1
|
Liu DY, Fang DC. Theoretical Study on the Mechanism of Ru(II)-Catalyzed Intermolecular [3 + 2] Annulation between o-Toluic Acid and 3,5-Bis(trifluoromethyl)benzaldehyde: Octahedral vs Trigonal Bipyramidal. J Org Chem 2024; 89:14061-14072. [PMID: 39312811 DOI: 10.1021/acs.joc.4c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Density functional theory was utilized to investigate the mechanism of Ru(II)-catalyzed aromatic C-H activation and addition of aromatic aldehydes. The proposed catalytic cycle consists of C-H bond activation, aldehyde carbonyl insertion for C-C coupling, lactonization for the formation of the final product, product separation, and catalyst recovery. Our calculations suggest that Ru(OAc)2(PCy3) (referred to as CAT) is the most favorable active catalyst, facilitating the C-H bond activation to form a five-membered ring cycloruthenium intermediate (INT2). Subsequently, the aromatic aldehyde reactant 2a enters the Ru coordination sphere, accelerating the C-C coupling and lactonization for the formation of the final product. The involvement of acetate assists in the final product separation, while INT1 re-enters the Ru coordination sphere to initiate a new catalytic cycle. Utilizing the energetic span model, the apparent activation free energy barrier was computed to be 34.3 kcal mol-1 at 443 K. Furthermore, exploration of the reaction mechanism in the absence of phosphine ligands identified Ru(OAc)2(p-cymene) as the most favorable active catalyst. The derived apparent activation free energy barrier offers a comprehensive explanation for the experimentally observed yields. Additionally, we have examined the disparities between the octahedral and trigonal bipyramidal structures of the catalysts concerning their effects on the reaction mechanisms and apparent activation free energy barriers.
Collapse
Affiliation(s)
- Dan-Yang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
3
|
Li W, Li CQ, Leng G, Yan YK, Ma Y, Xu Z, Yang L. Theoretical Investigation on Dialumenes toward Dihydrogen Activation: Mechanism and Ligand Effect. J Phys Chem A 2024; 128:3273-3284. [PMID: 38635947 DOI: 10.1021/acs.jpca.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, we report a computation study based on the density functional theory calculations to understand the mechanism and ligand effect of the base-stabilized dialumenes toward dihydrogen activation. Among all of the examined modes of dihydrogen activation using the base-stabilized dialumene, we found that the concerted 1,2-hydrogenation of the Al═Al double bond is kinetically more preferable. The concerted 1,2-hydrogenation of the Al═Al double bond adopts an electron-transfer model with certain asynchrony. That is, the initial electron donation from the H-H σ bonding orbital to the empty 3p orbital of the Al1 center is followed by the backdonation from the lone pair electron of the Al2 center to the H-H σ antibonding orbital. Combined with the energy decomposition analysis on the transition states of the concerted 1,2-hydrogenation of the Al═Al double bond and the topographic steric mapping analysis on the free dialumenes, we ascribe the higher reactivity of the aryl-substituted dialumene over the silyl-substituted analogue in dihydrogen activation to the stronger electron-withdrawing effect of the aryl group, which not only increases the flexibility of the Al═Al double bond but also enhances the Lewis acidity of the Al═Al core. Consequently, the aryl-substituted dialumene fragment suffers less geometric deformation, and the orbital interactions between the dialumene and dihydrogen moieties are more attractive during the 1,2-hydrogenation process. Moreover, our calculations also predict that the Al═Al double bond has a good tolerance with the stronger electron-withdrawing group (-CF3) and the weaker σ-donating N-heterocyclic carbene (NHC) analogue (e.g., triazol carbene and NHSi). The reactivity of the dialumene in dihydrogen activation can be further improved by introducing these groups as the supporting ligand and the stabilizing base on the Al═Al core, respectively.
Collapse
Affiliation(s)
- Weiyi Li
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Cai-Qin Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Geng Leng
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- TIianfu Co-Innovation Center, University of Electronic Science and Technology of China, Chengdu 610299, P. R. China
| | - Ying-Kun Yan
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Yueyue Ma
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Ziyan Xu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Lingsong Yang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, Sichuan 610039, P. R. China
| |
Collapse
|
4
|
Liu T, Meng Z, Zhou Y, Wang T, Lv K. Mechanistic Insights into the Ligand-Directed Divergent Synthesis of 2-Benzazepine Derivatives via Ni-Catalyzed Tunable Cyclization/Cross-Coupling: A DFT Study. Inorg Chem 2023; 62:17946-17953. [PMID: 37851378 DOI: 10.1021/acs.inorgchem.3c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The detailed mechanisms of Ni-catalyzed ligand-controlled cyclization/cross-coupling of o-bromobenzenesulfonyl acrylamide (1a) with trifluoromethyl alkene were investigated by DFT calculations. The computational results support a single-electron reduction of NiII precatalyst to give BrNiIL species, which would react with 1a via oxidative addition to afford the (Ar)NiIIILBr2 complex. The subsequent cyclizations did not proceed until (Ar)NiIIILBr2 was reduced to the key (Ar)NiIL complex. For the bpy-involving reaction, the subsequent steps include nucleophilic attack to the carbonyl carbon atom, N-C bond breaking, intramolecular migratory insertion, as well as concerted C-C cross-coupling and β-F elimination. While the ligand of terpyridine promotes the 7-endocyclization followed by stepwise migratory insertion and β-F elimination to afford 2-benzazepine 2,5-dione. For both reactions, a theoretical study implied that the most favorable mechanism involved a NiI-NiIII-NiI catalytic cycle. The origins of the chemoselectivity, coupled with the factors responsible, were addressed.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zitong Meng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yihang Zhou
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
| | - Teng Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Kang Lv
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
| |
Collapse
|
5
|
Li X, Wang X, Zhang J. Ruthenium-catalysed decarboxylative unsymmetric dual ortho-/ meta-C-H bond functionalization of arenecarboxylic acids. Chem Sci 2023; 14:5470-5476. [PMID: 37234909 PMCID: PMC10208063 DOI: 10.1039/d3sc01226c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we describe a ruthenium-catalysed decarboxylative unsymmetric ortho-C-H azaarylation/meta-C-H alkylation via a traceless directing group relay strategy. The installation of a 2-pyridyl functionality via carboxyl directed ortho-C-H activation is critical to promote decarboxylation and enable meta-C-H bond alkylation to streamline the synthesis of 4-azaaryl-benzo-fused five-membered heterocycles. This protocol is characterized by high regio- and chemoselectivity, broad substrate scopes, and good functional group tolerance under redox-neutral conditions.
Collapse
Affiliation(s)
- Xiankai Li
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| | - Xiaofei Wang
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University Wuhan Hubei Province 430072 China
| |
Collapse
|
6
|
Ling B, Wang S, Xie Y, Liu P, Jiang YY, Zhong W, Bi S. Mechanistic Insights Into the Rhodium-Catalyzed C-H Alkenylation/Directing Group Migration and [3+2] Annulation: A DFT Study. J Org Chem 2023; 88:4494-4503. [PMID: 36972416 DOI: 10.1021/acs.joc.2c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The mechanism of the rhodium-catalyzed C-H alkenylation/directing group migration and [3+2] annulation of N-aminocarbonylindoles with 1,3-diynes has been investigated with DFT calculations. On the basis of mechanistic studies, we mainly focus on the regioselectivity of 1,3-diyne inserting into the Rh-C bond and the N-aminocarbonyl directing group migration involved in the reactions. Our theoretical study uncovers that the directing group migration undergoes a stepwise β-N elimination and isocyanate reinsertion process. As studied in this work, this finding is also applicable to other relevant reactions. Additionally, the role of Na+ versus Cs+ involved in the [3+2] cyclization reaction is also probed.
Collapse
Affiliation(s)
- Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Shuangjie Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuxin Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Wenhui Zhong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
7
|
Sun T, Zhang J, Fang Y, Zhou Y, Cao H, Luo G, Cao ZC. Enantioselective Alkylation of Unactivated C–O Bond: Solvent Molecule Affects Competing β-H Elimination and Reductive Elimination Dynamics. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Tingting Sun
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jintong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yijun Fang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yu Zhou
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Gen Luo
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zhi-Chao Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
8
|
Computational Exploration of Dirhodium Complex-Catalyzed Selective Intermolecular Amination of Tertiary vs. Benzylic C-H Bonds. Molecules 2023; 28:molecules28041928. [PMID: 36838915 PMCID: PMC9959850 DOI: 10.3390/molecules28041928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The mechanism and origins of site-selectivity of Rh2(S-tfpttl)4-catalyzed C(sp3)-H bond aminations were studied using density functional theory (DFT) calculations. The synergistic combination of the dirhodium complex Rh2(S-tfpttl)4 with tert-butylphenol sulfamate TBPhsNH2 composes a pocket that can access both tertiary and benzylic C-H bonds. The nonactivated tertiary C-H bond was selectively aminated in the presence of an electronically activated benzylic C-H bond. Both singlet and triplet energy surfaces were investigated in this study. The computational results suggest that the triplet stepwise pathway is more favorable than the singlet concerted pathway. In the hydrogen atom abstraction by Rh-nitrene species, which is the rate- and site-selectivity-determining step, there is an attractive π-π stacking interaction between the phenyl group of the substrate and the phthalimido group of the ligand in the tertiary C-H activation transition structure. By contrast, such attractive interaction is absent in the benzylic C-H amination transition structure. Therefore, the DFT computational results clearly demonstrate how the synergistic combination of the dirhodium complex with sulfamate overrides the intrinsic preference for benzylic C-H amination to achieve the amination of the nonactivated tertiary C-H bond.
Collapse
|
9
|
Lee K, Harper JL, Kim TH, Chan Noh H, Kim D, Ha-Yeon Cheong P, Lee PH. Regiodivergent metal-catalyzed B(4)- and C(1)-selenylation of o-carboranes. Chem Sci 2023; 14:643-649. [PMID: 36741533 PMCID: PMC9847680 DOI: 10.1039/d2sc05590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Regiodivergent transition metal-catalyzed B(4)- and C(1)-selenylation reactions of o-carboranes have been demonstrated. Namely, Ru(ii)-catalysis selectively generated B(4)-selenylated o-carboranes from the reaction of o-carborane acids with arylselenyl bromides with the release of carbon dioxide. In contrast, Pd(ii) catalysis provided exclusively C(1)-selenylated o-carboranes from the decarboxylative reaction of o-carborane acids with diaryl diselenides. In contrast to previous milestones in this area, these reactions demonstrate broad substrate scope with excellent yields. Combination of these methods leads to the formation of B(4)-C(1)-diselenylated o-carboranes. DFT studies revealed the mechanism of the Ru-process, with initial selenylation of the carborane cluster discovered to be essential for an energetically reasonable decarboxylation. This results in selenylation on the B(4) position prior to the decarboxylation event at C(1). This contrasted with the Pd-process in which the ready decarboxylation at C(1) leads to selenylation at C(1).
Collapse
Affiliation(s)
- Kyungsup Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Jordan L Harper
- Department of Chemistry, Oregon State University Corvallis Oregon 97331 USA
| | - Tae Hyeon Kim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | | | - Phil Ho Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
10
|
Jia X, Wang Q, Huang F, Liu J, Wang W, Yang C, Sun C, Chen D. Cation Bridge Mediating Homo- and Cross-Coupling in Copper-Catalyzed Reductive Coupling of Benzaldehyde and Benzophenone. Inorg Chem 2022; 61:18033-18043. [DOI: 10.1021/acs.inorgchem.2c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinhua Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Chong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
11
|
Zhang W, Hu J, Bi S, Ling B, Yuan XA, Jiang YY. Insights into α-Alkynylation and α-Allenylation of Aldehydes under the Synergisitic Catalysis of Gold/Amine: A DFT Study. J Org Chem 2022; 87:13102-13110. [DOI: 10.1021/acs.joc.2c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wanying Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Jingjing Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
12
|
Zhang L, Wang LL, Fang DC. DFT Case Study on the Comparison of Ruthenium-Catalyzed C-H Allylation, C-H Alkenylation, and Hydroarylation. ACS OMEGA 2022; 7:6133-6141. [PMID: 35224376 PMCID: PMC8867598 DOI: 10.1021/acsomega.1c06584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Density functional calculations at the B3LYP-D3+IDSCRF/TZP-DKH(-dfg) level of theory have been performed to understand the mechanism of ruthenium-catalyzed C-H allylation reported in the literature in depth. The plausible pathway consisted of four sequential processes, including C-H activation, migratory insertion, amide extrusion, and recovery of the catalyst, in which C-H activation was identified as the rate-determining step. The amide extrusion step could be promoted kinetically by trifluoroacetic acid since its mediation lowered the free-energy barrier from 32.1 to 12.2 kcal/mol. Additional calculations have been performed to explore other common pathways between arenes and alkenes, such as C-H alkenylation and hydroarylation. A comparison of the amide extrusion and β-H elimination steps established the following reactivity sequence of the leaving groups: protonated amide group > β-H group > unprotonated amide group. The suppression of hydroarylation was attributed to the sluggishness of the Ru-C protonation step as compared to the amide extrusion step. This study can unveil factors favoring the C-H allylation reaction.
Collapse
Affiliation(s)
- Lei Zhang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Ling-Ling Wang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - De-Cai Fang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
13
|
Li B, Xu H, Dang Y, Houk KN. Dispersion and Steric Effects on Enantio-/Diastereoselectivities in Synergistic Dual Transition-Metal Catalysis. J Am Chem Soc 2022; 144:1971-1985. [DOI: 10.1021/jacs.1c12664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Liu J, Liu D, Nie W, Yu H, Shi J. A mechanistic study on the regioselective Ni-catalyzed methylation–alkenylation of alkyne with AlMe 3 and allylic alcohol. Org Chem Front 2022. [DOI: 10.1039/d1qo01580j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The recently reported Ni-catalyzed methylation–allylation of alkynes with allylic alcohols and AlMe3 reagents delivers valuable tetrasubstituted alkene units in a highly regioselective fashion.
Collapse
Affiliation(s)
- Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Deguang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haizhu Yu
- Department of Chemistry, Anhui University, Hefei, Anhui 230026, China
| | - Jing Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Liu H, Shi H, Han P, Meng Z, Liu T, Han LL. The annulation of N-hydroxyoximes and 1,3-diyne to synthesize alkynylated isoquinolines regioselectively catalyzed by ruthenium: a theoretical study. Org Biomol Chem 2022; 20:7294-7301. [DOI: 10.1039/d2ob01215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms of the regioselective annulation of N-hydroxyoximes and 1,3-diyne to synthesize alkynylated isoquinolines by using catalyst [RuCl2(p-cymene)]2 have been theoretically investigated with the aid of density functional theory (DFT)...
Collapse
|
16
|
Yang J, Kong D, Wu H, Shen Z, Zou H, Zhao W, Huang G. Palladium-Catalyzed Regio- and Chemoselective Double-Alkoxycarbonylation of 1,3-Diynes: A Computational Study. Org Chem Front 2022. [DOI: 10.1039/d2qo00122e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The palladium-catalyzed double-alkoxycarbonylation of 1,3-diynes provides an efficient approach for the selective synthesis of 1,2,3,4-tetrasubstituted conjugated dienes. In this report, density functional theory calculations have been performed to elucidate the...
Collapse
|
17
|
Wu ZH, Fang DC. DFT study on ruthenium-catalyzed N-methylbenzamide-directed 1,4-addition of the ortho C–H bond to maleimide via C–H/C–C activation. Org Chem Front 2022. [DOI: 10.1039/d2qo01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
B3LYP-D3a+IDSCRF/tzp-dkh(-dfg) calculations indicate that CO as a directing group is much more favourable than the N–H group, and the real active catalyst is an ionic type with one [SbF6]− group.
Collapse
Affiliation(s)
- Zi-Hao Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Shao Y, Nie W, Yao C, Ye L, Yu H. DFT insights into the Ni-catalyzed regioselective hydrocarboxylation of unsaturated alkenes with CO 2. Dalton Trans 2021; 50:15084-15093. [PMID: 34610067 DOI: 10.1039/d1dt02486h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nickel-catalyzed hydrocarboxylation of alkenes using carbon dioxide has recently become an appealing method to prepare functionalized carboxylic acids with high efficiency and regioselectivity. Herein, density functional theory (DFT) calculations were conducted on the Ni-catalyzed hydrocarboxylation of aryl-/alkyl-substituted alkenes with CO2. The α- and β-carboxylation of aromatic and aliphatic olefins originate from distinct catalytic cycles: H-transfer-carboxylation and carboxylation-H-transfer pathways. The typical hydrometallation-carboxylation mechanism is unlikely because water/carbonic acid (H-resource) are inferior hydride donors.
Collapse
Affiliation(s)
- Yifan Shao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Wan Nie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chengyu Yao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Lina Ye
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China. .,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
19
|
Yang J, Zhang Y, Zhu R, Xue Y. Insight into the Mechanism and Regioselectivity of Pd(OAc) 2-Catalyzed C-O Bond Activation via a β-O Elimination Approach: A Computational Study. J Phys Chem A 2021; 125:9267-9278. [PMID: 34661409 DOI: 10.1021/acs.jpca.1c05412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The density functional theory investigations were carried out to elucidate the mechanism and the origin of regioselectivity for the Pd(OAc)2-catalyzed carbon-oxygen bond activation in the reaction between 4-phenoxy-N-(quinolin-8-yl) butanamide and N-methylindole. The reaction proceeded through four main stages in succession: C-H activation, β-O elimination, nucleo-palladation of the new C-C bond formation, and proto-depalladation steps. A total of six pathways were considered since there were two possible forms of C-O bond breaking in the β-O elimination step and six reaction channels of nucleophilic attack in the crucial nucleo-palladation step. The computational results indicate that the common first step (C-H bond activation step) occurs via a concerted metalation deprotonation (CMD) mechanism. The nucleo-palladation was the rate-determining step for all six reaction pathways. The results also show that the most favorable pathway for the whole reaction is the one (denoted as path b1) in which phenol was removed in the second stage and the hydrogen atom of N-methylindole attacked the oxygen atom of acetate group of the intermediate in the third stage. According to the analyses of noncovalent interaction (NCI) and the reduced density gradient (RDG), the most favored pathway benefits from the strong attractive interaction and weak repulsive interaction in its key transition state. Furthermore, structural, natural bond orbital charge, and energy analyses of the transition states reveal the origin of the regioselectivity. This is a good explanation of the experimental phenomenon and benefits future design of a new strategy for a similar reaction.
Collapse
Affiliation(s)
- Junxia Yang
- College of Chemistry, Key Lab of Green Chemistry and Technology in the Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yan Zhang
- College of Chemistry, Key Lab of Green Chemistry and Technology in the Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ruyu Zhu
- College of Chemistry, Key Lab of Green Chemistry and Technology in the Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in the Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
20
|
Liu P, Hu B, Li Y, Ji GC, Ma MY, Bi S, Jiang YY. Double-Regiodetermining-Stages Mechanistic Model Explaining the Regioselectivity of Pd-Catalyzed Hydroaminocarbonylation of Alkenes with Carbon Monoxide and Ammonium Chloride. J Org Chem 2021; 86:12988-13000. [PMID: 34459187 DOI: 10.1021/acs.joc.1c01672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pd-catalyzed hydroaminocarbonylation (HAC) of alkenes with CO and NH4Cl enables atom-economic and regiodivergent synthesis of primary amides, but the origin of regioselectivity was incorrectly interpreted in previous computational studies. A density functional theory study was performed herein to investigate the mechanism. Different from the previous proposals, both alkene insertion and aminolysis were found to be potential regioselectivity-determining stages. In the alkene insertion stage, 2,1-insertion is generally faster than 1,2-insertion irrespective of neutral or cationic pathways for both P(tBu)3 and xantphos. Such selectivity results from the unconventional proton-like hydrogen of the Pd-H bond in alkene insertion transition states. For less bulky alkenes, aminolysis with P(tBu)3 shows low selectivity, while linear selectivity dominates in this stage with xantphos due to a stronger repulsion between xantphos and branched acyl ligands. It was further revealed that the less-mentioned CO concentration and solvents also influence the regioselectivity by adjusting the relative feasibilities of CO-involved steps and NH3 release from ammonium chloride, respectively. The presented double-regiodetermining-stages mechanistic model associated with the effects of ligands, CO concentration, and solvents well reproduced the experimental selectivity to prove its validity and illuminated new perspectives for the regioselectivity control of HAC reactions.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Bing Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Yu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Guo-Cui Ji
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Ming-Yu Ma
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| |
Collapse
|
21
|
Origins of catalyst-controlled enantiodivergent hydroamination of enones with pyridazinones: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Liu T, Han L, Zhang J, Lu G. Multiple Reaction Pathways of Eight-Membered Rhodacycles in Rh-Catalyzed Annulations of 2-Alkenyl Phenols/Anilides with Alkynes. J Org Chem 2021; 86:10484-10491. [PMID: 34313437 DOI: 10.1021/acs.joc.1c01143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Density functional theory calculations were performed to study the competing pathways of rhodacycle intermediates generated in Rh(III)-catalyzed annulations of 2-alkenyl phenols and 2-alkenyl anilides with alkynes. The results show that the multiple pathways of eight-membered rhodacycles can be subtly tuned to give specific cyclic products. The seven-membered oxacyclic and spirocyclic products from 2-alkenyl phenols are formed by favoring the pathway of dissociating the Rh-O bond of O-contained rhodacycles, which are followed by antarafacial nucleophilic attack. The indoline product from 2-alkenyl anilides is generated through the pathway of intramolecular olefin migratory insertion of the N-contained rhodacycle.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Lingli Han
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Jing Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
23
|
Mechanism and selectivity on IrIII/RhIII-catalyzed coupling of terminal alkenes and dioxazolones: A DFT study. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Zhou J, Li ZH, Pan JL, Chen C, Ma XF, He Y, Ding TM, Zhang SY. DFT and experimental studies on Rh(III)-catalyzed dual directing-groups-assisted [3+2] annulation and ring-opening of N‑aryloxyacetamides with 1-(phenylethynyl)cycloalkanol. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Liu S, Zhu L, Zhang T, Zhong K, Li SJ, Bai R, Lan Y. How Solvents Control the Chemoselectivity in Rh-Catalyzed Defluorinated [4 + 1] Annulation. Org Lett 2021; 23:1489-1494. [PMID: 33565315 DOI: 10.1021/acs.orglett.1c00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory calculations have been performed to reveal the chemoselectivity of Rh-catalyzed chiral C-F cleavage and γ-site functionalization. We found that the chemoselectivity is controlled by β-F elimination in methanol solvent, leading to formation of the alkynylic product. In isobutyronitrile solvent, the chemoselectivity is controlled by the allene insertion step, where the fluoroalkenylic product can be observed. The difference can be explained by analysis of the explicit solvent models.
Collapse
Affiliation(s)
- Shihan Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.,Green Catalysis Center and College of Chemistry Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
26
|
Xing YK, Chen XR, Yang QL, Zhang SQ, Guo HM, Hong X, Mei TS. Divergent rhodium-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes. Nat Commun 2021; 12:930. [PMID: 33568643 PMCID: PMC7876044 DOI: 10.1038/s41467-021-21190-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
α-Pyridones and α-pyrones are ubiquitous structural motifs found in natural products and biologically active small molecules. Here, we report an Rh-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes, affording cyclic products in good to excellent yield. Divergent syntheses of α-pyridones and cyclic imidates are accomplished by employing N-phenyl acrylamides and N-tosyl acrylamides as substrates, respectively. Additionally, excellent regioselectivities are achieved when using unsymmetrical alkynes. This electrochemical process is environmentally benign compared to traditional transition metal-catalyzed C-H annulations because it avoids the use of stoichiometric metal oxidants. DFT calculations elucidated the reaction mechanism and origins of substituent-controlled chemoselectivity. The sequential C-H activation and alkyne insertion under rhodium catalysis leads to the seven-membered ring vinyl-rhodium intermediate. This intermediate undergoes either the classic neutral concerted reductive elimination to produce α-pyridones, or the ionic stepwise pathway to produce cyclic imidates.
Collapse
Affiliation(s)
- Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
RETRACTED ARTICLE: The amine-catalysed Suzuki–Miyaura-type coupling of aryl halides and arylboronic acids. Nat Catal 2021. [DOI: 10.1038/s41929-020-00564-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Li X, Ren X, Wu H, Zhao W, Tang X, Huang G. Mechanism and selectivity of copper-catalyzed borocyanation of 1-aryl-1,3-butadienes: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Bian JH, Tong WY, Pitsch CE, Wu YB, Wang X. Mechanism of nickel-catalyzed direct carbonyl-Heck coupling reaction: the crucial role of second-sphere interactions. Dalton Trans 2021; 50:2654-2662. [PMID: 33527940 DOI: 10.1039/d0dt04121a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present a detailed DFT mechanistic study on the first Ni-catalyzed direct carbonyl-Heck coupling of aryl triflates and aldehydes to afford ketones. The precatalyst Ni(COD)2 is activated with the phosphine (phos) ligand, followed by coordination of the substrate PhOTf, to form [Ni(phos)(PhOTf)] for intramolecular PhOTf to Ni(0) oxidative addition. The ensuing phenyl-Ni(ii) triflate complex substitutes benzaldehyde for triflate by an interchange mechanism, leaving the triflate anion in the second coordination sphere held by Coulomb attraction. The Ni(ii) complex cation undergoes benzaldehyde C[double bond, length as m-dash]O insertion into the Ni-Ph bond, followed by β-hydride elimination, to produce Ni(ii)-bound benzophenone, which is released by interchange with triflate. The resulting neutral Ni(ii) hydride complex leads to regeneration of the active catalyst following base-mediated deprotonation/reduction. The benzaldehyde C[double bond, length as m-dash]O insertion is the rate-determining step. The triflate anion, while remaining in the second sphere, engages in electrostatic interactions with the first sphere, thereby stabilizing the intermediate/transition state and enabling the desired reactivity. This is the first time that such second-sphere interaction and its impact on cross-coupling reactivity has been elucidated. The new insights gained from this study can help better understand and improve Heck-type reactions.
Collapse
Affiliation(s)
- Jian-Hong Bian
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Wen-Yan Tong
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Chloe E Pitsch
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado 80217-3364, USA.
| | - Yan-Bo Wu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China and Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado 80217-3364, USA.
| |
Collapse
|
30
|
Shi Y, Wu H, Huang G. Rhodium( i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Org Chem Front 2021. [DOI: 10.1039/d1qo00370d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DFT calculations were performed to investigate the rhodium(i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates.
Collapse
Affiliation(s)
- Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
31
|
Ouyang L, Lin Z, Li S, Chen B, Liu J, Shi WJ, Zheng L. Synthesis of functionalized diarylbenzofurans via Ru-catalyzed C–H activation and cyclization under air: rapid access to the polycyclic scaffold of diptoindonesin G. Org Chem Front 2021. [DOI: 10.1039/d1qo01242h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method was developed for rapid assembly of 2,3-diarylbenzofuran-4-carboxylic acids from m-hydroxybenzoic acids and alkynes via Ru-catalyzed C–H alkenylation and cyclization, which was successfully applied for total synthesis of diptoindonesin G.
Collapse
Affiliation(s)
- Lufeng Ouyang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhigeng Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shiqi Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Baoyin Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
32
|
Pei G, Chen H, Xu W, Chen T, Li J. Diboron-controlled product selectivity switch in copper-catalyzed decarboxylative substitutions of alkynyl cyclic carbonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01411k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DFT calculations were performed to explore the mechanisms, origins of diboron-controlled divergent product selectivity and stereoselectivity in the copper-catalyzed decarboxylative substitution of alkynyl cyclic carbonates.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hui Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wan Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Juan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
33
|
Mechanism of Rh(III)-catalyzed alkylation of N-pyrimidylindoline with cyclopropanols: A DFT study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Rani G, Luxami V, Paul K. Traceless directing groups: a novel strategy in regiodivergent C-H functionalization. Chem Commun (Camb) 2020; 56:12479-12521. [PMID: 32985634 DOI: 10.1039/d0cc04863a] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of functional groups as internal ligands for assisting C-H functionalization, termed the chelation assisted strategy, is emerging as one of the most powerful tools for construction of C-C and C-X bonds from inert C-H bonds. However, there are various directing groups which cannot be either removed after functionalization or require some additional steps or reagents for their removal, thereby limiting the scope of structural diversity of the products, and the step and atom economy of the system. These limitations are overcome by the use of the traceless directing group (TDG) strategy wherein functionalization of the substrate and removal of the directing group can be carried out in a one pot fashion. Traceless directing groups serve as the most ideal chelation assisted strategy with a high degree of reactivity and selectivity without any requirement for additional steps for their removal. The present review overviews the use of various functional groups such as carboxylic acids, aldehydes, N-oxides, nitrones, N-nitroso amines, amides, sulfoxonium ylides and silicon tethered directing groups for assisting transition metal catalyzed C-H functionalization reactions in the last decade.
Collapse
Affiliation(s)
- Geetika Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | | | | |
Collapse
|
35
|
Zhang M, Zhang J, Teng Z, Chen J, Xia Y. Ruthenium(II)-Catalyzed Homocoupling of α-Carbonyl Sulfoxonium Ylides Under Mild Conditions: Methodology Development and Mechanistic DFT Study. Front Chem 2020; 8:648. [PMID: 33195001 PMCID: PMC7525066 DOI: 10.3389/fchem.2020.00648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
A mild ruthenium(II)-catalyzed homocoupling of α-carbonyl sulfoxonium ylides was developed and the detailed mechanism was understood based on DFT calculations in the current report. The catalytic system utilizes the α-carbonyl sulfoxonium ylide as both the directing group for ortho-sp2 C-H activation and the acylmethylating reagent for C-C coupling. Various substituents are compatible in the transformation and a variety of isocoumarin derivatives were synthesized at room temperature without any protection. The theoretical results disclosed that the full catalytic cycle contains eight elementary steps, and in all the cationic Ru(II) monomer is involved as the catalytic active species. The acid additive is responsible for protonation of the ylide carbon prior to the intramolecular nucleophilic addition and C-C bond cleavage. Interestingly, the intermediacy of free acylmethylation intermediate or its enol isomer is not necessary for the transformation.
Collapse
Affiliation(s)
- Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Jinrong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhenfang Teng
- Information Technology Center, Wenzhou University, Wenzhou, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
36
|
De Palo A, Zacchini S, Pampaloni G, Marchetti F. Construction of a Functionalized Selenophene‐Allylidene Ligand via Alkyne Double Action at a Diiron Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alice De Palo
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
37
|
Wu J, Qian B, Liu Y, Shang Y. Ruthenium(II)‐Catalyzed C‐H Annulation of Aromatic Acids with Alkynes Using Air as the Sole Oxidant in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202003022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Baiyang Qian
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Yanfei Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| |
Collapse
|
38
|
Qiao Y, Xiao Y, Zhao M, Li X, Chang J. Mechanisms and origin of regioselectivity on N-heterocyclic carbene-catalyzed [3+2]/[4+2] annulations of C60 with α,β-unsaturated aldehydes. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Shen B, Liu S, Zhu L, Zhong K, Liu F, Chen H, Bai R, Lan Y. σ-Bond Migration Assisted Decarboxylative Activation of Vinylene Carbonate in Rh-Catalyzed 4 + 2 Annulation: A Theoretical Study. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Boming Shen
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Song Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Fenru Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, People’s Republic of China
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
40
|
Zhang K, Khan R, Chen J, Zhang X, Gao Y, Zhou Y, Li K, Tian Y, Fan B. Directing-Group-Controlled Ring-Opening Addition and Hydroarylation of Oxa/azabenzonorbornadienes with Arenes via C–H Activation. Org Lett 2020; 22:3339-3344. [DOI: 10.1021/acs.orglett.0c00765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Keyang Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Yang Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Yongyun Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
- School of Chemistry and Environment, Institution Yunnan Minzu University, Yuehua Street, Kunming, 650500, China
| | - Kangkui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Youxian Tian
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
- School of Chemistry and Environment, Institution Yunnan Minzu University, Yuehua Street, Kunming, 650500, China
| |
Collapse
|
41
|
Zhang J, Zhang Q, Zhu Z, Wang B. Theoretical investigation on the palladium-catalyzed selective formation of spirocyclenes from dienallenes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Chen X, Zhou XY. Decarboxylation of indole-3-carboxylic acids under metal-free conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1703137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
43
|
Grimblat N, Sarotti AM. Looking at the big picture in activation strain model/energy decomposition analysis: the case of the ortho-para regioselectivity rule in Diels-Alder reactions. Org Biomol Chem 2020; 18:1104-1111. [PMID: 31950965 DOI: 10.1039/c9ob02671a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regioselectivity of the Diels-Alder reaction is predicted by the ortho-para rule which has been explained from FMO theory. Using DFT calculations, the activation-strain model and energy decomposition analysis we studied the reaction of methyl acrylate with four unsymmetrical dienes. We found that if the analysis is carried out considering the TS structures, the selectivity would not be explained by the interaction energy as expected considering the FMO arguments. However, a thorough analysis along the reaction path revealed that the interaction energy is responsible for the regioselectivity. A deeper analysis with the EDA model showed that the decisive term that accounts for the HOMO-LUMO interactions favors the ortho and para paths, as predicted by FMO arguments.
Collapse
Affiliation(s)
- Nicolás Grimblat
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas. Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
44
|
Chen X, Wang Q, Shen H, Li G, Yang YF, She YB. Mechanism and stereoselectivity of benzylic C-H hydroxylation by Ru-porphyrin: a computational study. Org Biomol Chem 2020; 18:346-352. [PMID: 31845954 DOI: 10.1039/c9ob02415h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanism and origin of the stereoselectivity of asymmetric benzylic C-H hydroxylation by Ru-porphyrin were elucidated with density functional theory calculations. The reaction proceeds via a hydrogen-atom abstraction/oxygen-rebound pathway, wherein a high-valent ruthenium-oxo species abstracts a hydrogen atom from ethylbenzene to generate a radical pair intermediate, followed by the oxygen-rebound process to form 1-phenylethanol. The hydrogen-atom abstraction step is the rate- and stereoselectivity-determining step. Based on the mechanistic model, the computed stereoselectivity is in agreement with the experimental observations. Analysis of the distortion/interaction model suggests that stereoselectivity is determined by both the distortion energy of the ethylbenzene and the interaction energy between the ethylbenzene and the chiral Ru-porphyrin. The steric repulsion between the phenyl group of ethylbenzene and the bulky substituent of Ru-porphyrin is the leading cause of chiral induction.
Collapse
Affiliation(s)
- Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | | | | | | | | | | |
Collapse
|
45
|
Liu S, Liu J, Wang Q, Wang J, Huang F, Wang W, Sun C, Chen D. The origin of regioselectivity in Cu-catalyzed hydrocarbonylative coupling of alkynes with alkyl halides. Org Chem Front 2020. [DOI: 10.1039/d0qo00214c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Steric interactions mediate a switch between a ketone and allylic alcohol in Cu-catalyzed hydrocarbonylative coupling of alkynes with alkyl halides.
Collapse
Affiliation(s)
- Shengnan Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Jianbiao Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Qiong Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Jin Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Fang Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Wenjuan Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Chuanzhi Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Dezhan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| |
Collapse
|
46
|
Wu Z, Zhang M, Shi Y, Huang G. Mechanism and origins of stereo- and enantioselectivities of palladium-catalyzed hydroamination of racemic internal allenes via dynamic kinetic resolution: a computational study. Org Chem Front 2020. [DOI: 10.1039/d0qo00174k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DFT calculations were performed to investigate the Pd-catalyzed hydroamination of racemic internal allenes with pyrazoles.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Mei Zhang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
47
|
D'Alterio MC, Yuan YC, Bruneau C, Talarico G, Gramage-Doria R, Poater A. Base-controlled product switch in the ruthenium-catalyzed protodecarbonylation of phthalimides: a mechanistic study. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02047k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism of the ruthenium-catalyzed protodecarbonylation of phthalimides into benzamides elucidated by experiments and calculations: the various roles of the bases responsible for the control of chemoselectivity.
Collapse
Affiliation(s)
- Massimo Christian D'Alterio
- Institut de Quimica Computacional i Catalisi and
- Departament de Quimica
- Universitat de Girona
- 17003 Girona
- Spain
| | | | | | - Giovanni Talarico
- Dipartimento di Scienze Chimiche
- Universita di Napoli Federico II
- I-80126 Napoli
- Italy
| | | | - Albert Poater
- Institut de Quimica Computacional i Catalisi and
- Departament de Quimica
- Universitat de Girona
- 17003 Girona
- Spain
| |
Collapse
|
48
|
Wang X, Zhang Y, Yang Y, Xue Y. The mechanism and diastereoselectivity in the formation of trifluoromethyl-containing spiro[pyrrolidin-3,2′-oxindole] by a catalyst-free and mutually activated [3+2]-cycloaddition reaction: a theoretical study. NEW J CHEM 2020. [DOI: 10.1039/d0nj04063k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanism and diastereoselectivity of the [3+2] cycloaddition reaction between (Z)-1-methyl-3-imino-indolin-2-one and 5-nitro-2-vinylpyridine with no catalyst in acetonitrile have been investigated by the DFT method and SMD solvation model.
Collapse
Affiliation(s)
- Xingyu Wang
- College of Chemistry
- Key Lab of Green Chemistry and Technology in Ministry of Education
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Yan Zhang
- College of Chemistry
- Key Lab of Green Chemistry and Technology in Ministry of Education
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Yongsheng Yang
- College of Chemistry
- Key Lab of Green Chemistry and Technology in Ministry of Education
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Ying Xue
- College of Chemistry
- Key Lab of Green Chemistry and Technology in Ministry of Education
- Sichuan University
- Chengdu 610064
- People's Republic of China
| |
Collapse
|
49
|
Nie W, Shao Y, Ahlquist MSG, Yu H, Fu Y. Mechanistic study on the regioselective Ni-catalyzed dicarboxylation of 1,3-dienes with CO2. Org Chem Front 2020. [DOI: 10.1039/d0qo01173h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DFT calculations revealed a new CO2 insertion mode different from conventional mechanisms in the Ni-catalyzed dicarboxylation of 1,3-dienes.
Collapse
Affiliation(s)
- Wan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Yifan Shao
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Provence Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei 230601
| | - Mårten S. G. Ahlquist
- Department of Theoretical Chemistry & Biology
- School of Engineering Sciences in Chemistry Biotechnology and Health
- KTH Royal Institute of Technology
- Stockholm 10691
- Sweden
| | - Haizhu Yu
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Provence Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei 230601
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| |
Collapse
|
50
|
Liu SC, Li X, Li SJ, Wei D. Insight into Isothiourea-Catalyzed Enantioselective Addition of Saturated Esters to Iminium Ions. Chem Asian J 2019; 14:4322-4327. [PMID: 31646734 DOI: 10.1002/asia.201901163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Indexed: 01/04/2023]
Abstract
The possible mechanisms and origin of the selectivities of isothiourea-catalyzed addition of saturated esters to iminium ions have been investigated by density functional theory. The favorable reaction pathway includes three stages: formation of an ammonium enolate intermediate, enantioselective addition of the ammonium enolate intermediate to the iminium ion, and dissociation of the catalyst to form the product. The enantioselective addition process is the stereoselectivity-determining step, while the chemoselectivity-determining step is included in the formation of the final product. The calculated energy barriers show that the chemoselectivity is thermodynamically controlled, and it depends on the polarities of the products and the nucleophilicities of the N atoms of the enamine reactant moieties of the intermediates. The origin of the stereoselectivity was investigated by non-covalent interaction analysis of the key transition states. Hydrogen bonding interactions were identified as the determining factor for controlling the stereoselectivity. The obtained insight will be valuable for rational design of novel Lewis base organocatalyst-promoted enantioselective addition reactions with special chemoselectivities.
Collapse
Affiliation(s)
- Si-Cong Liu
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xue Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China
| | - Shi-Jun Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China
| |
Collapse
|