1
|
Zhu T, Zhan W, Fan W, Zhang X. Research on Synthesis, Structure, and Catalytic Performance of Tetranuclear Copper(I) Clusters Supported by 2-Mercaptobenz-zole-Type Ligands. Molecules 2024; 29:4228. [PMID: 39275077 PMCID: PMC11396812 DOI: 10.3390/molecules29174228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Tetrahedral copper(I) clusters [Cu4(MBIZ)4(PPh3)2] (2), [Cu4(MBOZ)4(PPh3)4] (6) (MBIZ = 2-mercaptobenzimidazole, MBOZ = 2-mercaptobenzoxazole) were prepared by regulation of the copper-thiolate clusters [Cu6(MBIZ)6] (1) and [Cu8(MBOZ)8I]- (5) with PPh3. With the presence of iodide anion, the regulation provided the iodide-containing clusters [CuI4(MBIZ)3(PPh3)3I] (3) and [CuI4(MBOZ)3(PPh3)3I] (7). The cyclic voltammogram of 3 in MeCN (0.1 M nBu4NPF6, 298 K) at a scan rate of 100 mV s-1 shows two oxidation processes at Epa = +0.11 and +0.45 V with return waves observed at Epc = +0.25 V (vs. Fc+/Fc). Complex 3 has a higher capability to lose and gain electrons in the redox processes than complexes 2, 4, 4', 6, and 7. Its thermal stability was confirmed by thermogravimetric analysis. The catalytic performance of 3 was demonstrated by the catalytic transformation of iodobenzenes to benzonitriles using AIBN as the cyanide source. The nitrile products show potential applications in the preparation of 1,3,5-triazine compounds for organic fluorescence materials.
Collapse
Affiliation(s)
- Tingyu Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wangyuan Zhan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
2
|
Alayoglu P, Rathnayaka SC, Chang T, Wang SG, Chen YS, Mankad NP. Cu site differentiation in tetracopper(i) sulfide clusters enables biomimetic N 2O reduction. Chem Sci 2024:d4sc00701h. [PMID: 39129770 PMCID: PMC11306996 DOI: 10.1039/d4sc00701h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Copper clusters feature prominently in both metalloenzymes and synthetic nanoclusters that mediate catalytic redox transformations of gaseous small molecules. Such reactions are critical to biological energy conversion and are expected to be crucial parts of renewable energy economies. However, the precise roles of individual metal atoms within clusters are difficult to elucidate, particularly for cluster systems that are dynamic under operating conditions. Here, we present a metal site-specific analysis of synthetic Cu4(μ4-S) clusters that mimic the Cu Z active site of the nitrous oxide reductase enzyme. Leveraging the ability to obtain structural snapshots of both inactive and active forms of the synthetic model system, we analyzed both states using resonant X-ray diffraction anomalous fine structure (DAFS), a technique that enables X-ray absorption profiles of individual metal sites within a cluster to be extracted independently. Using DAFS, we found that a change in cluster geometry between the inactive and active states is correlated to Cu site differentiation that is presumably required for efficient activation of N2O gas. More precisely, we hypothesize that the Cu δ+⋯Cu δ- pairs produced upon site differentiation are poised for N2O activation, as supported by computational modeling. These results provide an unprecedented level of detail on the roles of individual metal sites within the synthetic cluster system and how those roles interplay with cluster geometry to impact the reactivity function. We expect this fundamental knowledge to inform understanding of metal clusters in settings ranging from (bio)molecular to nanocluster to extended solid systems involved in energy conversion.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago Chicago IL 60607 USA
| | - Suresh C Rathnayaka
- Department of Chemistry, University of Illinois at Chicago Chicago IL 60607 USA
| | - Tieyan Chang
- ChemMatCARS, The University of Chicago Argonne IL 60439 USA
| | | | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago Argonne IL 60439 USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
3
|
Pomowski A, Dell'Acqua S, Wüst A, Pauleta SR, Moura I, Einsle O. Revisiting the metal sites of nitrous oxide reductase in a low-dose structure from Marinobacter nauticus. J Biol Inorg Chem 2024; 29:279-290. [PMID: 38720157 PMCID: PMC11573801 DOI: 10.1007/s00775-024-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
Copper-containing nitrous oxide reductase catalyzes a 2-electron reduction of the green-house gas N2O to yield N2. It contains two metal centers, the binuclear electron transfer site CuA, and the unique, tetranuclear CuZ center that is the site of substrate binding. Different forms of the enzyme were described previously, representing variations in oxidation state and composition of the metal sites. Hypothesizing that many reported discrepancies in the structural data may be due to radiation damage during data collection, we determined the structure of anoxically isolated Marinobacter nauticus N2OR from diffraction data obtained with low-intensity X-rays from an in-house rotating anode generator and an image plate detector. The data set was of exceptional quality and yielded a structure at 1.5 Å resolution in a new crystal form. The CuA site of the enzyme shows two distinct conformations with potential relevance for intramolecular electron transfer, and the CuZ cluster is present in a [4Cu:2S] configuration. In addition, the structure contains three additional types of ions, and an analysis of anomalous scattering contributions confirms them to be Ca2+, K+, and Cl-. The uniformity of the present structure supports the hypothesis that many earlier analyses showed inhomogeneities due to radiation effects. Adding to the earlier description of the same enzyme with a [4Cu:S] CuZ site, a mechanistic model is presented, with a structurally flexible CuZ center that does not require the complete dissociation of a sulfide prior to N2O binding.
Collapse
Affiliation(s)
- Anja Pomowski
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Simone Dell'Acqua
- Dipartimento Di Chimica, Università Di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Anja Wüst
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Isabel Moura
- LAQV, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2529-516, Caparica, Portugal
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Mankad NP. Triazenide-supported [Cu 4S] structural mimics of Cu Z that mediate N 2O disproportionation rather than reduction. Chem Sci 2024; 15:1820-1828. [PMID: 38303935 PMCID: PMC10829023 DOI: 10.1039/d3sc05451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
As part of the nitrogen cycle, environmental nitrous oxide (N2O) undergoes the N2O reduction reaction (N2ORR) catalyzed by nitrous oxide reductase, a metalloenzyme whose catalytic active site is a tetranuclear copper-sulfide cluster (CuZ). On the other hand, heterogeneous Cu catalysts on oxide supports are known to mediate decomposition of N2O (deN2O) by disproportionation. In this study, a CuZ model system supported by triazenide ligands is characterized by X-ray crystallography, NMR and EPR spectroscopies, and electronic structure calculations. Although the triazenide-ligated Cu4(μ4-S) clusters are closely related to previous formamidinate derivatives, which differ only in replacement of a remote N atom for a CH group, divergent reactivity with N2O is observed. Whereas the formamidinate-ligated clusters were previously shown to mediate single-turnover N2ORR, the triazenide-ligated clusters are found to mediate deN2O, behavior that was previously unknown to natural or synthetic copper-sulfide clusters. The reaction pathway for deN2O by this model system, including previously unidentified transition state models for N2O activation in N-O cleavage and O-O coupling steps, are included. The divergent reactivity of these two related but subtly different systems point to key factors influencing behavior of Cu-based catalysts for N2ORR (i.e., CuZ) and deN2O (e.g., CuO/CeO2).
Collapse
Affiliation(s)
- Neal P Mankad
- Department of Chemistry, University of Illinois Chicago Chicago IL 60607 USA
| |
Collapse
|
5
|
Sorbelli D, Belpassi L, Belanzoni P. Cooperative small molecule activation by apolar and weakly polar bonds through the lens of a suitable computational protocol. Chem Commun (Camb) 2024; 60:1222-1238. [PMID: 38126734 DOI: 10.1039/d3cc05614g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Small molecule activation processes are central in chemical research and cooperativity is a valuable tool for the fine-tuning of the efficiency of these reactions. In this contribution, we discuss recent and remarkable examples in which activation processes are mediated by bimetallic compounds featuring apolar or weakly polar metal-metal bonds. Relevant experimental breakthroughs are thoroughly analyzed from a computational perspective. We highlight how the rational and non-trivial application of selected computational approaches not only allows rationalization of the observed reactivities but also inferring of general principles applicable to activation processes, such as the breakdown of the structure-reactivity relationship in carbon dioxide activation in a cooperative framework. We finally provide a simple yet unbiased computational protocol to study these reactions, which can support experimental advances aimed at expanding the range of applications of apolar and weakly polar bonds as catalysts for small molecule activation.
Collapse
Affiliation(s)
- Diego Sorbelli
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| | - Paola Belanzoni
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto, 8 - 06123, Perugia, Italy.
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8 - 06123, Perugia, Italy.
| |
Collapse
|
6
|
Zhang Z, Xing W, Lu J, Gao X, Jia F, Yao H. Nitrogen removal and nitrous oxide emission in the partial nitritation/anammox process at different reflux ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167520. [PMID: 37788770 DOI: 10.1016/j.scitotenv.2023.167520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
The partial nitritation/anammox (PN/A) process has been widely used in wastewater treatment owing to its notable advantages, including a low aeration rate and the non-requirement of an additional carbon source. In practical implementation, nitrite accumulation affects the nitrogen-removal efficiency and the amount of N2O released during the PN/A process. By implementing wastewater reflux, the nitrite concentration can be decreased, thereby achieving a balance between the nitrogen-removal efficiency and N2O release. This study conducted the CANON process with varying reflux ratios of 0 to 300 % and ~300 mg/L ammonium in the influent. The highest removal efficiency of ammonium and total nitrogen (98.2 ± 0.8 and 77.8 ± 2.3 %, respectively) could be achieved at a reflux ratio of 200 %. Further, a reflux ratio of 200 % led to the lowest N2O emission factor (2.21 %), with a 31.74 % reduction in N2O emission compared to the process without refluxing. Additionally, the reactor at a reflux ratio of 200 % presented the highest relative abundance of anaerobic ammonium-oxidizing bacteria (30.98 %) and the lowest proportion of ammonium-oxidizing bacteria (9.57 %). This study aimed to elucidate the impact of the reflux ratio on the nitrogen-removal efficiency of the CANON process and to theoretically explain the influence of different reflux ratios on N2O release. These findings provide a theoretical framework for enhancing the nitrogen-removal efficiency and mitigating carbon emissions in practical applications of the CANON process.
Collapse
Affiliation(s)
- Zexi Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Wei Xing
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
| | - Jia Lu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Xinyu Gao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
7
|
Martinez J, Schneider JE, Anferov SW, Anderson JS. Electrochemical Reduction of N 2O with a Molecular Copper Catalyst. ACS Catal 2023; 13:12673-12680. [PMID: 37822863 PMCID: PMC10563017 DOI: 10.1021/acscatal.3c02658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Deoxygenation of nitrous oxide (N2O) has significant environmental implications, as it is not only a potent greenhouse gas but is also the main substance responsible for the depletion of ozone in the stratosphere. This has spurred significant interest in molecular complexes that mediate N2O deoxygenation. Natural N2O reduction occurs via a Cu cofactor, but there is a notable dearth of synthetic molecular Cu catalysts for this process. In this work, we report a selective molecular Cu catalyst for the electrochemical reduction of N2O to N2 using H2O as the proton source. Cyclic voltammograms show that increasing the H2O concentration facilitates the deoxygenation of N2O, and control experiments with a Zn(II) analogue verify an essential role for Cu. Theory and spectroscopy support metal-ligand cooperative catalysis between Cu(I) and a reduced tetraimidazolyl-substituted radical pyridine ligand (MeIm4P2Py = 2,6-(bis(bis-2-N-methylimidazolyl)phosphino)pyridine), which can be observed by Electron Paramagnetic Resonance (EPR) spectroscopy. Comparison with biological processes suggests a common theme of supporting electron transfer moieties in enabling Cu-mediated N2O reduction.
Collapse
Affiliation(s)
- Jorge
L. Martinez
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E. Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W. Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Liu Y, Chatterjee S, Cutsail GE, Peredkov S, Gupta SK, Dechert S, DeBeer S, Meyer F. Cu 4S Cluster in "0-Hole" and "1-Hole" States: Geometric and Electronic Structure Variations for the Active Cu Z* Site of N 2O Reductase. J Am Chem Soc 2023; 145:18477-18486. [PMID: 37565682 PMCID: PMC10450684 DOI: 10.1021/jacs.3c04893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/12/2023]
Abstract
The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique μ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(μ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(μ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(μ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(μ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central μ4-S in the fully reduced 0-hole state.
Collapse
Affiliation(s)
- Yang Liu
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sayanti Chatterjee
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Sergey Peredkov
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Sandeep K. Gupta
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Lycus P, Einsle O, Zhang L. Structural biology of proteins involved in nitrogen cycling. Curr Opin Chem Biol 2023; 74:102278. [PMID: 36889028 DOI: 10.1016/j.cbpa.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Microbial metabolic processes drive the global nitrogen cycle through sophisticated and often unique metalloenzymes that facilitate difficult redox reactions at ambient temperature and pressure. Understanding the intricacies of these biological nitrogen transformations requires a detailed knowledge that arises from the combination of a multitude of powerful analytical techniques and functional assays. Recent developments in spectroscopy and structural biology have provided new, powerful tools for addressing existing and emerging questions, which have gained urgency due to the global environmental implications of these fundamental reactions. The present review focuses on the recent contributions of the wider area of structural biology to understanding nitrogen metabolism, opening new avenues for biotechnological applications to better manage and balance the challenges of the global nitrogen cycle.
Collapse
Affiliation(s)
- Pawel Lycus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| |
Collapse
|
10
|
Wu Z, Wang Y, Liu C, Yin N, Hu Z, Shen L, Islam ARMT, Wei Z, Chen S. Characteristics of soil N 2O emission and N 2O-producing microbial communities in paddy fields under elevated CO 2 concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120872. [PMID: 36529344 DOI: 10.1016/j.envpol.2022.120872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The effects of elevated carbon dioxide (CO2) concentration (e[CO2]) on nitrous oxide (N2O) emissions from paddy fields and the microbial processes involved in N2O emissions have recently received much attention. Ammonia-oxidizing microorganisms and denitrifying bacteria dominate the production of N2O in paddy soils. To better understand the dynamics of N2O production under e[CO2], a field experiment was conducted after five years of CO2 fumigation based on three treatments: CK (ambient atmospheric CO2), T1 (CK + increase of 40 ppm per year until 200 ppm), and T2 (CK + 200 ppm). N2O fluxes, soil physicochemical properties, and N2O production potential were quantified during the rice-growth period. The functional gene abundance and community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were analyzed using quantitative polymerase chain reaction (qPCR) and those of ammonia-denitrifying bacteria (nirS- and nirK-type) were analyzed using Illumina MiSeq sequencing. N2O emissions decreased by 173% and 41% under the two e[CO2] treatments during grain filling and milk ripening, respectively (P < 0.05). N2O emissions increased by 279% and 172% in the T2 treatment compared with T1 during the tillering and milk-ripening stages, respectively (P < 0.05). Furthermore, the N2O production potential was significantly higher in the CK treatment than in T1 and T2 during the elongation stage. The N2O production potential and abundance of AOA amoA genes in T1 treatment were significantly lower than those in CK treatment during the high N2O emission phase caused by mid-season drainage (P < 0.05). Although nirK- and nirS-type denitrifying bacteria community structure and diversity did not respond significantly (P > 0.05) to e[CO2], the abundance of nirK-type denitrifying bacteria significantly affected the N2O flux (P < 0.05). Linear regression analysis showed that the N2O production potential, AOA amoA gene abundance, and nirK gene abundance explained 47.2% of the variation in N2O emissions. In addition, soil nitrogen (N) significantly affected the nirK- and nirS-type denitrifier communities. Overall, our results revealed that e[CO2] suppressed N2O emissions, which was closely associated with the abundance of AOA amoA and nirK genes (P < 0.05).
Collapse
Affiliation(s)
- Zhurong Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yuanyuan Wang
- School of Life Science, Huaiyin Normal University, Huaian, 223001, China
| | - Chao Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Nan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Lidong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - A R M Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Zhaowei Wei
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shutao Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
11
|
Sinhababu S, Lakliang Y, Mankad NP. Recent advances in cooperative activation of CO 2 and N 2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Trans 2022; 51:6129-6147. [PMID: 35355033 DOI: 10.1039/d2dt00210h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gaseous small molecules, CO2 and N2O, play important roles in climate change and ozone layer depletion, and they hold promise as underutilized reagents and chemical feedstocks. However, productive transformations of these heteroallenes are difficult to achieve because of their inertness. In nature, these gases are cycled through ecological systems by metalloenzymes featuring multimetallic active sites that employ cooperative mechanisms. Thus, cooperative bimetallic chemistry is an important strategy for synthetic systems, as well. In this Perspective, recent advances (since 2010) in cooperative activation of CO2 and N2O are reviewed, including examples involving s-block, p-block, d-block, and f-block metals and different combinations thereof.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| |
Collapse
|
12
|
Hu L, Wang X, Chen C, Chen J, Wang Z, Chen J, Hrynshpan D, Savitskaya T. NosZ gene cloning, reduction performance and structure of Pseudomonas citronellolis WXP-4 nitrous oxide reductase. RSC Adv 2022; 12:2549-2557. [PMID: 35425296 PMCID: PMC8979117 DOI: 10.1039/d1ra09008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. To alleviate the N2O emission, emerging approaches aim at microbiome biotechnology. In this study, the genome sequence of facultative anaerobic bacteria Pseudomonas citronellolis WXP-4, which efficiently degrades N2O, was obtained by de novo sequencing for the first time, and then, four key reductase structure coding genes related to complete denitrification were identified. The single structural encoding gene nosZ with a length of 1914 bp from strain WXP-4 was cloned in Escherichia coli BL21(DE3), and the N2OR protein (76 kDa) was relatively highly efficiently expressed under the optimal inducing conditions of 1.0 mM IPTG, 5 h, and 30 °C. Denitrification experiment results confirmed that recombinant E. coli had strong denitrification ability and reduced 10 mg L−1 of N2O to N2 within 15 h under the optimal conditions of pH 7.0 and 40 °C, its corresponding N2O reduction rate was almost 2.3 times that of Alcaligenes denitrificans strain TB, but only 80% of that of wild strain WXP-4, meaning that nos gene cluster auxiliary gene deletion decreased the activity of N2OR. The 3D structure of N2OR predicted on the basis of sequence homology found that electron transfer center CuA had only five amino acid ligands, and the S2 of the catalytically active center CuZ only bound one CuI atom. The unique 3D structure was different from previous reports and may be closely related to the strong N2O reduction ability of strain WXP-4 and recombinant E. coli. The findings show a potential application of recombinant E. coli in alleviating the greenhouse effect and provide a new perspective for researching the relationship between structure and function of N2OR. Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. The recombinant E. coli and wild strain WXP-4 demonstrate strong N2O reduction ability.![]()
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
13
|
Kroneck PMH. Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen. J Biol Inorg Chem 2021; 27:1-21. [PMID: 34865208 PMCID: PMC8840924 DOI: 10.1007/s00775-021-01921-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Since the characterization of cytochrome c552 as a multiheme nitrite reductase, research on this enzyme has gained major interest. Today, it is known as pentaheme cytochrome c nitrite reductase (NrfA). Part of the NH4+ produced from NO2- is released as NH3 leading to nitrogen loss, similar to denitrification which generates NO, N2O, and N2. NH4+ can also be used for assimilatory purposes, thus NrfA contributes to nitrogen retention. It catalyses the six-electron reduction of NO2- to NH4+, hosting four His/His ligated c-type hemes for electron transfer and one structurally differentiated active site heme. Catalysis occurs at the distal side of a Fe(III) heme c proximally coordinated by lysine of a unique CXXCK motif (Sulfurospirillum deleyianum, Wolinella succinogenes) or, presumably, by the canonical histidine in Campylobacter jejeuni. Replacement of Lys by His in NrfA of W. succinogenes led to a significant loss of enzyme activity. NrfA forms homodimers as shown by high resolution X-ray crystallography, and there exist at least two distinct electron transfer systems to the enzyme. In γ-proteobacteria (Escherichia coli) NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a pentaheme electron carrier (NrfB), in δ- and ε-proteobacteria (S. deleyianum, W. succinogenes), the NrfA dimer interacts with a tetraheme cytochrome c (NrfH). Both form a membrane-associated respiratory complex on the extracellular side of the cytoplasmic membrane to optimize electron transfer efficiency. This minireview traces important steps in understanding the nature of pentaheme cytochrome c nitrite reductases, and discusses their structural and functional features.
Collapse
Affiliation(s)
- Peter M H Kroneck
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
14
|
Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Biomolecules 2021; 11:biom11071043. [PMID: 34356667 PMCID: PMC8301774 DOI: 10.3390/biom11071043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.
Collapse
Affiliation(s)
- Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Elena Valdés
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965903400 (ext. 2064)
| |
Collapse
|
15
|
Rathnayaka SC, Mankad NP. Coordination chemistry of the Cu Z site in nitrous oxide reductase and its synthetic mimics. Coord Chem Rev 2021; 429:213718. [PMID: 33692589 PMCID: PMC7939133 DOI: 10.1016/j.ccr.2020.213718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric nitrous oxide (N2O) has garnered significant attention recently due to its dual roles as an ozone depletion agent and a potent greenhouse gas. Anthropogenic N2O emissions occur primarily through agricultural disruption of nitrogen homeostasis causing N2O to build up in the atmosphere. The enzyme responsible for N2O fixation within the geochemical nitrogen cycle is nitrous oxide reductase (N2OR), which catalyzes 2H+/2e- reduction of N2O to N2 and H2O at a tetranuclear active site, CuZ. In this review, the coordination chemistry of CuZ is reviewed. Recent advances in the understanding of biological CuZ coordination chemistry is discussed, as are significant breakthroughs in synthetic modeling of CuZ that have emerged in recent years. The latter topic includes both structurally faithful, synthetic [Cu4(µ4-S)] clusters that are able to reduce N2O, as well as dicopper motifs that shed light on reaction pathways available to the critical CuI-CuIV cluster edge of CuZ. Collectively, these advances in metalloenzyme studies and synthetic model systems provide meaningful knowledge about the physiologically relevant coordination chemistry of CuZ but also open new questions that will pose challenges in the near future.
Collapse
Affiliation(s)
- Suresh C. Rathnayaka
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, United States
| |
Collapse
|
16
|
Ghosh AC, Duboc C, Gennari M. Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213606] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Zhang L, Bill E, Kroneck PMH, Einsle O. A [3Cu:2S] cluster provides insight into the assembly and function of the Cu Z site of nitrous oxide reductase. Chem Sci 2021; 12:3239-3244. [PMID: 34164092 PMCID: PMC8179356 DOI: 10.1039/d0sc05204c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme reducing environmentally critical nitrous oxide (N2O) to dinitrogen (N2) as the final step of bacterial denitrification. The assembly process of its unique catalytic [4Cu:2S] cluster CuZ remains scarcely understood. Here we report on a mutagenesis study of all seven histidine ligands coordinating this copper center, followed by spectroscopic and structural characterization and based on an established, functional expression system for Pseudomonas stutzeri N2OR in Escherichia coli. While no copper ion was found in the CuZ binding site of variants H129A, H130A, H178A, H326A, H433A and H494A, the H382A variant carried a catalytically inactive [3Cu:2S] center, in which one sulfur ligand, SZ2, had relocated to form a weak hydrogen bond to the sidechain of the nearby lysine residue K454. This link provides sufficient stability to avoid the loss of the sulfide anion. The UV-vis spectra of this cluster are strikingly similar to those of the active enzyme, implying that the flexibility of SZ2 may have been observed before, but not recognized. The sulfide shift changes the metal coordination in CuZ and is thus of high mechanistic interest. Variants of all seven histidine ligands of the [4Cu:2S] active site of nitrous oxide reductase mostly result in loss of the metal site. However, a H382A variant retains a [3Cu:2S] cluster that hints towards a structural flexibility also present in the intact site.![]()
Collapse
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion Stiftstr. 34-36 D-45470 Mülheim an der Ruhr Germany
| | | | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
18
|
Zhang L, Bill E, Kroneck PMH, Einsle O. Histidine-Gated Proton-Coupled Electron Transfer to the CuA Site of Nitrous Oxide Reductase. J Am Chem Soc 2020; 143:830-838. [DOI: 10.1021/jacs.0c10057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Lakliang Y, Mankad NP. Heterometallic Cu2Fe and Zn2Fe2 Complexes Derived from [Fe(CO)4]2– and Cu/Fe Bifunctional N2O Activation Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
21
|
Rathnayaka SC, Hsu CW, Johnson BJ, Iniguez SJ, Mankad NP. Impact of Electronic and Steric Changes of Ligands on the Assembly, Stability, and Redox Activity of Cu 4(μ 4-S) Model Compounds of the Cu Z Active Site of Nitrous Oxide Reductase (N 2OR). Inorg Chem 2020; 59:6496-6507. [PMID: 32309936 DOI: 10.1021/acs.inorgchem.0c00564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Model compounds have been widely utilized in understanding the structure and function of the unusual Cu4(μ4-S) active site (CuZ) of nitrous oxide reductase (N2OR). However, only a limited number of model compounds that mimic both structural and functional features of CuZ are available, limiting insights about CuZ that can be gained from model studies. Our aim has been to construct Cu4(μ4-S) clusters with tailored redox activity and chemical reactivity via modulating the ligand environment. Our synthetic approach uses dicopper(I) precursor complexes (Cu2L2) that assemble into a Cu4(μ4-S)L4 cluster with the addition of an appropriate sulfur source. Here, we summarize the features of the ligands L that stabilize precursor and Cu4(μ4-S) clusters, along with the alternative products that form with inappropriate ligands. The precursors are more likely to rearrange to Cu4(μ4-S) clusters when the Cu(I) ions are supported by bidentate ligands with 3-atom bridges, but steric and electronic features of the ligand also play crucial roles. Neutral phosphine donors have been found to stabilize Cu4(μ4-S) clusters in the 4Cu(I) oxidation state, while neutral nitrogen donors could not stabilize Cu4(μ4-S) clusters. Anionic formamidinate ligands have been found to stabilize Cu4(μ4-S) clusters in the 2Cu(I):2Cu(II) and 3Cu(I):1Cu(II) states, with both the formation of the dicopper(I) precursors and subsequent assembly of clusters being governed by the steric factor at the ortho positions of the N-aryl substituents. Phosphaamidinates, which combine a neutral phosphine donor and an anionic nitrogen donor in the same ligand, form multinuclear Cu(I) clusters unless the negative charge is valence-trapped on nitrogen, in which case the resulting dicopper precursor is unable to rearrange to a multinuclear cluster. Taken together, the results presented in this study provide design criteria for successful assembly of synthetic model clusters for the CuZ active site of N2OR, which should enable future insights into the chemical behavior of CuZ.
Collapse
Affiliation(s)
- Suresh C Rathnayaka
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Chia-Wei Hsu
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Brittany J Johnson
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Sarah J Iniguez
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
22
|
Rathnayaka SC, Islam SM, DiMucci IM, MacMillan SN, Lancaster KM, Mankad NP. Probing the electronic and mechanistic roles of the μ 4-sulfur atom in a synthetic Cu Z model system. Chem Sci 2020; 11:3441-3447. [PMID: 34745516 PMCID: PMC8515425 DOI: 10.1039/c9sc06251c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 01/09/2023] Open
Abstract
Nitrous oxide (N2O) contributes significantly to ozone layer depletion and is a potent greenhouse agent, motivating interest in the chemical details of biological N2O fixation by nitrous oxide reductase (N2OR) during bacterial denitrification. In this study, we report a combined experimental/computational study of a synthetic [4Cu:1S] cluster supported by N-donor ligands that can be considered the closest structural and functional mimic of the CuZ catalytic site in N2OR reported to date. Quantitative N2 measurements during synthetic N2O reduction were used to determine reaction stoichiometry, which in turn was used as the basis for density functional theory (DFT) modeling of hypothetical reaction intermediates. The mechanism for N2O reduction emerging from this computational modeling involves cooperative activation of N2O across a Cu/S cluster edge. Direct interaction of the μ4-S ligand with the N2O substrate during coordination and N-O bond cleavage represents an unconventional mechanistic paradigm to be considered for the chemistry of CuZ and related metal-sulfur clusters. Consistent with hypothetical participation of the μ4-S unit in two-electron reduction of N2O, Cu K-edge and S K-edge X-ray absorption spectroscopy (XAS) reveal a high degree of participation by the μ4-S in redox changes, with approximately 21% S 3p contribution to the redox-active molecular orbital in the highly covalent [4Cu:1S] core, compared to approximately 14% Cu 3d contribution per copper. The XAS data included in this study represent the first spectroscopic interrogation of multiple redox levels of a [4Cu:1S] cluster and show high fidelity to the biological CuZ site.
Collapse
Affiliation(s)
- Suresh C Rathnayaka
- Department of Chemistry, University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Ida M DiMucci
- Department of Chemistry & Chemical Biology, Cornell University, Baker Laboratory Ithaca NY 14853 USA
| | - Samantha N MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Baker Laboratory Ithaca NY 14853 USA
| | - Kyle M Lancaster
- Department of Chemistry & Chemical Biology, Cornell University, Baker Laboratory Ithaca NY 14853 USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| |
Collapse
|
23
|
Carreira C, Dos Santos MMC, Pauleta SR, Moura I. Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus - An electrochemical study. Bioelectrochemistry 2020; 133:107483. [PMID: 32120320 DOI: 10.1016/j.bioelechem.2020.107483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
Reduction of N2O to N2 is catalysed by nitrous oxide reductase in the last step of the denitrification pathway. This multicopper enzyme has an electron transferring centre, CuA, and a tetranuclear copper-sulfide catalytic centre, "CuZ", which exists as CuZ*(4Cu1S) or CuZ(4Cu2S). The redox behaviour of these metal centres in Marinobacter hydrocarbonoclasticus nitrous oxide reductase was investigated by potentiometry and for the first time by direct electrochemistry. The reduction potential of CuA and CuZ(4Cu2S) was estimated by potentiometry to be +275 ± 5 mV and +65 ± 5 mV vs SHE, respectively, at pH 7.6. A proton-coupled electron transfer mechanism governs CuZ(4Cu2S) reduction potential, due to the protonation/deprotonation of Lys397 with a pKox of 6.0 ± 0.1 and a pKred of 9.2 ± 0.1. The reduction potential of CuA, in enzyme samples with CuZ*(4Cu1S), is controlled by protonation of the coordinating histidine residues in a two-proton coupled electron transfer process. In the cyclic voltammograms, two redox pairs were identified corresponding to CuA and CuZ(4Cu2S), with no additional signals being detected that could be attributed to CuZ*(4Cu1S). However, an enhanced cathodic signal for the activated enzyme was observed under turnover conditions, which is explained by the binding of nitrous oxide to CuZ0(4Cu1S), an intermediate species in the catalytic cycle.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal. http://docentes.fct.unl.pt/srp/
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
24
|
Hsu C, Rathnayaka SC, Islam SM, MacMillan SN, Mankad NP. N
2
O Reductase Activity of a [Cu
4
S] Cluster in the 4Cu
I
Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chia‐Wei Hsu
- Department of ChemistryUniversity of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Suresh C. Rathnayaka
- Department of ChemistryUniversity of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Shahidul M. Islam
- Department of ChemistryUniversity of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical BiologyCornell University, Baker Laboratory Ithaca NY 14853 USA
| | - Neal P. Mankad
- Department of ChemistryUniversity of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| |
Collapse
|
25
|
Hsu CW, Rathnayaka SC, Islam SM, MacMillan SN, Mankad NP. N 2 O Reductase Activity of a [Cu 4 S] Cluster in the 4Cu I Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angew Chem Int Ed Engl 2019; 59:627-631. [PMID: 31661177 DOI: 10.1002/anie.201906327] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/26/2019] [Indexed: 12/26/2022]
Abstract
The model complex [Cu4 (μ4 -S)(dppa)4 ]2+ (1, dppa=μ2 -(Ph2 P)2 NH) has N2 O reductase activity in methanol solvent, mediating 2 H+ /2 e- reduction of N2 O to N2 +H2 O in the presence of an exogenous electron donor (CoCp2 ). A stoichiometric product with two deprotonated dppa ligands was characterized, indicating a key role of second-sphere N-H residues as proton donors during N2 O reduction. The activity of 1 towards N2 O was suppressed in solvents that are unable to provide hydrogen bonding to the second-sphere N-H groups. Structural and computational data indicate that second-sphere hydrogen bonding induces structural distortion of the [Cu4 S] active site, accessing a strained geometry with enhanced reactivity due to localization of electron density along a dicopper edge site. The behavior of 1 mimics aspects of the CuZ catalytic site of nitrous oxide reductase: activity in the 4CuI :1S redox state, use of a second-sphere proton donor, and reactivity dependence on both primary and secondary sphere effects.
Collapse
Affiliation(s)
- Chia-Wei Hsu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Suresh C Rathnayaka
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Samantha N MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14853, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| |
Collapse
|
26
|
Esmieu C, Orio M, Ménage S, Torelli S. Influence of Copper Coordination Spheres on Nitrous Oxide Reductase (N2Or) Activity of a Mixed-Valent Copper Complex Containing a {Cu2S} Core. Inorg Chem 2019; 58:11649-11655. [DOI: 10.1021/acs.inorgchem.9b01594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlène Esmieu
- CEA-DRF-BIG-LCBM-BioCE, Univ. Grenoble Alpes, CNRS UMR 5249, 17 rue des Martyrs, 38054 Grenoble, France
| | - Maylis Orio
- Institut des Sciences Moléculaires de Marseille, Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13097 Marseille, France
| | - Stéphane Ménage
- CEA-DRF-BIG-LCBM-BioCE, Univ. Grenoble Alpes, CNRS UMR 5249, 17 rue des Martyrs, 38054 Grenoble, France
| | - Stéphane Torelli
- CEA-DRF-BIG-LCBM-BioCE, Univ. Grenoble Alpes, CNRS UMR 5249, 17 rue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
27
|
|
28
|
Liu Y, Solari E, Scopelliti R, Fadaei Tirani F, Severin K. Lewis Acid-Mediated One-Electron Reduction of Nitrous Oxide. Chemistry 2018; 24:18809-18815. [PMID: 30426605 DOI: 10.1002/chem.201804709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 11/10/2022]
Abstract
The one-electron reduction of nitrous oxide (N2 O) was achieved using strong Lewis acids E(C6 F5 )3 (E=B or Al) in combination with metallocenes. In the case of B(C6 F5 )3 , electron transfer to N2 O required a powerful reducing agent such as Cp*2 Co (Cp*=pentamethylcyclopentadienyl). In the presence of Al(C6 F5 )3 , on the other hand, the reactions could be performed with weaker reducing agents such as Cp*2 Fe or Cp2 Fe (Cp=cyclopentadienyl). The Lewis acid-mediated electron transfer from the metallocene to N2 O resulted in cleavage of the N-O bond, generating N2 and the oxyl radical anion [OE(C6 F5 )3 ]⋅- . The latter is highly reactive and engages in C-H activation reactions. It was possible to trap the radical by addition of the Gomberg dimer, which acts as a source of the trityl radical.
Collapse
Affiliation(s)
- Yizhu Liu
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
29
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
30
|
Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ Microbiol 2018; 20:1623-1640. [DOI: 10.1111/1462-2920.14063] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Jan-Michael Blum
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Qingxian Su
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Yunjie Ma
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Carlos Domingo-Félez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Barth F. Smets
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| |
Collapse
|
31
|
Bagherzadeh S, Mankad NP. Oxidation of a [Cu 2S] complex by N 2O and CO 2: insights into a role of tetranuclearity in the Cu Z site of nitrous oxide reductase. Chem Commun (Camb) 2018; 54:1097-1100. [PMID: 29333559 PMCID: PMC5785442 DOI: 10.1039/c7cc09067f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of a [Cu2(μ-S)] complex by N2O or CO2 generated a [Cu2(μ-SO4)] product. In the presence of a sulfur trap, a [Cu2(μ-O)] species also formed from N2O. A [Cu2(μ-CS3)] species derived from CS2 modeled initial reaction intermediates. These observations indicate that one role of tetranuclearity in the CuZ catalytic site of nitrous oxide reductase is to protect the crucial S2- ligand from oxidation.
Collapse
Affiliation(s)
- Sharareh Bagherzadeh
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | | |
Collapse
|
32
|
Fukuda R, Sakai S, Takagi N, Matsui M, Ehara M, Hosokawa S, Tanaka T, Sakaki S. Mechanism of NO–CO reaction over highly dispersed cuprous oxide on γ-alumina catalyst using a metal–support interfacial site in the presence of oxygen: similarities to and differences from biological systems. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00080h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NO–CO reaction mechanism over the Cu/γ-Al2O3 catalyst was elucidated using DFT and a cluster model.
Collapse
Affiliation(s)
- Ryoichi Fukuda
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| | - Shogo Sakai
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| | - Nozomi Takagi
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| | - Masafuyu Matsui
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| | - Masahiro Ehara
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| | - Saburo Hosokawa
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| | - Tsunehiro Tanaka
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| | - Shigeyoshi Sakaki
- Center for the Promotion of Interdisciplinary Education and Research
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
| |
Collapse
|
33
|
Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chem Rev 2017; 118:2718-2768. [DOI: 10.1021/acs.chemrev.7b00344] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin E. R. Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max L. Bols
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Robert A. Schoonheydt
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bert F. Sels
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
34
|
The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification. J Inorg Biochem 2017; 177:423-434. [PMID: 28927704 DOI: 10.1016/j.jinorgbio.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023]
Abstract
The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species.
Collapse
|