1
|
Maji S, Akhtar S, Halder S, Chatterjee I, Verma DP, Verma NK, Saroj J, Saxena D, Maitra R, Sharma J, Sharma B, Sakurai H, Mitra K, Chopra S, Ghosh JK, Panda G. Corannulene Amino Acid-Derived Water-Soluble Amphiphilic Buckybowls as Broad-Spectrum Membrane Targeting Antibacterial Agents. J Med Chem 2024; 67:15041-15060. [PMID: 39213648 DOI: 10.1021/acs.jmedchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
To date, the use of corannulene has been restricted in the area of material science, but its application in biomedical research has yet to be established due to its nonsolubility in an aqueous environment and synthetic infeasibility. Herein, we detail the development of a new family of highly curved π-conjugated corannulene-containing unnatural α-amino acid (CAA) derivatives to overcome this challenge. These CAAs have been extended as novel constituents for the synthesis of corannulene-containing water-soluble cationic peptides (CCPs), which display inhibitory activity against broad-spectrum pathogenic bacteria along with drug-resistant bacteria via a membrane-damaging mechanism. Importantly, several of the synthesized peptides were found to be appreciably nonhemolytic against hRBCs and noncytotoxic against mammalian 3T3 cells. In vivo efficacy studies of the potent and least cytotoxic peptide 6a demonstrated clearance of bacteria from the spleen, liver, lung, and blood of mice infected with S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Saroj Maji
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Sabyasachi Halder
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Indranil Chatterjee
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- School of Studies in Biotechnology, Shaheed Mahendra Karma Vishwavidyalaya, Dharampura, Jagdalpur 494001, Chhattisgarh, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Rahul Maitra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Juhi Sharma
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawana Sharma
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Kong S, Yang L, Sun Q, Wang T, Pei R, Zhao Y, Wang W, Zhao Y, Cui H, Gu X, Wang X. Metal-Free Catalytic Formation of a Donor-Acceptor-Donor Molecule and Its Lewis Acid-Adduct Singlet Diradical with High-Efficient NIR-II Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202400913. [PMID: 38441914 DOI: 10.1002/anie.202400913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 04/05/2024]
Abstract
We have synthesized a quinone-incorporated bistriarylamine donor-acceptor-donor (D-A-D) semiconductor 1 by B(C6F5)3 (BCF) catalyzed C-H/C-H cross coupling via radical ion pair intermediates. Coordination of Lewis acids BCF and Al(ORF)3 (RF=C(CF3)3) to the semiconductor 1 afforded diradical zwitterions 2 and 3 by integer electron transfer. Upon binding to Lewis acids, the LUMO energy of 1 is significantly lowered and the band gap of the semiconductor is significantly narrowed from 1.93 eV (1) to 1.01 eV (2) and 1.06 eV (3). 2 and 3 are rare near-infrared (NIR) diradical dyes with broad absorption both centered around 1500 nm. By introducing a photo BCF generator, 2 can be generated by light-dependent control. Furthermore, the integer electron transfer process can also be reversibly regulated via the addition of CH3CN. In addition, the temperature of 2 sharply increased and reached as high as 110 °C in 10 s upon the irradiation of near-infrared-II (NIR-II) laser (1064 nm, 0.7 W cm-2), exhibiting a fast response to laser. It displays excellent photothermal stability with a photothermal (PT) conversion efficiency of 62.26 % and high-quality PT imaging.
Collapse
Affiliation(s)
- Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Liming Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wenqing Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Moleculer-Based Materials, Anhui Normal University, Wuhu, 241002, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Haiyan Cui
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, China
| |
Collapse
|
3
|
Liu L, Pan Y, Ye L, Zhang T, Chen Y, Liang C, Chen D, Mou X, Dong X, Cai Y. Space and Bond Synergistic Conjugation Controlling Multiple-Aniline NIR-II Absorption for Photoacoustic Imaging Guided Photothermal Therapy. Adv Healthc Mater 2023; 12:e2301116. [PMID: 37541296 DOI: 10.1002/adhm.202301116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Currently, clinical photothermal therapy (PTT) is greatly limited by the poor tissue penetration of the excitation light sources in visible (390-780 nm) and first near-infrared (NIR-I, 780-900 nm) window. Herein, based on space and bond synergistic conjugation, a multiple-aniline organic small molecule (TPD), is synthesized for high-efficiency second near-infrared (NIR-II, 900-1700 nm) photoacoustic imaging guided PTT. With the heterogeneity of six nitrogen atoms in TPD, the lone electrons on the nitrogen atom and the π bond orbital on the benzene ring form multielectron conjugations with highly delocalized state, which endowed TPD with strong NIR-II absorption (maximum peak at 925 nm). Besides, according to the single molecular reorganization, the alkyl side chains on TPD make more free space for intramolecular motion to enhance the photothermal conversion ability. Forming TPD nanoparticles (NPs) in J-aggregation, they show a further bathochromic-shifted absorbance (maximum peak at 976 nm) as well as a high photothermal conversion efficiency (66.7%) under NIR-II laser irradiation. In vitro and in vivo experiments demonstrate that TPD NPs can effectively inhibit the growth of tumors without palpable side effects. The study provides a novel NIR-II multiple-aniline structure based on multielectron hyperconjugation, and opens a new design thought for photothermal agents.
Collapse
Affiliation(s)
- Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Chen Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Dapeng Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
4
|
Báti G, Csókás D, Giurgi GI, Zhou J, Szolga LA, Webster RD, Stuparu MC. Non-Fullerene Electron Acceptors Based on Hybridisation of Corannulene and Thiophene-S,S-Dioxide Motifs. Chemistry 2023; 29:e202203856. [PMID: 36598176 DOI: 10.1002/chem.202203856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Herein we show that hybridisation of buckybowl corannulene and thiophene-S,S-dioxide motifs is a general approach for the preparation of high electron affinity molecular materials. The devised synthesis is modular and relies on thienannulation of corannnulene-based phenylacetylene scaffolds. The final compounds are highly soluble in common organic solvents. These compounds also exhibit interesting optical properties such as absorption and emission in the blue/green regions of the electromagnetic spectrum. Importantly, a bis-S,S-dioxide derivative exhibits three reversible reductions similar in their strength to the prevalent fullerene-based electron acceptor phenyl-C61 -butyric acid methyl ester (PC61 BM).
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore, Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Center for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Gavril-Ionel Giurgi
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Cluj-Napoca, 11 Arany Janos str., 400028, Cluj-Napoca, România.,Optoelectronics Group, Basis of Electronics Department, ETTI, Technical University of Cluj-Napoca, 28 Memorandumului str, Cluj-Napoca, 400114, România
| | - Jingsong Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore, Singapore
| | - Lorant A Szolga
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Cluj-Napoca, 11 Arany Janos str., 400028, Cluj-Napoca, România.,Optoelectronics Group, Basis of Electronics Department, ETTI, Technical University of Cluj-Napoca, 28 Memorandumului str, Cluj-Napoca, 400114, România
| | - Richard D Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
5
|
Bai M. G M, Nipate AB, Rao MR. Selectively sensing amines through aldehyde-functional conjugated microporous organic polymers via Pd-catalyzed direct arylation. Polym J 2022. [DOI: 10.1038/s41428-022-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Sacristán-Martín A, Miguel D, Diez-Varga A, Barbero H, Álvarez CM. From Induced-Fit Assemblies to Ternary Inclusion Complexes with Fullerenes in Corannulene-Based Molecular Tweezers. J Org Chem 2022; 87:16691-16706. [DOI: 10.1021/acs.joc.2c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Adriana Sacristán-Martín
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Alberto Diez-Varga
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Celedonio M. Álvarez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| |
Collapse
|
7
|
Sacristán-Martín A, Miguel D, Barbero H, Álvarez CM. Self-Resetting Bistable Redox Molecular Machines for Fullerene Recognition. Org Lett 2022; 24:5879-5883. [PMID: 35905434 PMCID: PMC9400385 DOI: 10.1021/acs.orglett.2c01856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Addressing control over molecular machines resulting
in variable
output modulation by mimicking nature mechanisms is a current hot
topic. The exploitation of reversibility in thiol/disulfide motifs
in chemical systems flanked by nonplanar corannulene moieties capable
to recognize fullerenes is presented herein. Two redox-based machines
have been conceived for this purpose: an ON/OFF switch that activates
its binding properties upon dimerization and a self-resetting (i.e.,
with an automated backward process) host that substantially modulates
its affinity.
Collapse
Affiliation(s)
- Adriana Sacristán-Martín
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Celedonio M Álvarez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| |
Collapse
|
8
|
Liu J, Zhang H, Hu L, Wang J, Lam JWY, Blancafort L, Tang BZ. Through-Space Interaction of Tetraphenylethylene: What, Where, and How. J Am Chem Soc 2022; 144:7901-7910. [PMID: 35443776 DOI: 10.1021/jacs.2c02381] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electronic conjugation through covalent bonds is generally considered as the basis for the electronic transition of organic luminescent materials. Tetraphenylethylene (TPE), an efficient fluorophore with aggregation-induced emission character, fluoresces blue emission in the aggregate state, and such photoluminescence is always ascribed to the through-bond conjugation (TBC) among the four phenyl rings and the central C═C bond. However, in this work, systematic spectroscopic studies and DFT theoretical simulation reveal that the intramolecular through-space interaction (TSI) between two vicinal phenyl rings generates the bright blue emission in TPE but not the TBC effect. Furthermore, the evaluation of excited-state decay dynamics suggests the significance of photoinduced isomerization in the nonradiative decay of TPE in the solution state. More importantly, different from the traditional qualitative description for TSI, the quantitative elucidation of the TSI is realized through the atoms-in-molecules analysis; meanwhile, a theoretical solid-state model for TPE and other multirotor systems for studying the electronic configuration is preliminarily established. The mechanistic model of TSI delineated in this work provides a new strategy to design luminescent materials beyond the traditional theory of TBC and expands the quantum understanding of molecular behavior to the aggregate level.
Collapse
Affiliation(s)
- Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Lianrui Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jun Wang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Lluís Blancafort
- Institut de Quimica Computacional i Catalisi (IQCC) i Departament de Quimica, Facultat de Ciencies, Universitat de Girona, C/M. A. Capmany 69, Girona 17003, Spain
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| |
Collapse
|
9
|
Liu S, Sun Z, Liang M, Song W, Zhang R, Shi Y, Cui Y, Gao Q. An Unrevealed Molecular Function of Corannulene Buckybowl Glycoconjugates in Selective Tumor Annihilation by Targeting the Cancer-Specific Warburg Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105315. [PMID: 35253390 PMCID: PMC8981914 DOI: 10.1002/advs.202105315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The biomedical application of corannulene π-bowls is historically limited by low solubility and bioavailability despite the potential in their unique electronic properties for new functional materials. Herein, the unexpected role and molecular mechanism of Corranulene π-bowls are uncovered in biomedical applications as an effective anticancer agent for Warburg effect mediated selective tumor targeting. The corannulene triazolyl monosaccharides Cor-sugars exhibit highly potent cytotoxicity against human cancer cells and effectively inhibit xenograft growth of hyperglycolytic tumors. Particularly, the galactose-conjugated Cor-gal exhibits superior in vivo anticancer efficacy in A549 tumor models with outstanding safety profile compared to doxorubicin. Moreover, the combined treatment of Cor-gal with immune checkpoint inhibitor results in an effective synergy in treating H460 human lung carcinoma. An uptake mechanism study reveals that Cor-sugars exploit tumor-specific glucose transporter glucose transporter 1 (GLUT1) for targeted cell delivery and intra-tumoral accumulation through the cancer-specific Warburg effect. Their significant anticancer activity is attributed to multiphasic DNA-binding and cell cycle alteration effects. This study uncovers new molecular properties of corannulene buckybowl and enabling their potential new applications in biomedical engineering.
Collapse
Affiliation(s)
- Shengnan Liu
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Ziru Sun
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Min Liang
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Central Institute of Pharmaceutical ResearchCSPC Pharmaceutical Group226 Huanhe RoadShijiazhuangHebei050035P. R. China
| | - Weijie Song
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerWest Huanhu RoadHexi DistrictTianjin300060P. R. China
| | - Ru Zhang
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Department of BiologyGudui BioPharma Technology Inc.Huayuan Industrial Park5 Lanyuan RoadTianjin300384P. R. China
| | - Yunli Shi
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Yujun Cui
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Transplantation CenterTianjin First Central Hospital24 Fukang RoadNankai DistrictTianjin300192P. R. China
| | - Qingzhi Gao
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| |
Collapse
|
10
|
Kise K, Ooi S, Saito H, Yorimitsu H, Osuka A, Tanaka T. Five‐Fold Symmetric Pentaindolo‐ and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koki Kise
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shota Ooi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hayate Saito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
11
|
Kunioka N, Furukawa M, Hashimoto S, Tahara K. Synthesis, electronic properties, and self-assembly of an alkylated dibenzo(biscorannulene). Org Chem Front 2022. [DOI: 10.1039/d2qo00428c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and properties of a novel fully-conjugated biscorannulene derivative were reported. This biscorannulene derivative shows self-association in solution and adopts a stacked geometry in crystal.
Collapse
Affiliation(s)
- Natsumi Kunioka
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Masazumi Furukawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
12
|
Geringer E, Gerhard M, Dehnen S. Introducing Distinct Structural and Optical Properties into Organotin Sulfide Clusters by the Attachment of Perylenyl and Corannulenyl Groups. Inorg Chem 2021; 60:19381-19392. [PMID: 34872245 DOI: 10.1021/acs.inorgchem.1c03206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the introduction of distinct optical properties into organotin sulfide clusters by the attachment of extended polycyclic aromatic organic molecules. This was realized by the reactions of [(RNSn)4S6] (RN = CMe2CH2CMeNNH2) with 3-perylenecarbaldehyde and corannulenecarbaldehyde, respectively. The reaction with the first reactant leads to the formation of two products [(RperylSn)3S4][SnCl3] [1a; Rperyl = CMe2CH2CMeNNCH(C20H11)] and [(RperylSn)3S4Cl] (1b). Structural differences between these two compounds are reflected in their different optical absorption and luminescence behavior, yet in both cases, the main emission is red-shifted relative to 3-perylenecarbaldehyde. The second organic molecule affords the compound [(RcorSn)4Sn2S10] [2; Rcor = CMe2CH2CMeNNCH(C20H9)] with intriguing optical properties, including a broad emission with essentially no shift in λmax compared to corannulenecarbaldehyde. All compounds were obtained as single crystals, and their structures were determined by means of single-crystal X-ray diffraction. The optical properties of the highly luminescent compounds were investigated by means of emission and time-resolved photoluminescence spectroscopy measurements.
Collapse
Affiliation(s)
- Eugenie Geringer
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| | - Marina Gerhard
- Department of Physics and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Renthof 5, Marburg 35032, Germany
| | - Stefanie Dehnen
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35043, Germany
| |
Collapse
|
13
|
Kise K, Ooi S, Saito H, Yorimitsu H, Osuka A, Tanaka T. Five-Fold Symmetric Pentaindolo- and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angew Chem Int Ed Engl 2021; 61:e202112589. [PMID: 34738305 DOI: 10.1002/anie.202112589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/13/2023]
Abstract
Peripherally π-extended corannulenes bearing quintuple azahelicene units, 10 and 11, were prepared and their dynamic behaviors were studied experimentally and theoretically. The fused corannulenes were synthesized from sym-pentabromocorannulene in three steps. X-Ray diffraction analysis for 10 displayed a conformer possessing a P(M) bowl chirality and a PPMPM (PMPMM) helical chirality, which was found to be the most stable conformer(s). Variable-temperature NMR measurements of 10 and 11 revealed that their structural isomers can be interconvertible in solution, depending on the steric congestion around the helical scaffolds. Automated search for conformers in the equilibrium and transition states by Artificial Force Induced Reaction (AFIR) method revealed their interconversion networks, including bowl-inversion and helical-inversion. This analysis indicated that the co-existing corannulene and azahelicene moieties influence the conformational dynamics, which leads to mitigation of the activation energy barriers for isomerization.
Collapse
Affiliation(s)
- Koki Kise
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shota Ooi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
14
|
Wang W, Feng L, Hua X, Yuan C, Shao X. Stimuli‐Responsive
Polycycles Based on
Hetero‐Buckybowl
Trithiasumanene. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Lijun Feng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Chengshan Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou Gansu 730000 China
| |
Collapse
|
15
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
16
|
Stuparu MC. Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Acc Chem Res 2021; 54:2858-2870. [PMID: 34115472 DOI: 10.1021/acs.accounts.1c00207] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Account describes a body of research in the design and synthesis of molecular materials prepared from corannulene. Corannulene (C20H10) is a molecular bowl of carbon that can be visualized as the hydrogen-terminated cap of buckminsterfullerene. Due to this structural resemblance, it is often referred to as a buckybowl. The bowl can invert, accept electrons, and form host-guest complexes. Due to these characteristics, corannulene presents a useful building block in materials chemistry.In macromolecular science, for example, assembly of amphiphilic copolymers carrying a hydrophobic corannulene block enables micelle formation in water. Such micellar nanostructures can host large amounts of fullerenes (C60 and C70) in their corannulene-rich core through complementarity of the curved π-surfaces. Covalent stabilization of the assembled structures then leads to the formation of robust water-soluble fullerene nanoparticles. Alternatively, use of corannulene in a polymer backbone allows for the preparation of electronic and redox-active materials. Finally, a corannulene core enables polymer chains to respond to solution temperature changes and form macroscopic fibrillar structures. In this way, the corannulene motif brings a variety of properties to the polymeric materials.In the design of non-fullerene electron acceptors, corannulene is emerging as a promising aromatic scaffold. In this regard, placement of sulfur atoms along the rim can cause an anodic shift in the molecular reduction potential. Oxidation of the sulfur atoms can further enhance this shift. Thus, a variation in the number, placement, and oxidation state of the sulfur atoms can create electron acceptors of tunable and high strengths. An advantage of this molecular design is that material solubility can also be tuned. For example, water-soluble electron acceptors can be created and are shown to improve the moisture resistance of perovskite solar cells.Host-guest complexation between corannulene and γ-cyclodextrin under flow conditions of a microfluidic chamber allows for the preparation of water-soluble nanoparticles. Due to an oligosaccharide-based sugarcoat, the nanoparticles are biocompatible while the corannulene component renders them active toward nonlinear absorption and emission properties. Together, these attributes allow the nanoparticles to be used as two-photon imaging probes in cancer cells.Finally, aromatic extension of the corannulene nucleus is seen as a potential route to nonplanar nanographenes. Typically, such endeavors rely upon gas-phase synthesis or metal-catalyzed coupling protocols. Recently, two new approaches have been established in this regard. Photochemically induced oxidative cyclization, the Mallory reaction, is shown to be a general method to access corannulenes with an extended π-framework. Alternatively, solid-state ball milling can achieve this goal in a highly efficient manner. These new protocols bring practicality and sustainability to the rapidly growing area of corannulene-based nanographenes.In essence, corannulene presents a unique building block in the construction of functional materials. In this Account, we trace our own efforts in the field and point toward the challenges and future prospects of this area of research.
Collapse
Affiliation(s)
- Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371 Singapore
| |
Collapse
|
17
|
Zhang Y, Yu C, Huang Z, Zhang WX, Ye S, Wei J, Xi Z. Metalla-aromatics: Planar, Nonplanar, and Spiro. Acc Chem Res 2021; 54:2323-2333. [PMID: 33849276 DOI: 10.1021/acs.accounts.1c00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ConspectusThe concept of aromaticity is one of the most fundamental principles in chemistry. It is generally accepted that planarity is a prerequisite for aromaticity, and typically the more planar the geometry of an aromatic compound is, the stronger aromatic it is. However, it is not always the case, particularly when transition metals are involved in conjugation and electron delocalization of aromatic systems, i.e., metalla-aromatics. Because of the intrinsic nature of transition-metal orbitals, besides planar geometries, the most stable molecular structures of metalla-aromatic compounds could take nonplanar and even spiro geometries. In this Account, we outline several unprecedented types of metalla-aromatics developed recently in our research group.Around seven years ago, we found that 1,4-dilithio-1,3-butadienes, dilithio reagents with π-conjugation, could function as non-innocent ligands and react with low-valent transition-metal complexes, generating monocyclic metalla-aromatic compounds. Later on, by taking advantage of the unique behavior of dilithio reagents and the intrinsic nature of different transition metals, we have synthesized a series of metalla-aromatic compounds, of which four types are discussed here, and each of them represents the first of its kind. First, nearly planar aromatic dicupra[10]annulenes, a 10 π-electron aromatic system with two bridging Cu atoms participating in the orbital conjugation and electron delocalization, are synthesized by annulating two dilithio reagents with two Cu(I) complexes.Second, four kinds of spiro metalla-aromatics, featuring planar (with Pd, Pt, or Rh as the spiro atom) geometry with a whole 10π aromatic system, octahedral (tris-spiro metalla-aromatics with V as the spiro atom) geometry with an entire 40π Craig-Möbius aromatic system, tetrahedral (with Mn as the spiro atom) geometry having two independent and perpendicular 6π planar aromatic rings, and tetrahedral (with Mn as the spiro atom) geometry with one planar and one nonplanar 6π aromatic rings, respectively, are generated. In sharp contrast to spiroaromaticity with carbon acting as the spiro atom described in Organic Chemistry, the metal spiro atom herein takes part in orbital conjugation and electron delocalization.Third, nonplanar aromatic butadienyl diiron complexes are realized. Different from planar aromatic systems featuring delocalized π-type overlap, this nonplanar metalla-aromaticity is achieved by the novel σ-type overlap between the two Fe 3dxz orbitals and the butadienyl π orbital, forming a 6π aromatic system. Fourth, dinickelaferrocene, a ferrocene analogue with two aromatic nickeloles, is synthesized from our monocyclic aromatic dilithionickelole and FeBr2. The aromaticity of dinickelaferrocene and its nickelole ligands is realized by electron back-donation from the Fe 3d orbital to the π* orbital of nickeloles, which also deepens our understanding of the origin of aromaticity.The search for unprecedented and exciting aromatic systems, particularly with transition metals being involved, will continue to drive this intriguing research field forward. Given the synthetic strategies and various types of metalla-aromatics developed and described, diversified metalla-aromatics of interesting structures and reaction chemistry, novel chemical bonding modes, and useful functions can be expected.
Collapse
Affiliation(s)
- Yongliang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Chao Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhe Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Genabeek B, Lamers BAG, Hawker CJ, Meijer EW, Gutekunst WR, Schmidt BVKJ. Properties and applications of precision oligomer materials; where organic and polymer chemistry join forces. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200862] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bas Genabeek
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Brigitte A. G. Lamers
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Craig J. Hawker
- Materials Research Laboratory University of California Santa Barbara California USA
- Materials Department University of California Santa Barbara California USA
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia USA
| | - Bernhard V. K. J. Schmidt
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam Germany
- School of Chemisty University of Glasgow Glasgow UK
| |
Collapse
|
19
|
Liu H, Zhang X, Wang L, Chen Y, Ye D, Chen L, Wen H, Liu S. One‐Pot
Synthesis of 3‐ to
15‐Mer π‐Conjugated
Discrete Oligomers with Widely Tunable Optical Properties. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Xiao‐Feng Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Li‐Hong Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Yan Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Dong‐Nai Ye
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Long Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - He‐Rui Wen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Shi‐Yong Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| |
Collapse
|
20
|
Kise K, Ooi S, Osuka A, Tanaka T. Five‐fold‐symmetric Pentabromo‐ and Pentaiodo‐corannulenes: Useful Precursors of Heteroatom‐substituted Corannulenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Koki Kise
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shota Ooi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
21
|
Bayer J, Herberger J, Holz L, Winter RF, Huhn T. Geodesic-Planar Conjugates: Substituted Buckybowls-Synthesis, Photoluminescence and Electrochemistry. Chemistry 2020; 26:17546-17558. [PMID: 32846003 PMCID: PMC7839787 DOI: 10.1002/chem.202003605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Indexed: 12/16/2022]
Abstract
C-C cross coupling products of bowl-shaped as-indaceno[3,2,1,8,7,6-pqrstuv]picene (Idpc) and different planar arenes and ethynyl-arenes were synthesized. Photoluminescence as well as electrochemical properties of all products were investigated and complemented by time-dependent quantum chemical calculations. UV/Vis spectroelectrochemistry investigations of the directly linked (Idpc)2 indicated the absence of any intramolecular charge-transfer transition of intermittently formed (Idpc)2 .- . All coupling products showed fluorescence. Ferrocene-1-yl-Idpc was structurally characterized by X-ray diffraction and is a rare example of a ferrocene-containing buckybowl exhibiting luminescence.
Collapse
Affiliation(s)
- Johannes Bayer
- Fachbereich ChemieUniversität KonstanzUniversitätsstr. 1078457KonstanzGermany
| | - Jan Herberger
- Fachbereich ChemieUniversität KonstanzUniversitätsstr. 1078457KonstanzGermany
| | - Lukas Holz
- Fachbereich ChemieUniversität KonstanzUniversitätsstr. 1078457KonstanzGermany
| | - Rainer F. Winter
- Fachbereich ChemieUniversität KonstanzUniversitätsstr. 1078457KonstanzGermany
| | - Thomas Huhn
- Fachbereich ChemieUniversität KonstanzUniversitätsstr. 1078457KonstanzGermany
| |
Collapse
|
22
|
Barát V, Stuparu MC. Corannulene Chalcogenides. Chem Asian J 2020; 16:20-29. [PMID: 33085173 DOI: 10.1002/asia.202001140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Indexed: 01/09/2023]
Abstract
The introduction of chalcogen atoms into a polycyclic aromatic hydrocarbon structure is an established method to tune material properties. In the context of corannulene (C20 H10 ), a fragment of fullerene C60 , such structural adjustments have given rise to an emerging class of functional and responsive molecular materials. In this minireview, our aim is to discuss the synthesis and properties of such chalcogen (sulfur, selenium, and tellurium) derivatives of corannulene.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore
| |
Collapse
|
23
|
Barát V, Stuparu MC. Selenium and Tellurium Derivatives of Corannulene: Serendipitous Discovery of a One-Dimensional Stereoregular Coordination Polymer Crystal Based on Te-O Backbone and Side-Chain Aromatic Array. Chemistry 2020; 26:15135-15139. [PMID: 32935415 DOI: 10.1002/chem.202003989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Monobromo-, tetrabromo-, and pentachloro-corannulene are subjected to nucleophilic substitution reactions with tolyl selenide and phenyl telluride-based nucleophiles generated in situ from the corresponding dichalcogenides. In the case of selenium nucleophile, the reaction provides moderate yields (52-77 %) of the targeted corannulene selenoethers. A subsequent oxidation of the selenium atoms proceeds smoothly to furnish corannulene selenones in 81-93 % yield. In the case of tellurides, only monosubstitution of the corannulene scaffold could be achieved albeit with concomitant oxidation of the tellerium atom. Unexpectedly, this monotelluroxide derivative of corannulene (RR'Te=O, R=Ph, R'=corannulene) is observed to form a linear coordination polymer chain in the crystalline state. In this chain, Te-O constitutes the polymer backbone around which the aromatic groups (R and R') arrange as polymer side-chains. The polymer crystal is stabilized through intramolecular π-π stacking interactions of the side-chains and intermolecular hydrogen and halogen bonding interactions with the solvent (chloroform) molecules. Interestingly, each diad of the polymer chain is racemic. Therefore, in terms of stereoregularity, the polymer chain can be described as syndiotactic.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
24
|
Qiu X, Lu R. Synthesis and Optical Properties of Monodisperse Phenothiazinevinylene‐Based Conjugated Oligomers. ChemistrySelect 2020. [DOI: 10.1002/slct.202003194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xianping Qiu
- Science and Technology on Aerospace Chemical Power Laboratory Hubei Institute of Aerospace Chemotechnology Xiangyang Hubei 441003 P. R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
25
|
Ferrero S, Barbero H, Miguel D, García-Rodríguez R, Álvarez CM. Octapodal Corannulene Porphyrin-Based Assemblies: Allosteric Behavior in Fullerene Hosting. J Org Chem 2020; 85:4918-4926. [PMID: 32153183 DOI: 10.1021/acs.joc.0c00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An octapodal corannulene-based supramolecular system has been prepared by introducing eight corannulene moieties in a porphyrin scaffold. Despite the potential of this double picket fence porphyrin for double-tweezer behavior, NMR titrations show exclusive formation of 1:1 adducts. The system exhibits very strong affinity for C60 and C70 (K1 = (2.71 ± 0.08) × 104 and (2.13 ± 0.1) × 105 M-1, respectively), presenting selectivity for the latter. Density functional theory (DFT) calculations indicate that, in addition to the four corannulene units, the relatively flexible porphyrin tether actively participates in the recognition process, resulting in a strong synergistic effect. This leads to a very strong interaction with C60, which in turn also induces a large structural change on the other face (second potential binding site), leading to a negative allosteric effect. We also introduced Zn2+ in the porphyrin core in an attempt to modulate its flexibility. The resulting metalloporphyrin also displayed single-tweezer behavior, albeit with slightly smaller binding constants for C60 and C70, suggesting that the effect of the coordination of fullerene to one face of our supramolecular platform was still transmitted to the other face, leading to the deactivation of the second potential binding site.
Collapse
Affiliation(s)
- Sergio Ferrero
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Raúl García-Rodríguez
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Celedonio M Álvarez
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| |
Collapse
|
26
|
Antić M, Đorđević S, Furtula B, Radenković S. Magnetically Induced Current Density in Nonplanar Fully Benzenoid Hydrocarbons. J Phys Chem A 2020; 124:371-378. [PMID: 31850755 DOI: 10.1021/acs.jpca.9b10352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our recent paper, the effects of molecular planarity on the local aromaticity in several series of increasingly planar fully benzenoid hydrocarbons were examined. It was found that the Clar formulas can provide correct information on the local aromaticity distribution even in nonplanar fully benzenoid systems. In the present work, the influence of molecular planarity on the ab initio magnetically induced current densities was examined for the same sets of molecules. The planarity effects were rationalized by examining the origins of the induced current density through the virtual transitions between occupied and unoccupied molecular orbitals.
Collapse
Affiliation(s)
- Marija Antić
- Faculty of Science , University of Kragujevac , P.O. Box 60, 34000 Kragujevac , Serbia
| | - Slađana Đorđević
- Faculty of Science , University of Kragujevac , P.O. Box 60, 34000 Kragujevac , Serbia
| | - Boris Furtula
- Faculty of Science , University of Kragujevac , P.O. Box 60, 34000 Kragujevac , Serbia
| | - Slavko Radenković
- Faculty of Science , University of Kragujevac , P.O. Box 60, 34000 Kragujevac , Serbia
| |
Collapse
|
27
|
Xie F, Finney NS. Synthesis and optical properties of mono- and diaminocorannulenes. Chem Commun (Camb) 2020; 56:10525-10528. [DOI: 10.1039/d0cc03853a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple synthesis of aminocorannulenes leads to the discovery of surprising properties: tunable visible emission; solid-state fluorescence; water-soluble fluorescent corannulenes.
Collapse
Affiliation(s)
- Feifei Xie
- School of Pharmaceutical Sciences and Technology
- Health Sciences Platform
- Tianjin University
- Tianjin
- China
| | - Nathaniel S. Finney
- School of Pharmaceutical Sciences and Technology
- Health Sciences Platform
- Tianjin University
- Tianjin
- China
| |
Collapse
|
28
|
Wang WW, Shang FL, Zhao X. Newly-designed basket-shaped nanocarbon materials as strong and universal fullerene receptors. Phys Chem Chem Phys 2020; 22:976-980. [DOI: 10.1039/c9cp06048k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations were performed to study the host–guest chemistry of a new class of basket-shaped fullerene receptors with strong binding energies and flexible carbon skeletons.
Collapse
Affiliation(s)
- Wei-Wei Wang
- MOE Key Laboratory for Strength and Vibration
- Department of Engineering Mechanics
- School of Aerospace
- Xi’an Jiaotong University
- Xi’an 710049
| | - Fu-Lin Shang
- MOE Key Laboratory for Strength and Vibration
- Department of Engineering Mechanics
- School of Aerospace
- Xi’an Jiaotong University
- Xi’an 710049
| | - Xiang Zhao
- Department of Chemistry
- School of Science
- Xi’an Jiaotong University
- Xi’an 710049
- China
| |
Collapse
|
29
|
Beldjoudi Y, Arauzo A, Campo J, Gavey EL, Pilkington M, Nascimento MA, Rawson JM. Structural, Magnetic, and Optical Studies of the Polymorphic 9'-Anthracenyl Dithiadiazolyl Radical. J Am Chem Soc 2019; 141:6875-6889. [PMID: 30875208 DOI: 10.1021/jacs.8b11528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fluorescent 9'-anthracenyl-functionalized dithiadiazolyl radical (3) exhibits four structurally determined crystalline phases, all of which are monomeric in the solid state. Polymorph 3α (monoclinic P21/ c, Z' = 2) is isolated when the radical is condensed onto a cold substrate (enthalpically favored polymorph), whereas 3β (orthorhombic P21 21 21, Z' = 3) is collected on a warm substrate (entropically favored polymorph). The α and β polymorphs exhibit chemically distinct structures with 3α exhibiting face-to-face π-π interactions between anthracenyl groups, while 3β exhibits edge-to-face π-π interactions. 3α undergoes an irreversible conversion to 3β on warming to 120 °C (393 K). The β-phase undergoes a series of reversible solid-state transformations on cooling; below 300 K a phase transition occurs to form 3γ (monoclinic P21/ c, Z' = 1), and on further cooling below 165 K, a further transition is observed to 3δ (monoclinic P21/ n, Z' = 2). Both 3β → 3γ and 3γ → 3δ transitions are reversible (single-crystal X-ray diffraction), and the 3γ → 3δ process exhibits thermal hysteresis with a clear feature observed by heat capacity measurements. Heating 3β above 160 °C generates a fifth polymorph (3ε) which is distinct from 3α-3δ based on powder X-ray diffraction data. The magnetic behavior of both 3α and the 3β/3γ/3δ system reflect an S = 1/2 paramagnet with weak antiferromagnetic coupling. The reversible 3δ ↔ 3γ phase transition exhibits thermal hysteresis of 20 K. Below 50 K, the value of χm T for 3δ approaches 0 emu·K·mol-1 consistent with formation of a gapped state with an S = 0 ground-state configuration. In solution, both paramagnetic 3 and diamagnetic [3][GaCl4] exhibit similar absorption and emission profiles reflecting similar absorption and emission mechanisms for paramagnetic and diamagnetic forms. Both emit in the deep-blue region of the visible spectrum (λem ∼ 440 nm) upon excitation at 255 nm with quantum yields of 4% (3) and 30% ([3][GaCl4]) affording a switching ratio [ΦF(3+)/ΦF(3)] of 7.5 in quantum efficiency with oxidation state. Solid-state films of both 3 and [3][GaCl4] exhibit emission bands at a longer wavelength (490 nm) attributed to excimer emission.
Collapse
Affiliation(s)
- Yassine Beldjoudi
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - Ana Arauzo
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, and Instituto de Ciencia de Materiales de Aragon , CSIC-Universidad de Zaragoza , E-50009 Zaragoza , Spain
| | - Javier Campo
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, and Instituto de Ciencia de Materiales de Aragon , CSIC-Universidad de Zaragoza , E-50009 Zaragoza , Spain
| | - Emma L Gavey
- Department of Chemistry , Brock University , 500 Glenridge Avenue , St. Catharines , Ontario L2S 3A1 , Canada
| | - Melanie Pilkington
- Department of Chemistry , Brock University , 500 Glenridge Avenue , St. Catharines , Ontario L2S 3A1 , Canada
| | - Mitchell A Nascimento
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - Jeremy M Rawson
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| |
Collapse
|
30
|
Rong L, Shen Y, Xiong G, Gong Y. Synthesis of 2-Nitrothiophenes via
Tandem Henry Reaction and Nucleophilic Substitution on Sulfur from β-Thiocyanatopropenals. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Rong
- Technology Center of China Tabacco; Hubei Industrial Co. Ltd.; Wuhan 430040 People's Republic of China
| | - Yingxia Shen
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 People's Republic of China
| | - Guoxi Xiong
- Technology Center of China Tabacco; Hubei Industrial Co. Ltd.; Wuhan 430040 People's Republic of China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 People's Republic of China
| |
Collapse
|
31
|
Rogachev AY, Liu S, Xu Q, Li J, Zhou Z, Spisak SN, Wei Z, Petrukhina MA. Placing Metal in the Bowl: Does Rim Alkylation Matter? Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrey Yu. Rogachev
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Shuyang Liu
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Qi Xu
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Jingbai Li
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sarah N. Spisak
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Marina A. Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
32
|
Saha M, Bao YH, Zhou C. A Diindole-fused Corannulene Imide Derivative: Synthesis and Properties. CHEM LETT 2018. [DOI: 10.1246/cl.180680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mithu Saha
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yue-Hua Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
33
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
34
|
Beldjoudi Y, Nascimento MA, Cho YJ, Yu H, Aziz H, Tonouchi D, Eguchi K, Matsushita MM, Awaga K, Osorio-Roman I, Constantinides CP, Rawson JM. Multifunctional Dithiadiazolyl Radicals: Fluorescence, Electroluminescence, and Photoconducting Behavior in Pyren-1'-yl-dithiadiazolyl. J Am Chem Soc 2018; 140:6260-6270. [PMID: 29688006 DOI: 10.1021/jacs.7b12592] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyren-1'-yl-functionalized dithiadiazolyl (DTDA) radical, C16H9CNSSN (1), is monomeric in solution and exhibits fluorescence in the deep-blue region of the visible spectrum (440 nm) upon excitation at 241 nm. The salt [1][GaCl4] exhibits similar emission, reflecting the largely spectator nature of the radical in the fluorescence process, although the presence of the radical leads to a modest quenching of emission (ΦF = 98% for 1+ and 50% for 1) through enhancement of non-radiative decay processes. Time-dependent density functional theory studies on 1 coupled with the similar emission profiles of both 1+ and 1 are consistent with the initial excitation being of predominantly pyrene π-π* character. Spectroscopic studies indicate stabilization of the excited state in polar media, with the fluorescence lifetime for 1 (τ = 5 ns) indicative of a short-lived excited state. Comparative studies between the energies of the frontier orbitals of pyren-1'-yl nitronyl nitroxide (2, which is not fluorescent) and 1 reveal that the energy mismatch and poor spatial overlap between the DTDA radical SOMO and the pyrene π manifold in 1 efficiently inhibit the non-radiative electron-electron exchange relaxation pathway previously described for 2. Solid-state films of both 1 and [1][GaCl4] exhibit broad emission bands at 509 and 545 nm, respectively. Incorporation of 1 within a host matrix for OLED fabrication revealed electroluminescence, with CIE coordinates of (0.205, 0.280) corresponding to a sky-blue emission. The brightness of the device reached 1934 cd/m2 at an applied voltage of 16 V. The crystal structure of 1 reveals a distorted π-stacked motif with almost regular distances between the pyrene rings but alternating long-short contacts between DTDA radicals. Solid state measurements on a thin film of 1 reveal emission occurs at shorter wavelengths (375 nm) whereas conductivity measurements on a single crystal of 1 show a photoconducting response at longer wavelength excitation (455 nm).
Collapse
Affiliation(s)
- Yassine Beldjoudi
- Department of Chemistry & Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , ON N9B 3P4 , Canada
| | - Mitchell A Nascimento
- Department of Chemistry & Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , ON N9B 3P4 , Canada
| | - Yong Joo Cho
- Department of Electrical & Computer Engineering, Waterloo Institute of Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Hyeonghwa Yu
- Department of Electrical & Computer Engineering, Waterloo Institute of Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Hany Aziz
- Department of Electrical & Computer Engineering, Waterloo Institute of Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Daiki Tonouchi
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS) , The University of Nagoya , Furo-Cho, Chikusa-Ku , Nagoya City , Aichi 464-8602 , Japan
| | - Keitaro Eguchi
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS) , The University of Nagoya , Furo-Cho, Chikusa-Ku , Nagoya City , Aichi 464-8602 , Japan
| | - Michio M Matsushita
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS) , The University of Nagoya , Furo-Cho, Chikusa-Ku , Nagoya City , Aichi 464-8602 , Japan
| | - Kunio Awaga
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS) , The University of Nagoya , Furo-Cho, Chikusa-Ku , Nagoya City , Aichi 464-8602 , Japan
| | - Igor Osorio-Roman
- Department of Chemistry & Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , ON N9B 3P4 , Canada
| | - Christos P Constantinides
- Department of Chemistry , North Caroline State University , 2620 Yarbrough Drive, Box 8204 , Raleigh , North Carolina 27695 , United States
| | - Jeremy M Rawson
- Department of Chemistry & Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , ON N9B 3P4 , Canada
| |
Collapse
|
35
|
Halilovic D, Budanović M, Wong ZR, Webster RD, Huh J, Stuparu MC. Photochemical Synthesis and Electronic Properties of Extended Corannulenes with Variable Fluorination Pattern. J Org Chem 2018. [DOI: 10.1021/acs.joc.7b03146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dzeneta Halilovic
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore
| | - Maja Budanović
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore
| | - Zeng R. Wong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
36
|
Nestoros E, Stuparu MC. Corannulene: a molecular bowl of carbon with multifaceted properties and diverse applications. Chem Commun (Camb) 2018; 54:6503-6519. [DOI: 10.1039/c8cc02179a] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemistry, properties and applications of corannulene are discussed.
Collapse
Affiliation(s)
- Eleni Nestoros
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences, and School of Materials Science and Engineering
- Nanyang Technological University
- 637371-Singapore
- Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences, and School of Materials Science and Engineering
- Nanyang Technological University
- 637371-Singapore
- Singapore
| |
Collapse
|
37
|
Smerieri M, Píš I, Ferrighi L, Nappini S, Lusuan A, Vattuone L, Vaghi L, Papagni A, Magnano E, Di Valentin C, Bondino F, Savio L. Synthesis of corrugated C-based nanostructures by Br-corannulene oligomerization. Phys Chem Chem Phys 2018; 20:26161-26172. [DOI: 10.1039/c8cp04791j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure and electronic properties of carbon-based nanostructures obtained by metal surface assisted synthesis is highly dependent on the nature of the precursor molecule.
Collapse
Affiliation(s)
| | - Igor Píš
- Elettra-Sincrotrone Trieste S.C.p.A
- 34149 Basovizza (TS)
- Italy
- IOM-CNR
- Laboratorio TASC
| | - Lara Ferrighi
- Dipartimento di Scienza dei Materiali
- Università di Milano-Bicocca
- 20125 Milano
- Italy
| | | | | | - Luca Vattuone
- IMEM-CNR
- UOS Genova
- 16146 Genova
- Italy
- Dipartimento di Fisica
| | - Luca Vaghi
- Dipartimento di Scienza dei Materiali
- Università di Milano-Bicocca
- 20125 Milano
- Italy
| | - Antonio Papagni
- Dipartimento di Scienza dei Materiali
- Università di Milano-Bicocca
- 20125 Milano
- Italy
| | - Elena Magnano
- IOM-CNR
- Laboratorio TASC
- 34149 Basovizza (TS)
- Italy
- Department of Physics
| | | | | | | |
Collapse
|
38
|
Mishra A, Ulaganathan M, Edison E, Borah P, Mishra A, Sreejith S, Madhavi S, Stuparu MC. Polymeric Nanomaterials Based on the Buckybowl Motif: Synthesis through Ring-Opening Metathesis Polymerization and Energy Storage Applications. ACS Macro Lett 2017; 6:1212-1216. [PMID: 35650797 DOI: 10.1021/acsmacrolett.7b00746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ring-opening metathesis polymerization (ROMP) of buckybowl corannulene-based oxa-norbornadiene monomer is shown to give rise to polymeric nanomaterials with an average pore size of about 1.4 nm and a surface area of 49.2 m2/g. Application in supercapacitor devices show that the corannulene-based nanomaterials exhibit a specific capacitance of 134 F·g-1 (1.0 V voltage window) in a three-electrode cell configuration. Moreover, the electrode assembled from these materials in a symmetric configuration (1.6 V voltage window) exhibits long-term cyclability of 90% capacitance retention after undergoing 10000 cycles. This work demonstrates that ROMP is a valuable method in synthesizing nanostructured corannulene polymers, and that materials based on the nonplanar polycyclic aromatic motif represents an attractive active component for fabrication of devices targeted at electrochemical energy storage applications.
Collapse
Affiliation(s)
- Amita Mishra
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Mani Ulaganathan
- School
of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Eldho Edison
- School
of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Parijat Borah
- Department
of Chemistry, School of Science, University of Tokyo, Tokyo, 113-0033-Japan
| | - Abhinay Mishra
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore
| | - Sivaramapanicker Sreejith
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Srinivasan Madhavi
- School
of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Mihaiela C. Stuparu
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
39
|
Chen H, Zhu H, Huang Y, Yang J, Wang W. Synthesis and Characterization of Polycyclic Aromatic Hydrocarbons with Different Spatial Constructions Based on Hexaphenylbenzene Derivatives. Chem Asian J 2017; 12:3016-3026. [DOI: 10.1002/asia.201701061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Hua Chen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 P. R. China
| | - Haoyun Zhu
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 P. R. China
| | - Yuli Huang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 P. R. China
| | - Junwei Yang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 P. R. China
| | - Weizhi Wang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 P. R. China
| |
Collapse
|
40
|
Mahadevegowda S, Stuparu MC. Amphiphilic Corannulene Derivatives: Synthetic Access and Development of a Structure/Property Relationship in Thermoresponsive Buckybowl Amphiphiles. ACS OMEGA 2017; 2:4964-4971. [PMID: 31457774 PMCID: PMC6641966 DOI: 10.1021/acsomega.7b00807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/16/2017] [Indexed: 06/10/2023]
Abstract
Eight new derivatives of corannulene have been synthesized, characterized, and examined for their water solubility and thermally triggered assembly behavior. To achieve this, the hydrophobic corannulene core was attached to the hydrophilic polyethylene glycol arm(s). Here, the substitution pattern as well as the arm length was varied systematically. Furthermore, the hydrophobic/hydrophilic ratio was adjusted by incorporating a phenyl ring at the junction point of the two moieties. A properties study revealed that a proper balance among the number, length, and chemical nature of the arm was required to ensure water solubility and thermoresponsive character. Remarkably, the lower critical solution temperature could be modulated within the range of 30-50 °C simply through adjusting the molecular structure of the assembling building block. This work, therefore, demonstrates synthetic feasibility of a wide range of amphiphilic corannulene derivatives and opportunity for modulation of their thermoresponsive behavior.
Collapse
Affiliation(s)
- Surendra
H. Mahadevegowda
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore
| | - Mihaiela C. Stuparu
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21-Nanyang Link, 637371, Singapore
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
41
|
Antić M, Furtula B, Radenković S. Aromaticity of Nonplanar Fully Benzenoid Hydrocarbons. J Phys Chem A 2017; 121:3616-3626. [DOI: 10.1021/acs.jpca.7b02521] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marija Antić
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Boris Furtula
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Slavko Radenković
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|