1
|
Lupi M, Fabbri M, Mazzeo G, Longhi G, Abbate S, Viglianisi C, Menichetti S. Organocatalytic hydrogen bond donor/Lewis base (HBD/LB) synthesis and chiroptical properties of thiabridged [5]helicenes. Org Biomol Chem 2024; 22:7154-7163. [PMID: 39040026 PMCID: PMC11393524 DOI: 10.1039/d4ob00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Thiabridged [5]helicenes are obtained from thioaryl-N-phthalimido benzo[a]phenothiazines using a hydrogen bond donor/Lewis base organocatalytic approach. Resolution of [5]helicenes using either (1S)-(-)-camphanic acid as a chiral auxiliary or CSP-HPLC is reported. Thiabridged [5]helicenes show an exceptional configurational stability with racemization energy barriers higher than 40 kcal mol-1. Electronic circular dichroism and TD-DFT calculations permit the assignment of the absolute configuration, demonstrating that the sign of optical rotation is not easily related to the M or P structure. Separated enantiomers show circularly polarized luminescence with high dissymmetry ratio.
Collapse
Affiliation(s)
- Michela Lupi
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 13, Sesto Fiorentino (FI), 50019 Florence, Italy.
| | - Mosè Fabbri
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 13, Sesto Fiorentino (FI), 50019 Florence, Italy.
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, V. le Europa 11, Brescia (BS), 25121 Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, V. le Europa 11, Brescia (BS), 25121 Brescia, Italy
| | - Sergio Abbate
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, V. le Europa 11, Brescia (BS), 25121 Brescia, Italy
| | - Caterina Viglianisi
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 13, Sesto Fiorentino (FI), 50019 Florence, Italy.
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 13, Sesto Fiorentino (FI), 50019 Florence, Italy.
| |
Collapse
|
2
|
Fan P, Li L, Qian D. Catalytic asymmetric construction of helicenes via transformation of biaryls. Org Biomol Chem 2024; 22:3186-3197. [PMID: 38591656 DOI: 10.1039/d4ob00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review showcases a systematic overview of the available tools for the catalytic asymmetric transformation of biaryl substrates toward the construction of challenging enantioenriched helicenes and the conceptual aspects associated with each type of transformation. Depending on the properties of the biaryl and the nature of the process, several methodologies have been developed, including olefin metathesis, hydroarylation of alkynes, C-X (X = C, O, N) coupling, and C-H functionalization. Pioneering studies and an array of representative reactions are discussed to underscore the potential of these synthetic protocols.
Collapse
Affiliation(s)
- Peiling Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| |
Collapse
|
3
|
Xu WL, Zhang RX, Wang H, Chen J, Zhou L. Helicoselective Synthesis of Indolohelicenoids through Organocatalytic Central-to-Helical Chirality Conversion. Angew Chem Int Ed Engl 2024; 63:e202318021. [PMID: 38196108 DOI: 10.1002/anie.202318021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
We report the helicoselective and convergent construction of indolohelicenoids with excellent efficiency and stereocontrol. This reaction proceeds through a chiral-phosphoric-acid-catalyzed enantioselective cycloaddition and eliminative aromatization sequence, which can be finely controlled by adjusting the reaction temperature. Mechanistic studies reveal that the chiral phosphoric acid cooperatively serves as both a bifunctional and Brønsted acid catalyst, enabling one-pot central-to-helical chirality conversion. Additionally, the optical properties of the synthesized indolohelicenoids were characterized to explore their potential applications in organic photoelectric materials.
Collapse
Affiliation(s)
- Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ru-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
4
|
Liu X, Zhu B, Zhang X, Zhu H, Zhang J, Chu A, Wang F, Wang R. Enantioselective synthesis of [4]helicenes by organocatalyzed intermolecular C-H amination. Nat Commun 2024; 15:732. [PMID: 38272928 PMCID: PMC10810882 DOI: 10.1038/s41467-024-45049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Catalytic asymmetric synthesis of helically chiral molecules has remained an outstanding challenge and witnessed fairly limited progress in the past decades. Current methods to construct such compounds almost entirely rely on catalytic enantiocontrolled fused-ring system extension. Herein, we report a direct terminal peri-functionalization strategy, which allows for efficient assembling of 1,12-disubstituted [4]carbohelicenes via an organocatalyzed enantioselective amination reaction of 2-hydroxybenzo[c]phenanthrene derivates with diazodicarboxamides. The key feature of this approach is that the stereochemical information of the catalyst could be transferred into not only the helix sense but also the remote C-N axial chirality of the products, thus enabling the synthesis of [4]- and [5]helicenes with both structural diversity and stereochemical complexity in good efficiency and excellent enantiocontrol. Besides, the large-scale preparations and representative transformations of the helical products further demonstrate the practicality of this protocol. Moreover, DFT calculations reveal that both the hydrogen bonds and the C-H---π interactions between the substrates and catalyst contribute to the ideal stereochemical control.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China.
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107, Shenzhen, China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Fujun Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
5
|
Gavrilov KN, Chuchelkin IV, Firsin ID, Trunina VM, Gavrilov VK, Zheglov SV, Fedorov DA, Tafeenko VA, Zamilatskov IA, Zimarev VS, Goulioukina NS. TADDOL-based P, S-bidentate phosphoramidite ligands in palladium-catalyzed asymmetric allylic substitution. Org Biomol Chem 2024; 22:538-549. [PMID: 38111353 DOI: 10.1039/d3ob01891a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A series of easy-to-prepare and modular chiral P,S-bidentate phosphoramidites were synthesized. With respect to Pd(II), these ligands showed the ability to form stable P,S-chelate allylic complexes. The structures of the ligands and their complexes were confirmed by 2D NMR spectroscopy and single-crystal X-ray diffraction. These chiral inducers provided up to 99% ee in the Pd-catalyzed asymmetric allylic substitution of (E)-1,3-diphenylallyl acetate with C- and N-nucleophiles and up to 94% ee in the Pd-mediated allylic alkylation of cinnamyl esters with β-ketoesters and 2,5-dimethylpyrrole. Furthermore, up to 92% ee with quantitative conversion and chemo- and regioselectivity was achieved in the rare reaction between 2-(diethoxyphosphoryl)-1-phenylallyl acetate and aniline. The effects of the structural parameters, reaction conditions and ligand-to-metal ratio on the catalytic results are discussed. It was shown that the ligands surpass their analogues with different denticity.
Collapse
Affiliation(s)
- Konstantin N Gavrilov
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
| | - Ilya V Chuchelkin
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
| | - Ilya D Firsin
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
| | - Valeria M Trunina
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
| | - Vladislav K Gavrilov
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
| | - Sergey V Zheglov
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
| | - Denis A Fedorov
- Department of General Physics, Moscow Institute of Physics and Technology, Institutskii per. 9, 141700 Dolgoprudny, Moscow Region, Russian Federation
| | - Victor A Tafeenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russian Federation
| | - Ilya A Zamilatskov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospekt 31/4, 119071, Moscow, Russian Federation
| | - Vladislav S Zimarev
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russian Federation
| | - Nataliya S Goulioukina
- Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation.
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russian Federation
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospekt 31/4, 119071, Moscow, Russian Federation
| |
Collapse
|
6
|
Sanil G, Krzeszewski M, Chaładaj W, Danikiewicz W, Knysh I, Dobrzycki Ł, Staszewska-Krajewska O, Cyrański MK, Jacquemin D, Gryko DT. Gold-Catalyzed 1,2-Aryl Shift and Double Alkyne Benzannulation. Angew Chem Int Ed Engl 2023; 62:e202311123. [PMID: 37823245 DOI: 10.1002/anie.202311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2-aryl shift is described. Harnessing the unique electron-rich character of 1,4-dihydropyrrolo[3,2-b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2-aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π-expanded, centrosymmetric pyrrolo[3,2-b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six-membered rings accompanied with a 1,2-aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7-membered rings. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time-dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.
Collapse
Affiliation(s)
- Gana Sanil
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | | | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
7
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Canac Y. Carbon-Phosphorus Ligands with Extreme Donating Character. CHEM REC 2023; 23:e202300187. [PMID: 37435947 DOI: 10.1002/tcr.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Carbeniophosphines [R2 C+ -PR2 ] and phosphonium ylides [R3 P+ -CR2 - ] are two complementary classes of carbon-phosphorus based ligands defined by their unique donor properties. Indeed, while carbeniophosphines are electron-poor P-ligands due to the positioning of a positive charge near the coordinating P-atom, phosphonium ylides are electron-rich C-ligands due to the presence of a negatively charged coordinating C-atom. Based on this knowledge, this account summarizes our recent contribution on these two classes of carbon-phosphorus ligands, and in particular the strategies developed to lower the donor character of carbeniophosphines and enhance that of phosphonium ylides. This led us to design, at both extremities of the donating scale, extremely electron-poor P-ligands exemplified by imidazoliophosphonites [R2 C+ -P(OR)2 ] and dicarbeniophosphines [(R2 C+ )2 -PR], and extremely electron-rich C-ligands illustrated by pincer architectures exhibiting several phosphonium ylide donor extremities. In the context of carbon-phosphorus analogy, the closely related cases of ligands where the C-atom of a NHC ligand is in close proximity of two positive charges, and that of a phosphonium ylide coordinated through its P-atom are also discussed. An overview of the synthetic methods, coordinating properties, general reactivity and electronic structure of all these C,P-based species is presented here.
Collapse
Affiliation(s)
- Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
9
|
Li C, Shao YB, Gao X, Ren Z, Guo C, Li M, Li X. Enantioselective synthesis of chiral quinohelicenes through sequential organocatalyzed Povarov reaction and oxidative aromatization. Nat Commun 2023; 14:3380. [PMID: 37291164 DOI: 10.1038/s41467-023-39134-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Heterohelicenes are of increasing importance in the fields of materials science, molecular recognition, and asymmetric catalysis. However, enantioselective construction of these molecules, especially by organocatalytic methods, is challenging, and few methods are available. In this study, we synthesize enantioenriched 1-(3-indol)-quino[n]helicenes through chiral phosphoric acid-catalyzed Povarov reaction followed by oxidative aromatization. The method has a broad substrate scope and offers rapid access to an array of chiral quinohelicenes with enantioselectivities up to 99%. Additionally, the photochemical and electrochemical properties of selected quinohelicenes are explored.
Collapse
Affiliation(s)
- Chengwen Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying-Bo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xi Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chenhao Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
10
|
Pellissier H. TADDOL-derived phosphorus ligands in asymmetric catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
11
|
Fu W, Pelliccioli V, von Geyso M, Redero P, Böhmer C, Simon M, Golz C, Alcarazo M. Enantioselective Au-Catalyzed Synthesis of Thia[5]- and Thia[6]helicenes and Their Transformation into Bowl-shaped Pleiadenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211279. [PMID: 36747350 DOI: 10.1002/adma.202211279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
A series of helically shaped benzo[b]chryseno[4,3-d]thiophenes, naphtho[1,2-b]phenanthro[4,3-d]thiophenes, and chryseno[3,4-b]naphtho[1,2-d]thiophenes is synthesized via a highly enantioselective Au-catalyzed intramolecular alkyne hydroarylation reaction. The inversion barriers of the structures obtained are determined both theoretically and experimentally, and their chiroptical properties are reported. Preliminary studies on the post-synthetic functionalization of these thiahelicenes and their transformation into azahelicenes are also presented. In addition, a straightforward one-step protocol is developed, which wraps the initially obtained chryseno[3,4-b]naphtho[1,2-d]thiophenes into bowl-shaped pleiadene derivatives without erosion of the enantiopurity. The number of structurally related products that are obtained with high enantioselectivity enables the establishment of comprehensive correlations between the structure and conformational stability or (chir)optical properties.
Collapse
Affiliation(s)
- Wei Fu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Valentina Pelliccioli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Moritz von Geyso
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Pablo Redero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christian Böhmer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Wang L, Duan L, Hong B, Gu Z. Divergent Synthesis of Helical Ketone Enabled by Rearrangement of Spiro Carbocation. Org Lett 2023; 25:1912-1917. [PMID: 36892669 DOI: 10.1021/acs.orglett.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
An acid-mediated electrophilic cyclization of 2-alkynyl-1,1'-biphenyls for the divergent synthesis of angular, bent, and zigzag fused nonplanar conjugated organic molecules was realized. The key feature of this reaction is a Wagner-Meerwein-type rearrangement via a spiro carbocation intermediate, which was formed by electrophilic cyclization of the 9H-fluoren-9-one derivative at the meta position. The products can be advanced to helical fluorenes, which exhibit high fluorescence quantum yields.
Collapse
Affiliation(s)
- Limin Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Longhui Duan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
13
|
Vázquez-Domínguez P, Romero-Arenas A, Fernández R, Lassaletta JM, Ros A. Ir-Catalyzed Asymmetric Hydroarylation of Alkynes for the Synthesis of Axially Chiral Heterobiaryls. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pablo Vázquez-Domínguez
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Seville, Spain
| | - Antonio Romero-Arenas
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Seville, Spain
| | - José María Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
14
|
Liu W, Qin T, Xie W, Yang X. Catalytic Enantioselective Synthesis of Helicenes. Chemistry 2022; 28:e202202369. [PMID: 36063162 DOI: 10.1002/chem.202202369] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/13/2022]
Abstract
Helicenes and helicene-like molecules, usually containing multiple ortho-fused aromatic rings, possess unique helical chirality. These compounds have found a wide range of important applications in many research fields, such as asymmetric catalysis, molecular recognition, sensors and responsive switches, circularly polarized luminescence materials and others. However, the catalytic enantioselective synthesis of helicenes was largely underexplored, when compared with the enantioselective synthesis of molecules bearing other stereogenic elements (e.g. central chirality and axial chirality). Since the pioneer work of asymmetric synthesis of helicenes via enantioselective [2+2+2] cycloaddition of triynes by Stará and Starý, last two decades have witnessed the tremendous development in the catalytic enantioselective synthesis of helicenes. In this review, we comprehensively summarized the advances in this field, which include methods enabled by both transition metal catalysis and organocatalysis, and provide our perspective on its future development.
Collapse
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Tianren Qin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wansen Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
15
|
Rushworth J, Thawani AR, Fajardo-Ruiz E, Meiring JCM, Heise C, White AJP, Akhmanova A, Brandt JR, Thorn-Seshold O, Fuchter MJ. [5]-Helistatins: Tubulin-Binding Helicenes with Antimitotic Activity. JACS AU 2022; 2:2561-2570. [PMID: 36465552 PMCID: PMC9709948 DOI: 10.1021/jacsau.2c00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Helicenes are high interest synthetic targets with unique conjugated helical structures that have found important technological applications. Despite this interest, helicenes have had limited impact in chemical biology. Herein, we disclose a first-in-class antimitotic helicene, helistatin 1 (HA-1), where the helicene scaffold acts as a structural mimic of colchicine, a known antimitotic drug. The synthesis proceeds via sequential Pd-catalyzed coupling reactions and a π-Lewis acid cycloisomerization mediated by PtCl2. HA-1 was found to block microtubule polymerization in both cell-free and live cell assays. Not only does this demonstrate the feasibility of using helicenes as bioactive scaffolds against protein targets, but also suggests wider potential for the use of helicenes as isosteres of biaryls or cis-stilbenes-themselves common drug and natural product scaffolds. Overall, this study further supports future opportunities for helicenes for a range of chemical biological applications.
Collapse
Affiliation(s)
- James
L. Rushworth
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Aditya R. Thawani
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Elena Fajardo-Ruiz
- Department
of Pharmacy, Ludwig-Maximilians University
of Munich, Munich 81377, Germany
| | - Joyce C. M. Meiring
- Cell
Biology, Neurobiology and Biophysics, Department of Biology, Faculty
of Science, Utrecht University, Utrecht 3584 CH, Netherlands
| | - Constanze Heise
- Department
of Pharmacy, Ludwig-Maximilians University
of Munich, Munich 81377, Germany
| | - Andrew J. P. White
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Anna Akhmanova
- Cell
Biology, Neurobiology and Biophysics, Department of Biology, Faculty
of Science, Utrecht University, Utrecht 3584 CH, Netherlands
| | - Jochen R. Brandt
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Oliver Thorn-Seshold
- Department
of Pharmacy, Ludwig-Maximilians University
of Munich, Munich 81377, Germany
| | - Matthew J. Fuchter
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| |
Collapse
|
16
|
Zhang J, Simon M, Golz C, Alcarazo M. Enantioselective Synthesis of [5]Helicenes Containing Two Additional Chiral Axes. Isr J Chem 2022. [DOI: 10.1002/ijch.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianwei Zhang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
17
|
Martí À, Montesinos‐Magraner M, Echavarren AM, Franchino A. H-Bonded Counterion-Directed Catalysis: Enantioselective Gold(I)-Catalyzed Addition to 2-Alkynyl Enones as a Case Study. European J Org Chem 2022; 2022:e202200518. [PMID: 36590458 PMCID: PMC9796400 DOI: 10.1002/ejoc.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Indexed: 01/04/2023]
Abstract
H-bonded counterion-directed catalysis (HCDC) is a strategy wherein a chiral anion that is hydrogen-bonded to the achiral ligand of a metal complex is responsible for enantioinduction. In this article we present the application of H-bonded counterion-directed catalysis to the Au(I)-catalyzed enantioselective tandem cycloisomerization-addition reaction of 2-alkynyl enones. Following the addition of C-, N- or O-centered nucleophiles, bicyclic furans were obtained in moderate to excellent yield and enantioselectivity (28 examples, 59-96 % yield, 62 : 38 to 95 : 5 er). The optimal catalytic system, comprising a phosphinosquaramide Au(I) chloride complex and a BINOL-derived phosphoramidate Ag(I) salt, was selected in a combinatorial fashion from a larger library with the help of high-throughput screening. An enantioselectivity switch of ca. 120 Δee% was observed upon addition of the achiral Au(I) component to the Ag(I) salt.
Collapse
Affiliation(s)
- Àlex Martí
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV) C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Marc Montesinos‐Magraner
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV) C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST) Av. PaïsosCatalans 1643007TarragonaSpain
| |
Collapse
|
18
|
Yu T, Li ZQ, Li J, Cheng S, Xu J, Huang J, Zhong YW, Luo S, Zhu Q. Palladium-Catalyzed Modular Synthesis of Enantioenriched Pyridohelicenes through Double Imidoylative Cyclization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences CAS, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences CAS, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
19
|
Teixeira P, Bastin S, César V. Fused Polycyclic NHC Ligands in Gold Catalysis: Recent Advances. Isr J Chem 2022. [DOI: 10.1002/ijch.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul Teixeira
- LCC-CNRS Université de Toulouse, CNRS 205 route de Narbonne F-31077 Toulouse France
| | - Stéphanie Bastin
- LCC-CNRS Université de Toulouse, CNRS 205 route de Narbonne F-31077 Toulouse France
| | - Vincent César
- LCC-CNRS Université de Toulouse, CNRS 205 route de Narbonne F-31077 Toulouse France
| |
Collapse
|
20
|
Mishra S, Urvashi, Patil NT. Chiral Ligands for Au(I), Au(III), and Au(I)/Au(III) Redox Catalysis. Isr J Chem 2022. [DOI: 10.1002/ijch.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sampoorna Mishra
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Urvashi
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Nitin T. Patil
- Sampoorna Mishra Urvashi and Nitin T. Patil Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| |
Collapse
|
21
|
Gulevskaya AV, Tonkoglazova DI. Alkyne‐based syntheses of carbo‐ and heterohelicenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Yu L, Li W, Tapdara A, Kyne SH, Harode M, Babaahmadi R, Ariafard A, Chan PWH. Chiral Gold Complex Catalyzed Cycloisomerization/Regio- and Enantioselective Nitroso-Diels–Alder Reaction of 1,6-Diyne Esters with Nitrosobenzenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Wenhai Li
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Anyawan Tapdara
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Sara Helen Kyne
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Mandeep Harode
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Rasool Babaahmadi
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|
23
|
Li R, Barel N, Subramaniyan V, Cohen O, Tibika F, Tulchinsky Y. Sulfonium cations as versatile strongly π-acidic ligands. Chem Sci 2022; 13:4770-4778. [PMID: 35655889 PMCID: PMC9067576 DOI: 10.1039/d2sc00588c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 01/31/2023] Open
Abstract
More than a century old, sulfonium cations are still intriguing species in the landscape of organic chemistry. On one hand they have found broad applications in organic synthesis and materials science, but on the other hand, while isoelectronic to the ubiquitous tertiary phosphine ligands, their own coordination chemistry has been neglected for the last three decades. Here we report the synthesis and full characterization of the first Rh(i) and Pt(ii) complexes of sulfonium. Moreover, for the first time, coordination of an aromatic sulfonium has been established. A thorough computational analysis of the exceptionally short S-Rh bonds obtained attests to the strongly π-accepting nature of sulfonium cations and places them among the best π-acceptor ligands available today. Our calculations also show that embedding within a pincer framework enhances their π-acidity even further. Therefore, in addition to the stability and modularity that these frameworks offer, our pincer complexes might open the way for sulfonium cations to become powerful tools in π-acid catalysis.
Collapse
Affiliation(s)
- Ruiping Li
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Nitsan Barel
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | | | - Orit Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
24
|
Das A, Patil NT. Enantioselective C-H Functionalization Reactions under Gold Catalysis. Chemistry 2022; 28:e202104371. [PMID: 35014732 DOI: 10.1002/chem.202104371] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 01/18/2023]
Abstract
Transition metal-catalyzed enantioselective functionalization of ubiquitous C-H bonds has proven to be promising field as it offers the construction of chiral molecular complexity in a step- and atom-economical manner. In recent years, gold has emerged as an attractive contender for catalyzing such reactions. The unique reactivities and selectivities offered by gold catalysts have been exploited to access numerous asymmetric transformations based on gold-catalyzed C-H functionalization processes. Herein, this review critically highlights the major advances and discoveries made in the enantioselective C-H functionalization under gold catalysis which is accompanied by mechanistic insights at appropriate places.
Collapse
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462 066, India
| |
Collapse
|
25
|
Pelliccioli V, Hartung T, Simon M, Golz C, Licandro E, Cauteruccio S, Alcarazo M. Enantioselective Synthesis of Dithia[5]helicenes and their Postsynthetic Functionalization to Access Dithia[9]helicenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Valentina Pelliccioli
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37073 Göttingen Germany
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| | - Thierry Hartung
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37073 Göttingen Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37073 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37073 Göttingen Germany
| | - Emanuela Licandro
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| | - Silvia Cauteruccio
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstrasse 2 37073 Göttingen Germany
| |
Collapse
|
26
|
Escofet I, Zuccarello G, Echavarren AM. Gold-catalyzed enantioselective cyclizations and cycloadditions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Ghosh T, Chatterjee J, Bhakta S. Gold-Catalyzed Hydroarylation Reactions: A Comprehensive Overview. Org Biomol Chem 2022; 20:7151-7187. [DOI: 10.1039/d2ob00960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydroarylation of alkynes, alkene, and, allene is a cost-effective and efficient way to incorporate unsaturated moieties into aromatic substrates. This review focuses on gold-catalyzed hydroarylation, which produces aromatic alkenes,...
Collapse
|
28
|
Pelliccioli V, Hartung T, Simon M, Golz C, Licandro E, Cauteruccio S, Alcarazo M. Enantioselective Synthesis of Dithia[5]helicenes and their Postsynthetic Functionalization to Access Dithia[9]helicenes. Angew Chem Int Ed Engl 2021; 61:e202114577. [PMID: 34874602 PMCID: PMC9302117 DOI: 10.1002/anie.202114577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/11/2023]
Abstract
A highly enantioselective synthesis of 5,13-disubstituted dibenzo[d,d']benzo[1,2-b:4,3-b']dithiophenes is reported. Key for the successful assembly of these helical architectures is the last two successive Au-catalyzed intramolecular alkyne hydroarylation events. Specifically, the second cyclization is the enantiodetermining step of the whole process and provides the desired helicenes with excellent ee values when a TADDOL-derived 1,2,3-(triazolium)phosphonite moiety (TADDOL: α,α,α',α'-tetraaryl-1,3-dioxolane-4,5-dimethanol) is employed as an ancillary ligand. The absolute stereochemistry of the newly prepared structures has been determined by X-ray crystallography to be P; the optical properties of these heterohelicenes are also reported. A three-step procedure was subsequently developed that allows the transformation of the initially obtained dithia[5]helicenes into dithia[9]helicenes without erosion of the enantiopurity.
Collapse
Affiliation(s)
- Valentina Pelliccioli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37073, Göttingen, Germany.,Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Thierry Hartung
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37073, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37073, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37073, Göttingen, Germany
| | - Emanuela Licandro
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Silvia Cauteruccio
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37073, Göttingen, Germany
| |
Collapse
|
29
|
Zuccarello G, Escofet I, Caniparoli U, Echavarren AM. New-Generation Ligand Design for the Gold-Catalyzed Asymmetric Activation of Alkynes. Chempluschem 2021; 86:1283-1296. [PMID: 34472729 PMCID: PMC8457203 DOI: 10.1002/cplu.202100232] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Indexed: 01/01/2023]
Abstract
Gold(I) catalysts are ideal for the activation of alkynes under very mild conditions. However, unlike allenes or alkenes, the triple bond of alkynes cannot be prochiral. In addition, the linear coordination displayed by gold(I) complexes places the chiral ligand far away from the substrate resulting in an inefficient transfer of chiral information. This poses a significant challenge for the achievement of high enantiocontrol in gold(I)-catalyzed reactions of alkynes. Although considerable progress on enantioselective gold(I)-catalyzed transformations has recently been achieved, the asymmetric activation of non-prochiral alkyne-containing small molecules still represents a great challenge. Herein we summarize recent advances in intra- and intermolecular enantioselective gold(I)-catalyzed reactions involving alkynes, discussing new chiral ligand designs that lie at the basis of these developments. We also focus on the mode of action of these catalysts, their possible limitations towards a next-generation of more efficient ligand designs. Finally, square planar chiral gold(III) complexes, which offer an alternative to chiral gold(I) complexes, are also discussed.
Collapse
Affiliation(s)
- Giuseppe Zuccarello
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Ulysse Caniparoli
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| |
Collapse
|
30
|
Simultaneous construction of axial and planar chirality by gold/TY-Phos-catalyzed asymmetric hydroarylation. Nat Commun 2021; 12:4609. [PMID: 34326337 PMCID: PMC8322429 DOI: 10.1038/s41467-021-24678-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
The simultaneous construction of two different chiralities via a simple operation poses considerable challenge. Herein a cationic gold-catalyzed asymmetric hydroarylation of ortho-alkynylaryl ferrocenes derivatives is developed, which enable the simultaneous construction of axial and planar chirality. The here identified TY-Phos derived gold complex is responsible for the high yield, good diastereoselectivity (>20:1 dr), high enantioselectivities (up to 99% ee) and mild conditions. The catalyst system also shows potential application in the synthesis of chiral biaryl compounds. The cause of high enantioselectivity of this hydroarylation is investigated with density functional theory caculation. The simultaneous construction of two different types of chiralities is challenging. Here, the authors report a cationic gold-catalyzed asymmetric hydroarylation of ortho-alkynylaryl ferrocene derivatives, which enabled the simultaneous construction of axial and planar chirality.
Collapse
|
31
|
Suárez-Pantiga S, Redero P, Aniban X, Simon M, Golz C, Mata RA, Alcarazo M. In-Fjord Substitution in Expanded Helicenes: Effects of the Insert on the Inversion Barrier and Helical Pitch. Chemistry 2021; 27:13358-13366. [PMID: 34288171 PMCID: PMC8519012 DOI: 10.1002/chem.202102585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 01/23/2023]
Abstract
A series of expanded helicenes of different sizes and shapes incorporating phenyl- and biphenyl-substituents at the deepest part of their fjord have been synthesized via sequential Au-catalyzed hydroarylation of appropriately designed diynes, and their racemization barriers have been calculated employing electronic structure methods. These show that the overall profile of the inversions (energies, number of transition states and intermediates, and their relative position) is intensively affected by the interplay of steric and attractive London dispersion interactions. Hence, in-fjord substitution constitutes an additional tool to handle the mechanical properties in helicenes of uncommonly large diameter. The photochemical characterization of the newly prepared helical structures is also reported.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pablo Redero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xaiza Aniban
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
32
|
Hanada K, Nogami J, Miyamoto K, Hayase N, Nagashima Y, Tanaka Y, Muranaka A, Uchiyama M, Tanaka K. Rhodium-Catalyzed Enantioselective Synthesis, Structures, and Properties of Single and Double Azahelicene-Like Molecules. Chemistry 2021; 27:9313-9319. [PMID: 33904626 DOI: 10.1002/chem.202005479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Indexed: 11/11/2022]
Abstract
The enantioselective synthesis of aza[6] and [7]helicene-like molecules have been achieved by the cationic rhodium(I)/axially chiral biaryl bisphosphine complex-catalyzed intramolecular [2+2+2] cycloaddition of cyanodiynes. This protocol was successfully applied to the diastereo- and enantioselective synthesis of an S-shaped double aza[6]helicene-like molecule with a high ee value of 89 %. Although no epimerization and racemization were observed in the double carbo[6]helicene-like molecule at 80 °C, epimerization and racemization of the double aza[6]helicene-like molecule proceeded at 80 °C. This double aza[6]helicene-like molecule showed good fluorescent quantum yields and chiroptical responses under both neutral and acidic conditions.
Collapse
Affiliation(s)
- Kyoichi Hanada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
33
|
Ito M, Takaki A, Okamura M, Kanyiva KS, Shibata T. Catalytic Synthesis of Dibenzazepines and Dibenzazocines by 7‐
Exo
‐ and 8‐
Endo
‐
Dig
‐Selective Cycloisomerization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mamoru Ito
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Asahi Takaki
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Moeka Okamura
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Kyalo Stephen Kanyiva
- International Center for Science and Engineering Programs (ICSEP) Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
34
|
Savary D, Baudoin O. Enantioselective Pd
0
‐Catalyzed C(sp
2
)–H Arylation for the Synthesis of Chiral Warped Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David Savary
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Olivier Baudoin
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
35
|
Jiang JJ, Wong MK. Recent Advances in the Development of Chiral Gold Complexes for Catalytic Asymmetric Catalysis. Chem Asian J 2021; 16:364-377. [PMID: 33386691 DOI: 10.1002/asia.202001375] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Asymmetric gold catalysis has been rapidly developed in the past ten years. Breakthroughs have been made by rational design and meticulous selection of chiral ligands. This review summarizes newly developed gold-catalyzed enantioselective organic transformations and recent progress in ligand design (since 2016), organized according to different types of chiral ligands, including bisphosphine ligands, monophosphine ligands, phosphite-derived ligands, and N-heterocyclic carbene ligands for asymmetric gold(I) catalysis as well as heterocyclic carbene ligands and oxazoline ligands for asymmetric gold(III) catalysis.
Collapse
Affiliation(s)
- Jia-Jun Jiang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
36
|
Savary D, Baudoin O. Enantioselective Pd 0 -Catalyzed C(sp 2 )-H Arylation for the Synthesis of Chiral Warped Molecules. Angew Chem Int Ed Engl 2021; 60:5136-5140. [PMID: 33245173 DOI: 10.1002/anie.202013303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Indexed: 01/01/2023]
Abstract
C-H activation-based ring-forming methods are a powerful approach for the construction of complex molecular architectures, especially those containing a congested stereocenter. Therefore, this strategy seems perfectly suited to address the synthesis of chiral polycyclic aromatic hydrocarbons (PAHs) and bowl-shaped molecules, which are important target molecules in the field of organic electronic materials. Herein, we describe an enantioselective Pd0 -catalyzed C(sp2 )-H arylation protocol for the synthesis of chiral fluoradenes and other warped molecules, which could serve to the bottom-up construction of chiral PAHs. The current approach relies on the use of chiral bifunctional phosphine-carboxylate ligands and delivers diverse polycyclic compounds in high yield and with good to excellent enantioselectivity. The chiroptical properties of the obtained products were investigated, and some of them were found to have a strong ellipticity and an emission band located in the visible region.
Collapse
Affiliation(s)
- David Savary
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Olivier Baudoin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
37
|
Pelliccioli V, Franzini R, Mazzeo G, Villani C, Abbate S, Longhi G, Licandro E, Cauteruccio S. Chiral bis(benzo[1,2- b:4,3- b′]dithiophene) atropisomers: experimental and theoretical investigations of the stereochemical and chiroptical properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03248h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational chirality is a feature that may arise from the presence of a hindered rotation around a single bond that corresponds to a stereogenic axis.
Collapse
Affiliation(s)
- Valentina Pelliccioli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milan, Italy
| | - Roberta Franzini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, via Branze 45, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, via Branze 45, 25123 Brescia, Italy
| | - Emanuela Licandro
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milan, Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milan, Italy
| |
Collapse
|
38
|
Zhao Q, Peng C, Wang YT, Zhan G, Han B. Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00307k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Useful chiral biaryls have been constructed through rhodium and gold complex-catalyzed asymmetric benzannulation strategies.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Yu-Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| |
Collapse
|
39
|
Wang Q, Zhang WW, Zheng C, Gu Q, You SL. Enantioselective Synthesis of Azoniahelicenes by Rh-Catalyzed C–H Annulation with Alkynes. J Am Chem Soc 2020; 143:114-120. [DOI: 10.1021/jacs.0c11735] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
40
|
Redero P, Hartung T, Zhang J, Nicholls LDM, Zichen G, Simon M, Golz C, Alcarazo M. Enantioselective Synthesis of 1-Aryl Benzo[5]helicenes Using BINOL-Derived Cationic Phosphonites as Ancillary Ligands. Angew Chem Int Ed Engl 2020; 59:23527-23531. [PMID: 32896999 PMCID: PMC7756570 DOI: 10.1002/anie.202010021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Indexed: 11/21/2022]
Abstract
The synthesis of unprecedented BINOL-derived cationic phosphonites is described. Through the use of these phosphanes as ancillary ligands in AuI catalysis, a highly regio- and enantioselective assembly of appropriately designed alkynes into 1-(aryl)benzo[5]carbohelicenes is achieved. The modular synthesis of these ligands and the enhanced reactivity that they impart to AuI -centers after coordination have been found to be the key features that allow an optimization of the reaction conditions until the desired benzo[5]helicenes are obtained with high yield and enantioselectivity.
Collapse
Affiliation(s)
- Pablo Redero
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Thierry Hartung
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Jianwei Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Leo D. M. Nicholls
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Guo Zichen
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Martin Simon
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Christopher Golz
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077-GöttingenGermany
| |
Collapse
|
41
|
Pelliccioli V, Dova D, Baldoli C, Graiff C, Licandro E, Cauteruccio S. Diversified Syntheses of Tetrathia[7]helicenes by Metal‐Catalyzed Cross‐Coupling Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Valentina Pelliccioli
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Davide Dova
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Clara Baldoli
- CNR-Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta” Via Golgi 19 20133 Milano Italy
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/a 43124 Parma Italy
| | - Emanuela Licandro
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| |
Collapse
|
42
|
Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK. Homogeneous and Heterogeneous Gold Catalysis for Materials Science. Chem Rev 2020; 121:9113-9163. [DOI: 10.1021/acs.chemrev.0c00824] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takumi Koshikawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
43
|
Johannsen T, Golz C, Alcarazo M. α‐Kationische Phosphole: Synthese und Anwendungen als Liganden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tim Johannsen
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammanstr. 2 Göttingen Deutschland
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammanstr. 2 Göttingen Deutschland
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammanstr. 2 Göttingen Deutschland
| |
Collapse
|
44
|
Hendrich CM, Bongartz LM, Hoffmann MT, Zschieschang U, Borchert JW, Sauter D, Krämer P, Rominger F, Mulks FF, Rudolph M, Dreuw A, Klauk H, Hashmi ASK. Gold Catalysis Meets Materials Science – A New Approach to π‐Extended Indolocarbazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lukas M. Bongartz
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marvin T. Hoffmann
- Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - James W. Borchert
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Désirée Sauter
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department for Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Institute for Physical Chemistry Department for Biophysical Chemistry University of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Petra Krämer
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian F. Mulks
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141, Republic of Korea
| | - Matthias Rudolph
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
45
|
Milián A, García-García P, Pérez-Redondo A, Sanz R, Vaquero JJ, Fernández-Rodríguez MA. Selective Synthesis of Phenanthrenes and Dihydrophenanthrenes via Gold-Catalyzed Cycloisomerization of Biphenyl Embedded Trienynes. Org Lett 2020; 22:8464-8469. [PMID: 32969663 DOI: 10.1021/acs.orglett.0c03067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Readily available o'-alkenyl-o-alkynylbiaryls, a particular type of 1,7-enynes, undergo a selective cycloisomerization reaction in the presence of a gold(I) catalyst to give interesting phenanthrene and dihydrophenanthrene derivatives in high yields. The solvent used provokes a switch in the evolution of the gold intermediate and plays a key role in the reaction outcome.
Collapse
Affiliation(s)
- Ana Milián
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Patricia García-García
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Adrián Pérez-Redondo
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Roberto Sanz
- Área de Quı́mica Orgánica, Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Juan J Vaquero
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel A Fernández-Rodríguez
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
46
|
Redero P, Hartung T, Zhang J, Nicholls LDM, Zichen G, Simon M, Golz C, Alcarazo M. Enantioselective Synthesis of 1‐Aryl Benzo[5]helicenes Using BINOL‐Derived Cationic Phosphonites as Ancillary Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pablo Redero
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Thierry Hartung
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Jianwei Zhang
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Leo D. M. Nicholls
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Guo Zichen
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstr. 2 37077- Göttingen Germany
| |
Collapse
|
47
|
Johannsen T, Golz C, Alcarazo M. α-Cationic Phospholes: Synthesis and Applications as Ancillary Ligands. Angew Chem Int Ed Engl 2020; 59:22779-22784. [PMID: 32853445 PMCID: PMC7756421 DOI: 10.1002/anie.202009303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/23/2020] [Indexed: 01/14/2023]
Abstract
A series of structurally differentiated α‐cationic phospholes containing cyclopropenium, imidazolium, and iminium substituents has been synthesized by reaction of chlorophosphole 1 with the corresponding stable carbenes. Evaluation of the donor properties of these compounds reveals that their strong π‐acceptor character is heavily influenced by the nature of the cationic group. The coordination chemistry of these newly prepared ligands towards AuI centers is also described and their unique electronic properties exploited in catalysis. Interestingly, α‐cationic phosphole containing catalysts were not only able to accelerate model cycloisomerization reactions, but also to efficiently discriminate between concurrent reaction pathways, avoiding the formation of undesired product mixtures.
Collapse
Affiliation(s)
- Tim Johannsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstr. 2, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstr. 2, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstr. 2, Göttingen, Germany
| |
Collapse
|
48
|
Sprenger K, Golz C, Alcarazo M. Synthesis of Cycloheptatrienes, Oxepines, Thiepines, and Silepines: A Comparison between Brønsted Acid and Au‐Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kristin Sprenger
- Institut für Organische und Biomolekulare Chemie Georg‐August‐Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg‐August‐Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg‐August‐Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
49
|
Takano H, Okazaki S, Nishibe S, Ito T, Shiozawa N, Sugimura N, Kanyiva KS, Shibata T. Gold-catalyzed dual C-C bond cleavage of biphenylenes bearing a pendant alkyne at ambient temperature. Org Biomol Chem 2020; 18:5826-5831. [PMID: 32692790 DOI: 10.1039/d0ob01211d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a catalytic skeletal rearrangement of biphenylenes with a pendant alkyne moiety at room temperature by a cationic gold catalyst, which involves the cleavage of two bonds: the C-C bond of biphenylene and the C(sp)-C(sp2 or sp3) bond. Experimental and theoretical studies revealed that the reaction mechanism included π-activation of the alkyne, ring expansion and 1,2-carbon shift.
Collapse
Affiliation(s)
- Hideaki Takano
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Sari Okazaki
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Shun Nishibe
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Takeharu Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Natsumi Shiozawa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| | - Natsuhiko Sugimura
- Materials Characterization Central Laboratory, Waseda University, Tokyo 169-8555, Japan
| | - Kyalo Stephen Kanyiva
- Global Center for Science and Engineering, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
| |
Collapse
|
50
|
Labella J, Durán-Sampedro G, Martínez-Díaz MV, Torres T. Annulative π-extension of BODIPYs made easy via gold(i)-catalyzed cycloisomerization. Chem Sci 2020; 11:10778-10785. [PMID: 34094331 PMCID: PMC8162369 DOI: 10.1039/d0sc01054e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Here we report gold(i)-catalyzed cycloisomerization as a new powerful synthetic tool for the preparation of π-extended BODIPY derivatives. The catalytic system PPhF 3AuCl/AgSbF6 enables the synthesis of [b]-[2,1]naphtho-fused-BODIPYs (2a-2c) under mild conditions, in excellent yields and short reaction times. The reaction is totally regioselective to the 6-endo-dig product and for the α-position of the BODIPY, which is both the kinetically and thermodynamically favored pathway, as supported by the free energy profile calculated by means of Density Functional Theory (DFT). Moreover, this methodology also allows the synthesis of two new families of [b]-aryl-fused-BODIPYs, namely, [3,4]phenanthro- (2e and 2f) and [1,2]naphtho-fused (2g) BODIPYs. Their molecular and electronic structures were established by NMR and UV-vis spectroscopies as well as single-crystal X-ray diffraction analysis. As can be noted from the X-ray structures, 2a, 2e and 2g present interesting structural differences at both the molecular and packing level. Interestingly, despite being isomers, the UV/vis spectra of 2a and 2g revealed significant differences in their electronic structures. The origin of this finding was studied by Time-Dependent DFT calculations. Calculated DFT Nuclear Independent Chemical Shift (NICS(0)) values also supported the different electronic structures of 2a and 2g.
Collapse
Affiliation(s)
- Jorge Labella
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
| | | | - M Victoria Martínez-Díaz
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
- IMDEA-Nanociencia, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|