1
|
Zhang Y, Li B, Wang T, Duan N, Zheng J, Li H, Zhang F, Fang X. Efficient hydrogenation of ketones over the diaminophosphino manganese complex. Dalton Trans 2024; 53:16475-16479. [PMID: 39324845 DOI: 10.1039/d4dt02297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Herein, we synthesized new manganese(I) complexes coordinated with the tetradentate ligand PNNP. The complexes show higher activity and excellent substituent tolerance in contrast to their manganese counterparts and are applicable in the hydrogenation of a wide range of aromatic, aliphatic and heterocyclic ketones to their corresponding alcohols.
Collapse
Affiliation(s)
- Yu Zhang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Bin Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Tao Wang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Ning Duan
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Jianwei Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Li
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Fengjun Zhang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| | - Xiaolong Fang
- Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.
| |
Collapse
|
2
|
Ramspoth TF, Kootstra J, Harutyunyan SR. Unlocking the potential of metal ligand cooperation for enantioselective transformations. Chem Soc Rev 2024; 53:3216-3223. [PMID: 38381077 PMCID: PMC10985679 DOI: 10.1039/d3cs00998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/22/2024]
Abstract
Metal-ligand cooperation, in which both the metal and the ligand of a transition metal complex actively participate in chemical transformations leading to enhanced reactivity or selectivity in chemical reactions, has emerged as a powerful and versatile concept in catalysis. This Viewpoint discusses the development trajectory of transition metal-based complexes as catalysts in (de)hydrogenative processes, in particular those cases where metal-ligand cooperation has been invoked to rationalise the observed high reactivities and excellent selectivities. The historical context, mechanistic aspects and current applications are discussed with the suggestion to explore the potential of the MLC mode of action of such catalysts in enantioselective transformations beyond (de)hydrogenative processes.
Collapse
Affiliation(s)
- Tizian-Frank Ramspoth
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Johanan Kootstra
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Syuzanna R Harutyunyan
- Institute for Chemistry, University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
3
|
Yan B, Ma X, Pang Z, Yang Z. Chemoselective Luche-type reduction of α,β-unsaturated ketones by aluminium hydride catalysis. Dalton Trans 2024; 53:4127-4131. [PMID: 38315772 DOI: 10.1039/d3dt03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel, simple, eco-friendly, non-toxic aluminium catalyst was synthesised for the chemoselective reduction of α,β-unsaturated ketones. A wide range of ketones were achieved with excellent yields, mild conditions, and low catalyst loading. Furthermore, this unprecedented method allowed for the stereoselective reduction of natural ketones.
Collapse
Affiliation(s)
- Ben Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Ziyuan Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| |
Collapse
|
4
|
Adhikari P, Hazarika N, Bhattacharyya K, Das A. Chromium-Catalyzed Cross-Coupling of Methyl Ketones with Cyclic Ketones toward the Selective Synthesis of β-Branched β,γ-Unsaturated Ketones. Org Lett 2024; 26:286-291. [PMID: 38165838 DOI: 10.1021/acs.orglett.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Chromium-catalyzed cross-coupling of methyl ketones with cyclic ketones to β-branched β,γ-unsaturated ketones are reported. Interestingly, single-crossed aldol condensation products are formed, even in reactions in which a mixture of products is possible. The reaction is highly chemoselective and regioselective. This catalytic route gives a unique opportunity to integrate the chemistry of the synthetic challenge cross-coupling reaction of ketones and the alkene migration reaction into a reaction pot.
Collapse
Affiliation(s)
- Priyanka Adhikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | | | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
5
|
Adhikari P, Bhattacharyya D, Deori K, Sarmah BK, Das A. Chemo- and Regioselective Catalytic Cross-Coupling Reaction of Ketones for the Synthesis of β, γ-Disubstituted β, γ-Unsaturated Ketones. Chemistry 2023:e202303206. [PMID: 38140820 DOI: 10.1002/chem.202303206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
C-C bond forming reaction of ketone with aldehyde is well-studied for the synthesis of α, β-unsaturated ketones, however, the reaction with two different ketones to unsaturated carbonyl compound has not yet been systematically studied. Probably due to the relatively low reactivity of ketones as electrophiles (aldol acceptors), its propensity for retro-aldol reaction. The reactions often suffer from unsatisfactory chemoselectivity (self- vs. crossed aldol products) and regioselectivity (thermodynamic vs. kinetic enolate). In this quest, we report here for the first time selective cross-coupling reaction of ketones to β-branched β, γ-unsaturated ketones by using ruthenium catalysis. Interestingly, single crossed aldol condensation products are formed even in reactions where a mixture of products is possible. Reaction is highly chemoselective, regioselective and produces H2 O as the only byproducts making the protocol environmentally benign. Method is compatible with a wide variety of sensitive functional group and applicable for even problematic aliphatic ketones as substrates. Notably, acetone was found as a three-carbon feedstock for the syntheses of simple β, γ-unsaturated ketone compounds. The process can further be extended to the gram-scale reaction and late-stage functionalization of natural products. With the help of DFT calculations, several control experiments, and deuterium-labeling experiments, the mechanistic finding demonstrated that initial aldol-condensation of ketones to a β, β-disubstituted α, β-unsaturated ketone, which further isomerizes to a β, γ- unsaturated ketone via η3 -allyl ruthenium complex.
Collapse
Affiliation(s)
- Priyanka Adhikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Dipanjan Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Kritartha Deori
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
- Department of Chemistry, Sonari College, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| |
Collapse
|
6
|
Grømer B, Saito S. Hydrogenation of CO 2 to MeOH Catalyzed by Highly Robust (PNNP)Ir Complexes Activated by Alkali Bases in Alcohol. Inorg Chem 2023; 62:14116-14123. [PMID: 37589272 DOI: 10.1021/acs.inorgchem.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Despite receiving significant attention, well-defined homogeneous complexes for hydrogenation of carbon dioxide (CO2) to methanol (MeOH) are scarce and suffer issues of low catalyst turnover numbers (TONs) at high catalyst concentrations and deactivation in the presence of CO and at elevated temperatures. Herein, we disclose a system deploying sterically demanded (PNNP)Ir complexes for a sustained activity for hydrogenation of CO2 to MeOH at temperatures ∼200 °C in an alcohol solvent. Through reaction optimization, we achieved a TON of ∼9000 for MeOH formation, which exceeds most active homogeneous systems reported to date, and robustness on par with or exceeding most reactive systems utilizing amine additives was demonstrated. The key to achieving sustained catalyst turnover for the system was utilizing a catalytic amount of an alkali base additive, which serves the dual purpose of facilitating more efficient outer-sphere reduction of CO2 and HCO2Et and enhancing the selectivity of MeOH over in situ formed CO.
Collapse
Affiliation(s)
- Bendik Grømer
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
7
|
Yin C, Jiang YF, Huang F, Xu CQ, Pan Y, Gao S, Chen GQ, Ding X, Bai ST, Lang Q, Li J, Zhang X. A 13-million turnover-number anionic Ir-catalyst for a selective industrial route to chiral nicotine. Nat Commun 2023; 14:3718. [PMID: 37349291 DOI: 10.1038/s41467-023-39375-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Developing catalysts with both useful enantioselectivities and million turnover numbers (TONs) for asymmetric hydrogenation of ketones is attractive for industrial production of high-value bioactive chiral entities but remains a challenging. Herein, we report an ultra-efficient anionic Ir-catalyst integrated with the concept of multidentate ligation for asymmetric hydrogenation of ketones. Biocatalysis-like efficacy of up to 99% ee (enantiomeric excess), 13,425,000 TON (turnover number) and 224 s-1 TOF (turnover frequency) were documented for benchmark acetophenone. Up to 1,000,000 TON and 99% ee were achieved for challenging pyridyl alkyl ketone where at most 10,000 TONs are previously reported. The anionic Ir-catalyst showed a novel preferred ONa/MH instead of NNa/MH bifunctional mechanism. A selective industrial route to enantiopure nicotine has been established using this anionic Ir-catalyst for the key asymmetric hydrogenation step at 500 kg batch scale, providing 40 tons scale of product.
Collapse
Affiliation(s)
- Congcong Yin
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ya-Fei Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fanping Huang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yingmin Pan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- Center for Carbon-Neutrality Catalysis Engineering and Institute of Carbon Neutral Technology, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Shuang Gao
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gen-Qiang Chen
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaobing Ding
- Shenzhen Catalys Technology Co., Ltd, Shenzhen, 518100, China
| | - Shao-Tao Bai
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Carbon-Neutrality Catalysis Engineering and Institute of Carbon Neutral Technology, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China.
| | - Qiwei Lang
- Shenzhen Catalys Technology Co., Ltd, Shenzhen, 518100, China.
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Xumu Zhang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Head M, Joseph BT, Keith JM, Chianese AR. The Mechanism of Markovnikov-Selective Epoxide Hydrogenolysis Catalyzed by Ruthenium PNN and PNP Pincer Complexes. Organometallics 2023; 42:347-356. [PMID: 36937786 PMCID: PMC10015984 DOI: 10.1021/acs.organomet.2c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 03/02/2023]
Abstract
The homogeneous catalysis of epoxide hydrogenolysis to give alcohols has recently received significant attention. Catalyst systems have been developed for the selective formation of either the Markovnikov (branched) or anti-Markovnikov (linear) alcohol product. Thus far, the reported catalysts exhibiting Markovnikov selectivity all feature the potential for Noyori/Shvo-type bifunctional catalysis, with either a RuH/NH or FeH/OH core structure. The proposed mechanisms of epoxide ring-opening have involved cooperative C-O bond hydrogenolysis involving the metal hydride and the acidic pendant group on the ligand, in analogy to the well-documented mechanism of polar double-bond hydrogenation exhibited by catalysts of this type. In this work, we present a combined computational/experimental study of the mechanism of epoxide hydrogenolysis catalyzed by Noyori-type PNP and PNN complexes of ruthenium. We find that, at least for these ruthenium systems, the previously proposed bifunctional pathway for epoxide ring-opening is energetically inaccessible; instead, the ring-opening proceeds through opposite-side nucleophilic attack of the ruthenium hydride on the epoxide carbon, without the involvement of the ligand N-H group. For both catalyst systems, the rate law and overall barrier predicted by density functional theory (DFT) are consistent with the results from kinetic studies.
Collapse
Affiliation(s)
- Marianna
C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Benjamin T. Joseph
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
9
|
Yang W, Filonenko GA, Pidko EA. Performance of homogeneous catalysts viewed in dynamics. Chem Commun (Camb) 2023; 59:1757-1768. [PMID: 36683401 PMCID: PMC9910057 DOI: 10.1039/d2cc05625a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effective assessment of catalytic performance is the foundation for the rational design and development of new catalysts with superior performance. The ubiquitous screening/optimization studies use reaction yields as the sole performance metric in an approach that often neglects the complexity of the catalytic system and intrinsic reactivities of the catalysts. Using an example of hydrogenation catalysis, we examine the transient behavior of catalysts that are often encountered in activation, deactivation and catalytic turnover processes. Each of these processes and the reaction environment in which they take place are gradually shown to determine the real-time catalyst speciation and the resulting kinetics of the overall catalytic reaction. As a result, the catalyst performance becomes a complex and time-dependent metric defined by multiple descriptors apart from the reaction yield. This behaviour is not limited to hydrogenation catalysis and affects various catalytic transformations. In this feature article, we discuss these catalytically relevant descriptors in an attempt to arrive at a comprehensive depiction of catalytic performance.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Georgy A. Filonenko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
10
|
Pandey B, Krause JA, Guan H. Methyl Effects on the Stereochemistry and Reactivity of PPP-Ligated Iron Hydride Complexes. Inorg Chem 2023; 62:967-978. [PMID: 36602907 DOI: 10.1021/acs.inorgchem.2c03803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Iron dihydride complexes are key intermediates in many iron-catalyzed reactions. Previous efforts to study molecules of this type have led to the discovery of a remarkably stable cis-FeH2 complex, which is supported by bis[2-(diisopropylphosphino)phenyl]phosphine (iPrPPHP) along with CO. In this work, the hydrogen on the central phosphorus has been replaced with a methyl group, and the corresponding iron carbonyl dichloride, hydrido chloride, and dihydride complexes have been synthesized. The addition of the methyl group favors the anti configuration for the Me-P-Fe-H moiety and the trans geometry for the H-Fe-CO motif, which is distinctively different from the iPrPPHP system. Furthermore, it increases the thermal stability of the dihydride complex, cis-(iPrPPMeP)Fe(CO)H2 (iPrPPMeP = bis[2-(diisopropylphosphino)phenyl]methylphosphine). The variations in stereochemistry and compound stability contribute greatly to the differences between the two PPP systems in reactions with PhCHO, CS2, and HCO2H.
Collapse
Affiliation(s)
- Bedraj Pandey
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio45221-0172, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio45221-0172, United States
| |
Collapse
|
11
|
Schlenker K, Casselman LK, VanderLinden RT, Saouma CT. Large changes in hydricity as a function of charge and not metal in (PNP)M–H (de)hydrogenation catalysts that undergo metal–ligand cooperativity. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01349e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ligand pKa and metal hydricity scale with one another in (de)hydrogenation catalysts that undergo metal–ligand cooperativity, irrespective of metal or ligand identity. Anionic hydrides are significantly more hydridic than their neutral counterparts.
Collapse
Affiliation(s)
- Kevin Schlenker
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Lillee K. Casselman
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| | | | - Caroline T. Saouma
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
12
|
Poli R. A new classification for the ever-expanding mechanistic landscape of catalyzed hydrogenations, dehydrogenations and transfer hydrogenations. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
13
|
Kuß DA, Hölscher M, Leitner W. Combined Computational and Experimental Investigation on the Mechanism of CO 2 Hydrogenation to Methanol with Mn-PNP-Pincer Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- David A. Kuß
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
14
|
Zn-Catalyzed Regioselective and Chemoselective Reduction of Aldehydes, Ketones and Imines. Int J Mol Sci 2022; 23:ijms232012679. [PMID: 36293541 PMCID: PMC9604354 DOI: 10.3390/ijms232012679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023] Open
Abstract
An operationally convenient Zn-catalyzed synthesis of alcohols by the reduction of aldehydes, ketones, and α,β-unsaturated aldehydes/ketones is reported. It is a rare example of using mild and sustainable HBpin as a reductant for catalytic reduction of carbonyl compounds in the absence of acid or base as hydrolysis reagent. The reaction is upscalable and proceeds in high selectivity without the formation of boronate ester by-products, and tolerates sensitive functionalities, such as iodo, bromo, chloro, fluoro, nitro, trifluoromethyl, aminomethyl, alkynyl, and amide. The Zn(OAc)2/HBpin combination has been also proved to be chemoselective for the C=N reduction of imine analogs.
Collapse
|
15
|
Sen R, Goeppert A, Surya Prakash GK. Homogeneous Hydrogenation of CO 2 and CO to Methanol: The Renaissance of Low-Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022; 61:e202207278. [PMID: 35921247 PMCID: PMC9825957 DOI: 10.1002/anie.202207278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/11/2023]
Abstract
The traditional economy based on carbon-intensive fuels and materials has led to an exponential rise in anthropogenic CO2 emissions. Outpacing the natural carbon cycle, atmospheric CO2 levels increased by 50 % since the pre-industrial age and can be directly linked to global warming. Being at the core of the proposed methanol economy pioneered by the late George A. Olah, the chemical recycling of CO2 to produce methanol, a green fuel and feedstock, is a prime channel to achieve carbon neutrality. In this direction, homogeneous catalytic systems have lately been a major focus for methanol synthesis from CO2 , CO and their derivatives as potential low-temperature alternatives to the commercial processes. This Review provides an account of this rapidly growing field over the past decade, since its resurgence in 2011. Based on the critical assessment of the progress thus far, the present key challenges in this field have been highlighted and potential directions have been suggested for practically viable applications.
Collapse
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| |
Collapse
|
16
|
Tkachenko NV, Rublev P, Dub PA. The Source of Proton in the Noyori–Ikariya Catalytic Cycle. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolay V. Tkachenko
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Pavel Rublev
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
17
|
Hert CM, Curley JB, Kelley SP, Hazari N, Bernskoetter WH. Comparative CO 2 Hydrogenation Catalysis with MACHO-type Manganese Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clayton M. Hert
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Steven P. Kelley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
18
|
Wang Y, Liu S, Yang H, Li H, Lan Y, Liu Q. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nat Chem 2022; 14:1233-1241. [PMID: 36097055 DOI: 10.1038/s41557-022-01036-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N-H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an N-M' group (M' = alkali metals) for the N-H moiety using a large excess of metal alkoxides (M'OR); however, such a metal-hydride amidate intermediate has not yet been isolated. Here we present the synthesis, isolation and reactivity of a metal-hydride amidate complex (HMn-NLi). Kinetic studies show that the rate of hydride transfer from HMn-NLi to a ketone is 24-fold higher than that of the corresponding amino metal-hydride complex (HMn-NH). Moreover, the hydrogenation of N-alkyl-substituted aldimines was realized using HMn-NLi as the active catalyst, whereas HMn-NH is much less effective. These results highlight the superiority of M/NM' bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China
| | - Haobo Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hengxu Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China. .,College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China.
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes. ACS Catal 2022; 12:10818-10825. [PMID: 36082051 PMCID: PMC9442580 DOI: 10.1021/acscatal.2c02963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Indexed: 11/30/2022]
Abstract
![]()
While Mn-catalyzed (de)hydrogenation of carbonyl derivatives
has
been well established, the reactivity of Mn hydrides with olefins
remains very rare. Herein, we report a Mn(I) pincer complex that effectively
promotes site-controlled transposition of olefins. This reactivity
is shown to emerge once the N–H functionality within the Mn/NH
bifunctional complex is suppressed by alkylation. While detrimental
for carbonyl (de)hydrogenation, such masking of the cooperative N–H
functionality allows for the highly efficient conversion of a wide
range of allylarenes to higher-value 1-propenybenzenes in near-quantitative
yield with excellent stereoselectivities. The reactivity toward a
single positional isomerization was also retained for long-chain alkenes,
resulting in the highly regioselective formation of 2-alkenes, which
are less thermodynamically stable compared to other possible isomerization
products. The detailed mechanistic analysis of the reaction between
the activated Mn catalyst and olefins points to catalysis operating
via a metal–alkyl mechanism—one of the three conventional
transposition mechanisms previously unknown in Mn complexes.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
20
|
Patil RD, Dutta M, Pratihar S. Hydrogenation Involving Two Different Proton- and Hydride-Transferring Reagents through Metal–Ligand Cooperation: Mechanism and Scope. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Manali Dutta
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR─Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
21
|
Prakash SG, Sen R, Goeppert A. Homogeneous Hydrogenation of CO2 and CO to Methanol: The Renaissance of Low Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Surya G. Prakash
- University of Southern California Loker Hydrocarbon Research Institute 837 Bloom WalkUniversity Park 90089-1661 Los Angeles UNITED STATES
| | - Raktim Sen
- University of Southern California Loker Hydrocarbon Res. Inst., and Department box Chemistry UNITED STATES
| | - Alain Goeppert
- University of Southern California Loker Hydrocarbon Res. Inst., and Department of Chemistry UNITED STATES
| |
Collapse
|
22
|
Romero RM, Thyagarajan N, Hellou N, Chauvier C, Godou T, Anthore-Dalion L, Cantat T. Silyl formates as hydrosilane surrogates for the transfer hydrosilylation of ketones. Chem Commun (Camb) 2022; 58:6308-6311. [PMID: 35522145 PMCID: PMC9476892 DOI: 10.1039/d2cc00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transfer hydrosilylation of ketones employing silyl formates as hydrosilane surrogates under mild conditions is presented. A total of 24 examples of ketones have been successfully converted to their corresponding silyl ethers with 61-99% yields in the presence of a PNHP-based ruthenium catalyst and silyl formate reagent. The crucial role of the ligand for the transformation is demonstrated.
Collapse
Affiliation(s)
- R Martin Romero
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Neethu Thyagarajan
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Nora Hellou
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Clément Chauvier
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | - Timothé Godou
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| | | | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Krieger AM, Sinha V, Li G, Pidko EA. Solvent-Assisted Ketone Reduction by a Homogeneous Mn Catalyst. Organometallics 2022; 41:1829-1835. [PMID: 35910260 PMCID: PMC9326964 DOI: 10.1021/acs.organomet.2c00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The choice of a solvent
and the reaction conditions often defines
the overall behavior of a homogeneous catalytic system by affecting
the preferred reaction mechanism and thus the activity and selectivity
of the catalytic process. Here, we explore the role of solvation in
the mechanism of ketone reduction using a model representative of
a bifunctional Mn-diamine catalyst through density functional theory
calculations in a microsolvated environment by considering explicit
solvent and fully solvated ab initio molecular dynamics simulations
for the key elementary steps. Our computational analysis reveals the
possibility of a Meerwein–Ponndorf–Verley (MPV) type
mechanism in this system, which does not involve the participation
of the N–H moiety and the formation of a transition-metal hydride
species in ketone conversion. This path was not previously considered
for Mn-based metal–ligand cooperative transfer hydrogenation
homogeneous catalysis. The MPV mechanism is strongly facilitated by
the solvent molecules present in the reaction environment and can
potentially contribute to the catalytic performance of other related
catalyst systems. Calculations indicate that, despite proceeding effectively
in the second coordination sphere of the transition-metal center,
the MPV reaction path retains the enantioselectivity preference induced
by the presence of the small chiral N,N′-dimethyl-1,2-cyclohexanediamine ligand within the catalytic
Mn(I) complex.
Collapse
Affiliation(s)
- Annika M. Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Vivek Sinha
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
24
|
Kirlin FL, Borden OJ, Head MC, Kelly SE, Chianese AR. Epoxide Hydrogenolysis Catalyzed by Ruthenium PNN and PNP Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fallyn L. Kirlin
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Olivia J. Borden
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Marianna C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Sophie E. Kelly
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
25
|
Grømer B, Yoshioka S, Saito S. Selective Reduction of Carboxylic Acids to Alcohols in the Presence of Alcohols by a Dual Bulky Transition-Metal Complex/Lewis Acid Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bendik Grømer
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shota Yoshioka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
26
|
Gausas L, Donslund BS, Kristensen SK, Skrydstrup T. Evaluation of Manganese Catalysts for the Hydrogenative Deconstruction of Commercial and End-of-Life Polyurethane Samples. CHEMSUSCHEM 2022; 15:e202101705. [PMID: 34510781 DOI: 10.1002/cssc.202101705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Polyurethane (PU) is a thermoset plastic that is found in everyday objects, such as mattresses and shoes, but also in more sophisticated materials, including windmills and airplanes, and as insulation materials in refrigerators and buildings. Because of extensive inter-cross linkages in PU, current recycling methods are somewhat lacking. In this work, the effective catalytic hydrogenation of PU materials is carried out by applying a catalyst based on the earth-abundant metal manganese, to give amine and polyol fractions, which represent the original monomeric composition. In particular, Mn-Ph MACHO is found to catalytically deconstruct flexible foam, molded foams, insulation, and end-of-life materials at 1 wt.% catalyst loading by applying a reaction temperature of 180 °C, 50 bar of H2 , and 0.9 wt.% of KOH in isopropyl alcohol. The protocol is showcased in the catalytic deconstruction of 2 g of mattress foam using only 0.13 wt.% catalyst, resulting in 90 % weight recovery and a turnover number of 905.
Collapse
Affiliation(s)
- Laurynas Gausas
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Bjarke S Donslund
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Steffan K Kristensen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
27
|
Bhattacharyya D, Adhikari P, Deori K, Das A. Ruthenium pincer complex catalyzed efficient synthesis of quinoline, 2-styrylquinoline and quinazoline derivatives via acceptorless dehydrogenative coupling reactions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of N-heterocycles has been considered an emerging area of chemical research due to their extensive utilization in pharmaceuticals, materials science, and natural product synthesis.
Collapse
Affiliation(s)
- Dipanjan Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Priyanka Adhikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Kritartha Deori
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
28
|
Hall AR, Berry DBG, Crossley JN, Codina A, Clegg I, Lowe JP, Buchard A, Hintermair U. Does the Configuration at the Metal Matter in Noyori-Ikariya Type Asymmetric Transfer Hydrogenation Catalysts? ACS Catal 2021; 11:13649-13659. [PMID: 34777911 PMCID: PMC8576814 DOI: 10.1021/acscatal.1c03636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Indexed: 12/04/2022]
Abstract
Noyori-Ikariya type [(arene)RuCl(TsDPEN)] (TsDPEN, sulfonated diphenyl ethylenediamine) complexes are widely used C=O and C=N reduction catalysts that produce chiral alcohols and amines via a key ruthenium-hydride intermediate that determines the stereochemistry of the product. Whereas many details about the interactions of the pro-chiral substrate with the hydride complex and the nature of the hydrogen transfer from the latter to the former have been investigated over the past 25 years, the role of the stereochemical configuration at the stereogenic ruthenium center in the catalysis has not been elucidated so far. Using operando FlowNMR spectroscopy and nuclear Overhauser effect spectroscopy, we show the existence of two diastereomeric hydride complexes under reaction conditions, assign their absolute configurations in solution, and monitor their interconversion during transfer hydrogenation catalysis. Configurational analysis and multifunctional density functional theory (DFT) calculations show the λ-(R,R)S Ru configured [(mesitylene)RuH(TsDPEN)] complex to be both thermodynamically and kinetically favored over its λ-(R,R)R Ru isomer with the opposite configuration at the metal. Computational analysis of both diastereomeric catalytic manifolds show the major λ-(R,R)S Ru configured [(mesitylene)RuH(TsDPEN)] complex to dominate asymmetric ketone reduction catalysis with the minor λ-(R,R)R Ru [(mesitylene)RuH(TsDPEN)] stereoisomer being both less active and less enantioselective. These findings also hold true for a tethered catalyst derivative with a propyl linker between the arene and TsDPEN ligands and thus show enantioselective transfer hydrogenation catalysis with Noyori-Ikariya complexes to proceed via a lock-and-key mechanism.
Collapse
Affiliation(s)
- Andrew
M. R. Hall
- Centre
for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Daniel B. G. Berry
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Jaime N. Crossley
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Anna Codina
- Bruker
UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom
| | - Ian Clegg
- Bruker
UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom
| | - John P. Lowe
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Antoine Buchard
- Centre
for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Ulrich Hintermair
- Centre
for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Dynamic
Reaction Monitoring Facility, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
29
|
Affiliation(s)
- Pavel A. Dub
- Chemistry Division Los Alamos National Laboratory (LANL) Los Alamos New Mexico 87545 USA
| |
Collapse
|
30
|
Alberico E, Leischner T, Junge H, Kammer A, Sang R, Seifert J, Baumann W, Spannenberg A, Junge K, Beller M. HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chem Sci 2021; 12:13101-13119. [PMID: 34745541 PMCID: PMC8513996 DOI: 10.1039/d1sc04181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed. Mo(0) complexes with aliphatic PNP-pincer ligands enable the first example of non-noble metal catalyzed formic acid disproportionation leading to methanol with a selectivity of up to 37% and a turnover number up to 69.![]()
Collapse
Affiliation(s)
- Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany .,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rui Sang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jenny Seifert
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
31
|
Sancho-Sanz I, Korili S, Gil A. Catalytic valorization of CO 2 by hydrogenation: current status and future trends. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1968197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- I. Sancho-Sanz
- INAMAT^2, Departamento De Ciencias, Edificio De Los Acebos, Universidad Pública De Navarra, Pamplona, Spain
| | - S.A. Korili
- INAMAT^2, Departamento De Ciencias, Edificio De Los Acebos, Universidad Pública De Navarra, Pamplona, Spain
| | - A. Gil
- INAMAT^2, Departamento De Ciencias, Edificio De Los Acebos, Universidad Pública De Navarra, Pamplona, Spain
| |
Collapse
|
32
|
Shen X, Wang W, Wang Q, Liu J, Huang F, Sun C, Yang C, Chen D. Mechanism of iron complexes catalyzed in the N-formylation of amines with CO 2 and H 2: the superior performance of N-H ligand methylated complexes. Phys Chem Chem Phys 2021; 23:16675-16689. [PMID: 34337631 DOI: 10.1039/d1cp00608h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CO2 hydrogenation into value-added chemicals not only offer an economically beneficial outlet but also help reduce the emission of greenhouse gases. Herein, the density functional theory (DFT) studies have been carried out on CO2 hydrogenation reaction for formamide production catalyzed by two different N-H ligand types of PNP iron catalysts. The results suggest that the whole mechanistic pathway has three parts: (i) precatalyst activation, (ii) hydrogenation of CO2 to generate formic acid (HCOOH), and (iii) amine thermal condensation to formamide with HCOOH. The lower turnover number (TON) of a bifunctional catalyst system in hydrogenating CO2 may attribute to the facile side-reaction between CO2 and bifunctional catalyst, which inhibits the generation of active species. Regarding the bifunctional catalyst system addressed in this work, we proposed a ligand participated mechanism due to the low pKa of the ligand N-H functional in the associated stage in the catalytic cycle. Remarkably, catalysts without the N-H ligand exhibit the significant transfer hydrogenation through the metal centered mechanism. Due to the excellent catalytic nature of the N-H ligand methylated catalyst, the N-H bond was not necessary for stabilizing the intermediate. Therefore, we confirmed that N-H ligand methylated catalysts allow for an efficient CO2 hydrogenation reaction compared to the bifunctional catalysts. Furthermore, the influence of Lewis acid and strong base on catalytic N-formylation were considered. Both significantly impact the catalytic performance. Moreover, the catalytic activity of PNMeP-based Mn, Fe and Ru complexes for CO2 hydrogenation to formamides was explored as well. The energetic span of Fe and Mn catalysts are much closer to the precious metal Ru, which indicates that such non-precious metal catalysts have potentially valuable applications.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Krieger AM, Pidko EA. The Impact of Computational Uncertainties on the Enantioselectivity Predictions: A Microkinetic Modeling of Ketone Transfer Hydrogenation with a Noyori-type Mn-diamine Catalyst. ChemCatChem 2021; 13:3517-3524. [PMID: 34589158 PMCID: PMC8453751 DOI: 10.1002/cctc.202100341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/23/2021] [Indexed: 12/26/2022]
Abstract
Selectivity control is one of the most important functions of a catalyst. In asymmetric catalysis the enantiomeric excess (e.e.) is a property of major interest, with a lot of effort dedicated to developing the most enantioselective catalyst, understanding the origin of selectivity, and predicting stereoselectivity. Herein, we investigate the relationship between predicted selectivity and the uncertainties in the computed energetics of the catalytic reaction mechanism obtained by DFT calculations in a case study of catalytic asymmetric transfer hydrogenation (ATH) of ketones with an Mn-diamine catalyst. Data obtained from our analysis of DFT data by microkinetic modeling is compared to results from experiment. We discuss the limitations of the conventional reductionist approach of e.e. estimation from assessing the enantiodetermining steps only. Our analysis shows that the energetics of other reaction steps in the reaction mechanism have a substantial impact on the predicted reaction selectivity. The uncertainty of DFT calculations within the commonly accepted energy ranges of chemical accuracy may reverse the predicted e.e. with the non-enantiodetermining steps contributing to e.e. deviations of up to 25 %.
Collapse
Affiliation(s)
- Annika M. Krieger
- Inorganic Systems EngineeringDepartment of Chemical EngineeringFaculty of Applied SciencesDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems EngineeringDepartment of Chemical EngineeringFaculty of Applied SciencesDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
34
|
Pham J, Jarczyk CE, Reynolds EF, Kelly SE, Kim T, He T, Keith JM, Chianese AR. The key role of the latent N-H group in Milstein's catalyst for ester hydrogenation. Chem Sci 2021; 12:8477-8492. [PMID: 35355805 PMCID: PMC8901127 DOI: 10.1039/d1sc00703c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that Milstein's seminal diethylamino-substituted PNN-pincer-ruthenium catalyst for ester hydrogenation is activated by dehydroalkylation of the pincer ligand, releasing ethane and eventually forming an NHEt-substituted derivative that we proposed is the active catalyst. In this paper, we present a computational and experimental mechanistic study supporting this hypothesis. Our DFT analysis shows that the minimum-energy pathways for hydrogen activation, ester hydrogenolysis, and aldehyde hydrogenation rely on the key involvement of the nascent N-H group. We have isolated and crystallographically characterized two catalytic intermediates, a ruthenium dihydride and a ruthenium hydridoalkoxide, the latter of which is the catalyst resting state. A detailed kinetic study shows that catalytic ester hydrogenation is first-order in ruthenium and hydrogen, shows saturation behavior in ester, and is inhibited by the product alcohol. A global fit of the kinetic data to a simplified model incorporating the hydridoalkoxide and dihydride intermediates and three kinetically relevant transition states showed excellent agreement with the results from DFT.
Collapse
Affiliation(s)
- John Pham
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Cole E Jarczyk
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Eamon F Reynolds
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Sophie E Kelly
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Thao Kim
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Tianyi He
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Jason M Keith
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| | - Anthony R Chianese
- Department of Chemistry, Colgate University 13 Oak Drive, Hamilton New York 13346 USA
| |
Collapse
|
35
|
Dai H, Li W, Krause JA, Guan H. Experimental Evidence of syn H–N–Fe–H Configurational Requirement for Iron-Based Bifunctional Hydrogenation Catalysts. Inorg Chem 2021; 60:6521-6535. [DOI: 10.1021/acs.inorgchem.1c00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huiguang Dai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Weishi Li
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
36
|
Yang J, Pell AJ, Hedin N, Lyubartsev A. Computational insight into the hydrogenation of CO2 and carbamic acids to methanol by a ruthenium(II)-based catalyst: The role of amino (NH) ligand group. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Jakobsen JB, Rønne MH, Daasbjerg K, Skrydstrup T. Are Amines the Holy Grail for Facilitating CO
2
Reduction? Angew Chem Int Ed Engl 2021; 60:9174-9179. [DOI: 10.1002/anie.202014255] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Joakim B. Jakobsen
- Carbon Dioxide Activation Center (CADIAC) Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Magnus H. Rønne
- Carbon Dioxide Activation Center (CADIAC) Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC) Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
38
|
Jakobsen JB, Rønne MH, Daasbjerg K, Skrydstrup T. Are Amines the Holy Grail for Facilitating CO
2
Reduction? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Joakim B. Jakobsen
- Carbon Dioxide Activation Center (CADIAC) Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Magnus H. Rønne
- Carbon Dioxide Activation Center (CADIAC) Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC) Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
39
|
Kaithal A, Werlé C, Leitner W. Alcohol-Assisted Hydrogenation of Carbon Monoxide to Methanol Using Molecular Manganese Catalysts. JACS AU 2021; 1:130-136. [PMID: 34467278 PMCID: PMC8395606 DOI: 10.1021/jacsau.0c00091] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Alcohol-assisted hydrogenation of carbon monoxide (CO) to methanol was achieved using homogeneous molecular complexes. The molecular manganese complex [Mn(CO)2Br[HN(C2H4P i Pr2)2]] ([HN(C2H4P i Pr2)2] = MACHO- i Pr) revealed the best performance, reaching up to turnover number = 4023 and turnover frequency 857 h-1 in EtOH/toluene as solvent under optimized conditions (T = 150 °C, p(CO/H2) = 5/50 bar, t = 8-12 h). Control experiments affirmed that the reaction proceeds via formate ester as the intermediate, whereby a catalytic amount of base was found to be sufficient to mediate its formation from CO and the alcohol in situ. Selectivity for methanol formation reached >99% with no accumulation of the formate ester. The reaction was demonstrated to work with methanol as the alcohol component, resulting in a reactive system that allows catalytic "breeding" of methanol without any coreagents.
Collapse
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| |
Collapse
|
40
|
Ataya M, Hasanayn F. Calculations on the non-classical β-hydride elimination observed in trans-(H)(OMe)-Ir(Ph)(PMe 3) 3: possible production and reaction of methyl formate. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The octahedral trans hydrido-alkoxide complex trans-(H)(OMe)-Ir(Ph)(PMe3)3 (2-OCH3) was prepared by Milstein and coworkers by addition of methanol to Ir(Ph)(PMe3)3 (1). 2-OCH3 was discovered to undergo a methanol catalyzed outer-sphere carbonyl de-insertion in which a vacant coordination site is not required. The reaction yields the octahedral trans dihydride complex trans-(H)2-Ir(Ph)(PMe3)3 (2-H) as a kinetic product along with formaldehyde derivatives reported as [CH2=O]x. We investigate the mechanism and products of this reaction using density functional theory. The de-insertion transition state has an ion-pair character leading to a high barrier in benzene continuum: ΔG ‡ = 27.9 kcal/mol. Adding one methanol molecule by H-bonding to the alkoxide of 2-OCH3 lowers the barrier to 22.7 kcal/mol. When the calculations are conducted in a methanol continuum, the barrier drops to 8.8 kcal/mol. However, the thermodynamics of de-insertion are endergonic by near 5 kcal/mol in both benzene and methanol. The calculations identify a low energy outer-sphere H/OMe metathesis pathway that transforms the formaldehyde and another 2-OCH3 molecule directly into a second 2-H complex and methyl formate. Likewise, a second H/OCH3 metathesis reaction interconverting methyl formate and 2-OCH3 into 2-H and dimethyl carbonate is computed to be exergonic and kinetically facile. These results imply that the production of methyl formate and dimethyl carbonate from 2-OCH3 is plausible in this system. The net transformation from the square planar 1 and methanol to 2-H and either methyl formate or dimethyl carbonate would represent a unique stoichiometric dehydrogenative coupling reaction taking place at room temperature by an outer-sphere mechanism.
Collapse
Affiliation(s)
- Mohamad Ataya
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
41
|
Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yong Peng
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yu Lan
- Institute of Green Catalysis College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
42
|
Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angew Chem Int Ed Engl 2021; 60:5108-5113. [DOI: 10.1002/anie.202013540] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yong Peng
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yu Lan
- Institute of Green Catalysis College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
43
|
Wen J, Wang F, Zhang X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem Soc Rev 2021; 50:3211-3237. [DOI: 10.1039/d0cs00082e] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on asymmetric direct and transfer hydrogenation with first-row transition metal complexes. The reaction mechanisms and the models of enantiomeric induction were summarized and emphasized.
Collapse
Affiliation(s)
- Jialin Wen
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fangyuan Wang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xumu Zhang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
44
|
Bai ST, De Smet G, Liao Y, Sun R, Zhou C, Beller M, Maes BUW, Sels BF. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem Soc Rev 2021; 50:4259-4298. [DOI: 10.1039/d0cs01331e] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes the concepts, mechanisms, drawbacks and challenges of the state-of-the-art catalysis for CO2 to MeOH under mild conditions. Thoughtful guidelines and principles for future research are presented and discussed.
Collapse
Affiliation(s)
- Shao-Tao Bai
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Gilles De Smet
- Division of Organic Synthesis
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Yuhe Liao
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Ruiyan Sun
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| | | | - Bert U. W. Maes
- Division of Organic Synthesis
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering
- KU Leuven
- 3001 Heverlee
- Belgium
| |
Collapse
|
45
|
Ekanayake DA, Chakraborty A, Krause JA, Guan H. Hydrogenation reactions catalyzed by HN(CH2CH2PR2)2-ligated copper complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00776a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogenation of aldehydes and ketones can be catalyzed by a PNP-ligated copper hydride that is accessible from the copper borohydride or bromide complex or the copper hydride cluster.
Collapse
Affiliation(s)
- Dewmi A. Ekanayake
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| | - Arundhoti Chakraborty
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA
| |
Collapse
|
46
|
Chatterjee B, Chang W, Werlé C. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2020. [DOI: 10.1002/cctc.202001431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Wei‐Chieh Chang
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
47
|
Chatterjee B, Chang WC, Jena S, Werlé C. Implementation of Cooperative Designs in Polarized Transition Metal Systems—Significance for Bond Activation and Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03794] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Wei-Chieh Chang
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Soumyashree Jena
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
- Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
48
|
Dawe LN, Karimzadeh-Younjali M, Dai Z, Khaskin E, Gusev DG. The Milstein Bipyridyl PNN Pincer Complex of Ruthenium Becomes a Noyori-Type Catalyst under Reducing Conditions. J Am Chem Soc 2020; 142:19510-19522. [DOI: 10.1021/jacs.0c06518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Louise N. Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | | | - Zengjin Dai
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Dmitry G. Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
49
|
Fanara PM, MacMillan SN, Lacy DC. Planar-Locked Ru-PNN Catalysts in 1-Phenylethanol Dehydrogenation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul M. Fanara
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
50
|
Tan X, Zeng W, Wen J, Zhang X. Iridium-Catalyzed Asymmetric Hydrogenation of α-Fluoro Ketones via a Dynamic Kinetic Resolution Strategy. Org Lett 2020; 22:7230-7233. [DOI: 10.1021/acs.orglett.0c02565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xuefeng Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weijun Zeng
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|