metallacycles in separation science.
Collapse
Affiliation(s)
- Bin Huang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Kuan Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Qi-Yu Ma
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Tuan-Xiu Xiang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Rui-Xue Liang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Ya-Nan Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Bang-Jin Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Jun-Hui Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Sheng-Ming Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Li-Ming Yuan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
| |
Collapse
|
8
|
Chen F, Zheng L, Li C, Wang B, Wu Q, Dai Z, Wang S, Sun Q, Meng X, Xiao FS. Porous Supramolecular Assemblies for Efficient Suzuki Coupling of Aryl Chlorides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301875. [PMID: 37116082 DOI: 10.1002/smll.202301875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The development of catalytic systems that can activate aryl chlorides for palladium-catalyzed cross-coupling reactions is at the forefront of ongoing efforts to synthesize fine chemicals. In this study, a facile ligand-template approach is adopted to achieve active-site encapsulation by forming supramolecular assemblies; this bestowed the pristine inert counterparts with reactivity, which is further increased upon the construction of a porous framework. Experimental results indicated that the isolation of ligands by the surrounding template units is key to the formation of catalytically active monoligated palladium complexes. Additionally, the construction of porous frameworks using the resulting supramolecular assemblies prevented the decomposition of the Pd complexes into nanoparticles, which drastically increased the catalyst lifetime. These findings, along with the simplicity and generality of the synthesis scheme, suggest that the strategy can be leveraged to achieve unique reactivity and potentially enable fine-chemical synthesis.
Collapse
Affiliation(s)
- Fang Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, 310018, China
| | - Chen Li
- CenerTech Tianjin Chemical Research and Design Institute Co., Ltd., Tianjing, 300131, China
| | - Benlei Wang
- CenerTech Tianjin Chemical Research and Design Institute Co., Ltd., Tianjing, 300131, China
| | - Qing Wu
- CNOOC Institute of Chemicals & Advanced Materials, Beijing, 100028, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, 310018, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Xiangju Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Feng-Shou Xiao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Zhang XM, Bai YM, Ai LL, Wu FH, Shan WL, Kang YS, Luo L, Chen K, Xu F. A Chiral Metal-Organic Framework Prepared on Large-Scale for Sensitive and Enantioselective Fluorescence Recognition. Molecules 2023; 28:4593. [PMID: 37375148 DOI: 10.3390/molecules28124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/29/2023] Open
Abstract
MOF-based luminescent sensors have garnered considerable attention due to their potential in recognition and discrimination with high sensitivity, selectivity, and fast response in the last decades. Herein, this work describes the bulk preparation of a novel luminescent homochiral MOF, namely, [Cd(s-L)](NO3)2 (MOF-1), from an enantiopure pyridyl-functionalized ligand with rigid binaphthol skeleton under mild synthetic condition. Except for the features of porosity and crystallinity, the MOF-1 has also been characterized with water-stability, luminescence, and homochirality. Most important, the MOF-1 exhibits highly sensitive molecular recognition toward the4-nitrobenzoic acid (NBC) and moderate enantioselective detection of proline, arginine, and 1-phenylethanol.
Collapse
Affiliation(s)
- Xin-Mei Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yan-Mei Bai
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Lu-Lu Ai
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Fang-Hui Wu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Wei-Long Shan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yan-Shang Kang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Li Luo
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Fan Xu
- SJTU SMSE-Mingguang Joint Research Center for Advanced Palygoskite Materials, Mingguang Mingyao Attapulgite Industry Technology Co., Ltd., Chuzhou 239400, China
| |
Collapse
|
10
|
Essien NB, Galvácsi A, Kállay C, Al-Hilaly Y, González-Méndez R, Akien GR, Tizzard GJ, Coles SJ, Besora M, Kostakis GE. Fluorine-based Zn salan complexes. Dalton Trans 2023; 52:4044-4057. [PMID: 36880418 DOI: 10.1039/d2dt04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.
Collapse
Affiliation(s)
- Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Antal Galvácsi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Youssra Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.,Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ramón González-Méndez
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo, 1, 43007 Tarragona, Spain.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
11
|
Tian X, Lin Y, Zhu H, Huang C, Zhu B. Enantiomers Identification of Penicillamine by Chiral Mono-Schiff Base Macrocycles. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22090400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Yoshinari N, Kuwamura N, Kojima T, Konno T. Development of coordination chemistry with thiol-containing amino acids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wang L, Han S, Yu H, Yu Q, Pei D, Lv W, Wang J, Li X, Ding R, Wang Q, Lv M. Porous Organic Cage-Embedded C10-Modified Silica as HPLC Stationary Phase and Its Multiple Separation Functions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248895. [PMID: 36558026 PMCID: PMC9782137 DOI: 10.3390/molecules27248895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Reduced imine cage (RCC3) was covalently bonded to the surface of silica spheres, and then the secondary amine group of the molecular cage was embedded in non-polar C10 for modification to prepare a novel RCC3-C10@silica HPLC stationary phase with multiple separation functions. Through infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption-desorption characterization, it was confirmed that RCC3-C10 was successfully bonded to the surface of silica spheres. The resolution of RCC3-C10@silica in reversed-phase separation mode is as high as 2.95, 3.73, 3.27 and 4.09 for p-phenethyl alcohol, 1-phenyl-2-propanol, p-methylphenethyl alcohol and 1-phenyl-1-propanol, indicating that the stationary phase has excellent chiral resolution performance. In reversed-phase and hydrophilic separation modes, RCC3-C10@silica realized the separation and analysis of a total of 70 compounds in 8 classes of Tanaka mixtures, alkylbenzene rings, polyphenyl rings, phenols, anilines, sulfonamides, nucleosides and flavonoids, and the analysis of a variety of chiral and achiral complex mixtures have been completed at the same time. Compared with the traditional C18 commercial column, RCC3-C10@silica exhibits better chromatographic separation selectivity, aromatic selectivity and polar selectivity. The multifunctional separation mechanism exhibited by the stationary phase originates from various synergistic effects such as hydrophobic interaction, π-π interaction, hydrogen bonding and steric interaction provided by RCC3 and C10 groups. This work provides flexible selectivity and application prospects for novel multi-separation functional chromatographic columns.
Collapse
Affiliation(s)
- Litao Wang
- School of Pharmacy, Jining Medical University, Jining 272000, China
| | - Siqi Han
- School of Pharmacy, Jining Medical University, Jining 272000, China
| | - Haiyang Yu
- School of Pharmacy, Jining Medical University, Jining 272000, China
| | - Qinghua Yu
- School of Pharmacy, Jining Medical University, Jining 272000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Dong Pei
- Qingdao Center of Resource Chemistry & New Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao 266000, China
| | - Wenjing Lv
- School of Pharmacy, Jining Medical University, Jining 272000, China
| | - Jiasheng Wang
- School of Pharmacy, Jining Medical University, Jining 272000, China
| | - Xingyu Li
- School of Pharmacy, Jining Medical University, Jining 272000, China
| | - Ruifang Ding
- School of Pharmacy, Jining Medical University, Jining 272000, China
- Correspondence: (R.D.); (Q.W.); (M.L.)
| | - Qibao Wang
- School of Pharmacy, Jining Medical University, Jining 272000, China
- Correspondence: (R.D.); (Q.W.); (M.L.)
| | - Mei Lv
- School of Pharmacy, Jining Medical University, Jining 272000, China
- Correspondence: (R.D.); (Q.W.); (M.L.)
| |
Collapse
|
14
|
Ma M, Lu X, Guo Y, Wang L, Liang X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Shao Z, Chen J, Gao K, Xie Q, Xue X, Zhou S, Huang C, Mi L, Hou H. A Double‐Helix Metal‐Chain Metal‐Organic Framework as a High‐Output Triboelectric Nanogenerator Material for Self‐Powered Anticorrosion. Angew Chem Int Ed Engl 2022; 61:e202208994. [DOI: 10.1002/anie.202208994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zhichao Shao
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Junshuai Chen
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Kexin Gao
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Qiong Xie
- College of Chemistry Zhengzhou University Zhengzhou Henan, 450001 P. R. China
| | - Xiaojing Xue
- College of Chemistry Zhengzhou University Zhengzhou Henan, 450001 P. R. China
| | - Shuangyan Zhou
- Chongqing Key Laboratory on Big Data for Bio Intelligence Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Chao Huang
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Liwei Mi
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Hongwei Hou
- College of Chemistry Zhengzhou University Zhengzhou Henan, 450001 P. R. China
| |
Collapse
|
16
|
Cai MJ, Wang RY, Ge YF, Wu BL. Homochiral coordination polymers of Zn(II) and Pb(II) with interesting three-dimensional helicates. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene-Based Deep Blue-Emissive Metallacages as Donors for Light-Harvesting Systems. Angew Chem Int Ed Engl 2022; 61:e202207289. [PMID: 35686675 DOI: 10.1002/anie.202207289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/14/2022]
Abstract
We herein report the preparation of a series of hexaphenylbenzene (HPB)-based deep blue-emissive metallacages via multicomponent coordination-driven self-assembly. These metallacages feature prismatic structures with HPB derivatives as the faces and tetracarboxylic ligands as the pillars, as evidenced by NMR, mass spectrometry and X-ray diffraction analysis. Light-harvesting systems were further constructed by employing the metallacages as the donor and a naphthalimide derivative (NAP) as the acceptor, owing to their good spectral overlap. The judiciously chosen metallacage serves as the antenna, providing the suitable energy to excite the non-emissive NAP, and thus resulting in bright emission for NAP in the solid state. This study provides a type of HPB-based multicomponent emissive metallacage and explores their applications as energy donors to light up non-emissive fluorophores in the solid state, which will advance the development of emissive metallacages as useful luminescent materials.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
18
|
Shao Z, Chen J, Gao K, Xie Q, Xue X, Zhou S, Huang C, Mi L, Hou H. A Double‐Helix Metal‐Chain Metal‐Organic Framework as a High‐Output Triboelectric Nanogenerator Material for Self‐Powered Anticorrosion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhichao Shao
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Junshuai Chen
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Kexin Gao
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Qiong Xie
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Xiaojing Xue
- Chongqing University of Posts and Telecommunications Chongqing Key Laboratory on Big Data for Bio Intelligence CHINA
| | - Shuangyan Zhou
- Chongqing University of Posts and Telecommunications Chongqing Key Laboratory on Big Data for Bio Intelligence CHINA
| | - Chao Huang
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Liwei Mi
- Zhongyuan University of Technology Center for Advanced Materials No. 41 Zhongyuan Road (M) 450007 Zhengzhou CHINA
| | - Hongwei Hou
- Zhengzhou University College of chemistry CHINA
| |
Collapse
|
19
|
Gao ZF, Liu J, Chung T. Rapid in-situ growth of covalent organic frameworks on hollow fiber substrates with Janus-like characteristics for efficient organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Liu H, Zhang Z, Mu C, Ma L, Yuan H, Ling S, Wang H, Li X, Zhang M. Hexaphenylbenzene‐Based Deep Blue‐Emissive Metallacages as Donors for Light‐Harvesting Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haifei Liu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Zeyuan Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Chaoqun Mu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Lingzhi Ma
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Hongye Yuan
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Sanliang Ling
- University of Nottingham University Park Campus: University of Nottingham Advanced Materials Research Group, Faculty of Engineering UNITED KINGDOM
| | - Heng Wang
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Xiaopeng Li
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong Univeristy School of Material and Science No. 28 Xianning West Road 710049 Xi'an CHINA
| |
Collapse
|
21
|
Wang S, Xie S, Zeng H, Du H, Zhang J, Wan X. Self-Reporting Activated Ester-Amine Reaction for Enantioselective Multi-Channel Visual Detection of Chiral Amines. Angew Chem Int Ed Engl 2022; 61:e202202268. [PMID: 35285991 DOI: 10.1002/anie.202202268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/04/2023]
Abstract
Chiral recognition is of importance not only in living systems but also in estimating the optical purity of enantiomeric drugs and fabricating advanced materials. Herein we report a novel self-reporting activated ester-amine reaction that can provide multi-channel visual detection of organic amines. It relies on the reaction extent dependent cis-transoid to cis-cisoid helical transition of the polyphenylacetylene backbone and the thus triggered fluorescence. Owing to the high selectivity, this visual process can recognize structurally diverse achiral amines and quantitatively check the impurity content. It also shows an outstanding enantioselectivity towards various chiral amines and can be applied to determine enantiomeric composition. The multiple responses in absorption, circular dichroism, photoluminescence, and circularly polarized luminescence make the helical transition of the polymer backbone a potential detection mode for high-throughput screening of chiral chemicals.
Collapse
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hua Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongxu Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Zhang Y, Ma S. Striking 2D materials: exfoliation of molecular crystals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Cui M, Murase R, Shen Y, Sato T, Koyama S, Uchida K, Tanabe T, Takaishi S, Yamashita M, Iguchi H. An electrically conductive metallocycle: densely packed molecular hexagons with π-stacked radicals. Chem Sci 2022; 13:4902-4908. [PMID: 35655871 PMCID: PMC9067574 DOI: 10.1039/d2sc00447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical conduction among metallocycles has been unexplored because of the difficulty in creating electronic transport pathways. In this work, we present an electrocrystallization strategy for synthesizing an intrinsically electron-conductive metallocycle, [Ni6(NDI-Hpz)6(dma)12(NO3)6]·5DMA·nH2O (PMC-hexagon) (NDI-Hpz = N,N'-di(1H-pyrazol-4-yl)-1,4,5,8-naphthalenetetracarboxdiimide). The hexagonal metallocycle units are assembled into a densely packed ABCABC… sequence (like the fcc geometry) to construct one-dimensional (1D) helical π-stacked columns and 1D pore channels, which were maintained under the liberation of H2O molecules. The NDI cores were partially reduced to form radicals as charge carriers, resulting in a room-temperature conductivity of (1.2-2.1) × 10-4 S cm-1 (pressed pellet), which is superior to that of most NDI-based conductors including metal-organic frameworks and organic crystals. These findings open up the use of metallocycles as building blocks for fabricating conductive porous molecular materials.
Collapse
Affiliation(s)
- Mengxing Cui
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Ryuichi Murase
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Yongbing Shen
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Shohei Koyama
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Tappei Tanabe
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
- School of Materials Science and Engineering, Nankai University Tianjin 300350 P. R. China
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aza-Aoba, Aramaki Sendai 980-8578 Japan
| |
Collapse
|
24
|
Wu D, Ma C, Wan T, Zhu P, Kong Y. Strategies to synthesize a chiral helical polymer accompanying with two stereogenic centers for chiral electroanalysis. Anal Chim Acta 2022; 1206:339810. [DOI: 10.1016/j.aca.2022.339810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/01/2022]
|
25
|
Jia P, Hu Y, Zeng Z, Wang Y, Song B, Jiang Y, Sun H, Wang M, Qiu W, Xu L. Construction of FRET-based metallacycles with efficient photosensitization efficiency and photocatalytic activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Wang S, Xie S, Zeng H, Du H, Zhang J, Wan X. Self‐Reporting Activated Ester‐Amine Reaction for Enantioselective Multi‐Channel Visual Detection of Chiral Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hua Zeng
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hongxu Du
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
27
|
Abstract
In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhijie Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
28
|
Fragile nanosheets stripped from crystals. Nature 2022; 602:582-583. [PMID: 35197612 DOI: 10.1038/d41586-022-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Dong J, Liu L, Tan C, Xu Q, Zhang J, Qiao Z, Chu D, Liu Y, Zhang Q, Jiang J, Han Y, Davis AP, Cui Y. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 2022; 602:606-611. [PMID: 35197620 DOI: 10.1038/s41586-022-04407-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022]
Abstract
Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Chemistry, University of Bristol, Bristol, UK
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Chunxia Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qisong Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Zhiwei Qiao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Dandan Chu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | | | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
30
|
Zheng A, Zhao T, Jin X, Miao W, Duan P. Circularly polarized luminescent porous crystalline nanomaterials. NANOSCALE 2022; 14:1123-1135. [PMID: 35018958 DOI: 10.1039/d1nr07069j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circularly polarized luminescence (CPL)-active materials have attracted exclusive attention because of their wide potential applications in low-power-consumption displays, encrypted information storage, chiroptical sensors, and so on. However, there is always a trade-off between the luminescence dissymmetry factor (glum) and luminescence quantum yield, which are two critical parameters. Therefore, developing materials with both large glum values and high luminescence efficiency is a key issue for constructing high-efficiency CPL materials. To date, chiral porous crystalline nanomaterials (PCNMs) including metal-organic frameworks (MOFs), porous organic-cages (POCs), metal-organic cages (MOCs), and supramolecular organic frameworks (SOFs), have shown excellent potential for solving this problem and achieving functional CPL-active materials. In this review, we will summarize several approaches for fabricating CPL-active PCNMs, such as direct synthesis, chirality induction, and symmetry breaking. Furthermore, with flexibly tunable structures and comprehensive host-guest chemistry, modulation and amplification of CPL can be achieved in these PCNMs. We would like to provide insight and perspective that PCNMs can act as an efficient platform in the CPL research field.
Collapse
Affiliation(s)
- Anyi Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Wangen Miao
- School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci 2022; 13:633-656. [PMID: 35173928 PMCID: PMC8769063 DOI: 10.1039/d1sc03561d] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
One basic principle regulating self-assembly is associated with the asymmetry of constituent building blocks or packing models. Using asymmetry to manipulate molecular-level devices and hierarchical functional materials is a promising topic in materials sciences and supramolecular chemistry. Here, exemplified by recent major achievements in chiral hierarchical self-assembly, we show how chirality may be utilized in the design, construction and evolution of highly ordered and complex chiral nanostructures. We focus on how unique functions can be developed by the exploitation of chiral nanostructures instead of single basic units. Our perspective on the future prospects of chiral nanostructures via the hierarchical self-assembly strategy is also discussed.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
32
|
Yan MJ, Huang SL, Yang GY. Dual-AIEgens in one organoplatinum(II) metallaprism: photoluminescence exploration. Dalton Trans 2022; 51:842-846. [PMID: 34988570 DOI: 10.1039/d1dt03919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two sets of cis-trans isostructural metallaprisms were constructed from the controlling linkage of a Pt-corner, and a linear and quadrilateral AIE ligand. The combination of two AIEgens of TPE and the Pt-corner into one system endows these isomers with interesting AIE functions.
Collapse
Affiliation(s)
- Ming-Jie Yan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
33
|
Zhao H, Cui D, Kou J, Gao H, Yu G, Sun C, Wang X, Su Z. Axially Chiral Dodecanuclear Lanthanide Clusters Constructed by “
Bottom‐Up
” Self‐assembly for Enantioselective Sensing. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Honglei Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| | - Dongxu Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| | - Junning Kou
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| | - Haijuan Gao
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| | - Guanghui Yu
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| | - Zhongmin Su
- Key Laboratory of Polyoxometalate Science of Ministry of Education Northeast Normal University Changchun Jilin, 130024 China
| |
Collapse
|
34
|
Dong J, Liu Y, Cui Y. Artificial Metal-Peptide Assemblies: Bioinspired Assembly of Peptides and Metals through Space and across Length Scales. J Am Chem Soc 2021; 143:17316-17336. [PMID: 34618443 DOI: 10.1021/jacs.1c08487] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The exploration of chiral crystalline porous materials, such as metal-organic complexes (MOCs) or metal-organic frameworks (MOFs), has been one of the most exciting recent developments in materials science owing to their widespread applications in enantiospecific processes. However, achieving specific tight-affinity binding and remarkable enantioselectivity toward important biomolecules is still challenging. Perhaps most critically, the lack of adaptability, compatibility, and processability in these materials severely impedes practical applications in chemical engineering and biological technology. In this Perspective, artificial metal-peptide assemblies (MPAs), which are achieved by the assembly of peptides and metals with nanometer-sized cavities or pores, is a new development that could address the current bottlenecks of chiral porous materials. Bioinspired assembly of pore-forming MPAs is not foreign to biological systems and has granted scientists an unprecedented level of control over the chiral recognition sites, conformational flexibility, cavity sizes, and hydrophilic segments through ultrafine-tuning of peptide-derived linkers. We will specifically discuss exemplary MPAs including structurally well-defined metal-peptide complexes and highly crystalline metal-peptide frameworks. With insights from these structures, the peptide assembly and folding by the closer cooperation of metal coordination and noncovalent interactions can create adaptable protein-like nanocavities undergoing a myriad of conformational variations that is reminiscent of enzymatic pockets. We also consider challenges to advancing the field, where the deployment of side-chain groups and manipulation of amino acid sequences are more likely to access the programmable, genetically encodable peptide-mediated porous materials, thus contributing to the enhanced enantioselective recognition as well as enabling key biochemical processes in next-generation versatile biomimetic materials.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Li P, Li M, Li SZ, Wang JF, Dong WK. INVESTIGATION ON THE FLUORESCENT PROPERTY AND THE HIRSHFELD SURFACE ANALYSIS OF A NOVEL HETEROBIMETALLIC Cd(II)—Na(I) PYRIDINE-TERMINAL SALAMO-TYPE COORDINATION POLYMER. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621090079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Chen H, Gu ZG, Zhang J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem Sci 2021; 12:12346-12352. [PMID: 34603664 PMCID: PMC8480342 DOI: 10.1039/d1sc03089b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
The development of chiral crystalline porous materials (CPMs) containing multiple chiral building blocks plays an important role in chiral chemistry and applications but is a challenging task. Herein, we report the first example of bichiral building block based enantiopure CPM films containing metal-organic cages (MOCs) and metal complexes. The functionalized substrate was immersed subsequently into homochiral metal complex (R)- or (S)-Mn(DCH)3 (DCH = 1,2-diaminocyclohexane) and racemic Ti4L6 cage (L = embonate) solutions by a layer-by-layer growth method. During the assembly process, the substrate surface coordinated with (R)- or (S)-Mn(DCH)3 can, respectively, layer-by-layer chiroselectively connect Δ- or Λ-Ti4L6 cages to form homochiral (R, Δ)- or (S, Λ)-CPM films with a preferred [111] growth orientation, tunable thickness and homogeneous surface. The resulting enantiopure CPM films show strong chirality, photoluminescence, and circularly polarized luminescence (CPL) properties as well as good enantioselective adsorption toward enantiomers of 2-butanol and methyl-lactate. The present in situ surface chiroselective strategy opens a new route to assemble homochiral CPM films containing multiple chiral building blocks for chiral applications.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
38
|
Lim S, Kuang Y, Ardoña HAM. Evolution of Supramolecular Systems Towards Next-Generation Biosensors. Front Chem 2021; 9:723111. [PMID: 34490210 PMCID: PMC8416679 DOI: 10.3389/fchem.2021.723111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Supramolecular materials, which rely on dynamic non-covalent interactions, present a promising approach to advance the capabilities of currently available biosensors. The weak interactions between supramolecular monomers allow for adaptivity and responsiveness of supramolecular or self-assembling systems to external stimuli. In many cases, these characteristics improve the performance of recognition units, reporters, or signal transducers of biosensors. The facile methods for preparing supramolecular materials also allow for straightforward ways to combine them with other functional materials and create multicomponent sensors. To date, biosensors with supramolecular components are capable of not only detecting target analytes based on known ligand affinity or specific host-guest interactions, but can also be used for more complex structural detection such as chiral sensing. In this Review, we discuss the advancements in the area of biosensors, with a particular highlight on the designs of supramolecular materials employed in analytical applications over the years. We will first describe how different types of supramolecular components are currently used as recognition or reporter units for biosensors. The working mechanisms of detection and signal transduction by supramolecular systems will be presented, as well as the important hierarchical characteristics from the monomers to assemblies that contribute to selectivity and sensitivity. We will then examine how supramolecular materials are currently integrated in different types of biosensing platforms. Emerging trends and perspectives will be outlined, specifically for exploring new design and platforms that may bring supramolecular sensors a step closer towards practical use for multiplexed or differential sensing, higher throughput operations, real-time monitoring, reporting of biological function, as well as for environmental studies.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Herdeline Ann M Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, United States.,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
39
|
Zhang L, Liu H, Yuan G, Han Y. Chiral Coordination Metallacycles/Metallacages for Enantioselective Recognition and Separation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liyan Zhang
- School of Chemistry and Chemical Engineering, Institute of Materials Science and Engineering, Anhui University of Technology Maanshan Anhui 243032 China
| | - Huiping Liu
- School of Chemistry and Chemical Engineering, Institute of Materials Science and Engineering, Anhui University of Technology Maanshan Anhui 243032 China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Institute of Materials Science and Engineering, Anhui University of Technology Maanshan Anhui 243032 China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710127 China
| |
Collapse
|
40
|
Molecular fingerprint and machine learning to accelerate design of
high‐performance
homochiral metal–organic frameworks. AIChE J 2021. [DOI: 10.1002/aic.17352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021; 60:16568-16575. [DOI: 10.1002/anie.202104111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
42
|
Jiao J, Dong J, Li Y, Cui Y. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingjing Jiao
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Jinqiao Dong
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yingguo Li
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Technology Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
43
|
Wang JF, Feng T, Li YJ, Sun YX, Dong WK, Ding YJ. Novel structurally characterized Co(II) metal-organic framework and Cd(II) coordination polymer self-assembled from a pyridine-terminal salamo-like ligand bearing various coordination modes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129950] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Xia Q, Zhang J, Chen X, Cheng C, Chu D, Tang X, Li H, Cui Y. Synthesis, structure and property of boron-based metal–organic materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Tang X, Chu D, Gong W, Cui Y, Liu Y. Metal‐Organic Cages with Missing Linker Defects. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Dandan Chu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Gong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
46
|
Chen Z, Yan X, Li M, Wang S, Chen C. Defect-Engineered Chiral Metal-Organic Frameworks for Efficient Asymmetric Aldol Reaction. Inorg Chem 2021; 60:4362-4365. [PMID: 33761738 DOI: 10.1021/acs.inorgchem.1c00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By employment of a mixed truncated chiral ligand synthetic strategy, a defect-engineered chiral metal-organic framework with hierarchical micro/mesoporous structure was prepared, and it exhibited efficient heterogeneous catalytic activity and enantioselectivity for asymmetric aldol reaction.
Collapse
Affiliation(s)
- Zijuan Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Xiaodan Yan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Meiyan Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
47
|
Dey N, Haynes CJE. Supramolecular Coordination Complexes as Optical Biosensors. Chempluschem 2021; 86:418-433. [PMID: 33665986 DOI: 10.1002/cplu.202100004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/15/2021] [Indexed: 12/11/2022]
Abstract
In recent years, luminescent supramolecular coordination complexes (SCCs), including 2D-metallacycles and 3D-metallacages have been utilised for biomolecular analysis. Unlike small-molecular probes, the dimensions, size, shape, and flexibility of these complexes can easily be tuned by combining ligands designed with particular geometries, symmetries and denticity with metal ions with strong geometrical binding preferences. The well-defined cavities that result, in combination with the other non-covalent interactions that can be programmed into the ligand design, facilitate great selectivity towards guest binding. In this Review we will discuss the application of luminescent metallacycles and cages in the binding and detection of a wide range of biomolecules, such as carbohydrates, proteins, amino acids, and biogenic amines. We aim to explore the effect of the structural diversity of SCCs on the extent of biomolecular sensing, expressed in terms of sensitivity, selectivity and detection range.
Collapse
Affiliation(s)
- Nilanjan Dey
- Graduate School of Science, Kyoto University, Japan
| | | |
Collapse
|
48
|
Tang X, Chu D, Gong W, Cui Y, Liu Y. Metal‐Organic Cages with Missing Linker Defects. Angew Chem Int Ed Engl 2021; 60:9099-9105. [DOI: 10.1002/anie.202017244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Dandan Chu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Gong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
49
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
50
|
Wang W, Zhao W, Xu H, Liu S, Huang W, Zhao Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|