1
|
Zou H, Zhao S, Wu Q, Chu B, Zhou L. One-Pot Synthesis, Circularly Polarized Luminescence, and Controlled Self-Assembly of Janus-Type Miktoarm Star Copolymers. ACS Macro Lett 2024:227-233. [PMID: 38300520 DOI: 10.1021/acsmacrolett.3c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
With the aim of broadening the scope of Janus-type polymers with new functionalities, Janus-type miktoarm star copolymers comprising helical poly(phenyl isocyanide) (PPI) and a vinyl polymer were designed and synthesized via a combination of Pd(II)-initiated isocyanide polymerization and atom transfer radical polymerization (ATRP). A functional β-cyclodextrin bearing 7 Pd(II) complexes at one side and 14 bromine groups at the other side ((Pd(II))7-CD-(Br)14) was prepared and used as an initiator for the one-pot polymerization of phenyl isocyanide and the ATRP of vinyl monomers in a living and controlled manner. A variety of Janus-type copolymers with different structures and tunable compositions were facilely obtained by using this method. Thus, Janus-type copolymers composed of helical PPIs and tetraphenylethylene-modified vinyl polymers exhibited a significant circularly polarized luminescence performance in both soluble and aggregated states. Meanwhile, Janus-type copolymers containing PPIs and hydrophilic vinyl polymers presented amphiphilicity and self-assembled into diverse morphologies.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Shuyang Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Qiliang Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 23200 Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| |
Collapse
|
2
|
Moulin E, Carmona-Vargas CC, Giuseppone N. Daisy chain architectures: from discrete molecular entities to polymer materials. Chem Soc Rev 2023; 52:7333-7358. [PMID: 37850236 DOI: 10.1039/d3cs00619k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Daisy chain architectures, made by the self-complementary threading of an axle covalently linked to a macrocycle, represent a particularly intriguing family of supramolecular and mechanically interlocked (macro)molecules. In this review, we discuss their recent history, their modular chemical structures, and the various synthetic strategies to access them. We also detail how their internal sliding motions can be controlled and how their integration within polymers can amplify that motions up to the macroscopic scale. This overview of the literature demonstrates that the peculiar structure and dynamics of daisy chains have already strongly influenced the research on artificial molecular machines, with the potential to be implemented from nanometric switchable devices to mechanically active soft-matter materials.
Collapse
Affiliation(s)
- Emilie Moulin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
| | - Christian C Carmona-Vargas
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
- Institut Universitaire de France (IUF), France
| |
Collapse
|
3
|
Mu B, Wang L, Yang Z, Luo X, Tian W. Topological transformation across different dimensions of supramolecular polymer via photo-isomerization. Chem Commun (Camb) 2023; 59:12645-12648. [PMID: 37791951 DOI: 10.1039/d3cc03911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Herein, we report a novel topological transformable supramolecular polymer capable of converting its architecture from a two-dimensional to a one-dimensional structure. The transformative process is achieved by the precise control of the steric configuration of constituent monomers via photo-isomerization.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhongke Yang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Xiao Luo
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
4
|
Zhang Z, You W, Li P, Zhao J, Guo Z, Xu T, Chen J, Yu W, Yan X. Insights into the Correlation of Microscopic Motions of [ c2]Daisy Chains with Macroscopic Mechanical Performance for Mechanically Interlocked Networks. J Am Chem Soc 2023; 145:567-578. [PMID: 36562646 DOI: 10.1021/jacs.2c11105] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mimicking filament sliding in sarcomeres using artificial molecular muscles such as [c2]daisy chains has aroused increasing interest in developing advanced polymeric materials. Although few bistable [c2]daisy chain-based mechanically interlocked polymers (MIPs) with stimuli-responsive behaviors have been constructed, it remains a significant challenge to establish the relationship between microscopic responsiveness of [c2]daisy chains and macroscopic mechanical properties of the corresponding MIPs. Herein, we report two mechanically interlocked networks (MINs) consisting of dense [c2]daisy chains with individual extension (MIN-1) or contraction (MIN-2) conformations decoupled from a bistable precursor, which serve as model systems to address the challenge. Upon external force, the extended [c2]daisy chains in MIN-1 mainly undergo elastic deformation, which is able to assure the strength, elasticity, and creep resistance of the corresponding material. For the contracted [c2]daisy chains, long-range sliding motion occurs along with the release of latent alkyl chains between the two DB24C8 wheels, and accumulating lots of such microscopic motions endows MIN-2 with enhanced ductility and ability of energy dissipation. Therefore, by decoupling a bistable [c2]daisy chain into individual extended and contracted ones, we directly correlate the microscopic motion of [c2]daisy chains with macroscopic mechanical properties of MINs.
Collapse
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Wei You
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Peitong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Tingjie Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Jieqi Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
5
|
Onda Y, Masai H, Terao J. Systematic Synthesis of Macrocycles Bearing up to Six 2,2'-Bipyridine Moieties through Self-Assembled Double Helix Structure. J Org Chem 2022; 87:13331-13338. [PMID: 36173111 DOI: 10.1021/acs.joc.2c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new synthetic strategy for macrocycles bearing multiple coordination moieties was developed. A self-assembled double helix structure, composed of two linear strands bearing 2,2'-bipyridine units and Cu(I) ions, provided access to macrocycles bearing a defined number of 2,2'-bipyridine moieties and a defined ring size, via an olefin-metathesis reaction between two linear strands in the helix. The double helix structure improved the selectivity of the macrocycle synthesis by bringing the reaction points in close proximity even in the case of large macrocycles.
Collapse
Affiliation(s)
- Yudai Onda
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Chen C, Weil T. Cyclic polymers: synthesis, characteristics, and emerging applications. NANOSCALE HORIZONS 2022; 7:1121-1135. [PMID: 35938292 DOI: 10.1039/d2nh00242f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cyclic polymers with a ring-like topology and no chain ends are a unique class of macromolecules. In the past several decades, significant advances have been made to prepare these fascinating polymers, which allow for the exploration of their topological effects and potential applications in various fields. In this Review, we first describe representative synthetic strategies for making cyclic polymers and their derivative topological polymers with more complex structures. Second, the unique physical properties and self-assembly behavior of cyclic polymers are discussed by comparing them with their linear analogues. Special attention is paid to highlight how polymeric rings can assemble into hierarchical macromolecular architectures. Subsequently, representative applications of cyclic polymers in different fields such as drug and gene delivery and surface functionalization are presented. Last, we envision the following key challenges and opportunities for cyclic polymers that may attract future attention: large-scale synthesis, efficient purification, programmable folding and assembly, and expansion of applications.
Collapse
Affiliation(s)
- Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Zhang Z, Yao Y, He L, Hong T, Li S, Huang F, Stang PJ. Coordination-driven self-assembly of dibenzo-18-crown-6 functionalized Pt(II) metallacycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ferrocene-Containing Pseudorotaxanes in Crystals: Aromatic Interactions with Hammett Correlation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051745. [PMID: 35268846 PMCID: PMC8911870 DOI: 10.3390/molecules27051745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
Abstract
Single crystals of pseudorotaxanes, [(FcCH2NH2CH2Ar)(DB24C8)][PF6] (DB24C8 = dibenzo[24]crown-8, Fc = Fe(C5H4)(C5H5), Ar = -C6H3-3,4-Cl2, -C6H3-3,4-F2, -C6H4-4-F, -C6H4-4-Cl, -C6H4-4-Br, -C6H3-3-F-4-Me, -C6H4-4-I) and [(FcCH2NH2CH2C6H4-4-Me)(DB24C8)][Ni(dmit)2] (dmit = 1,3-dithiole-2,4,5-dithiolate), were obtained from solutions containing DB24C8 and ferrocenylmethyl(arylmethyl)ammonium. X-ray crystallographic analyses of the pseudorotaxanes revealed that the aryl ring of the axle moiety and the catechol ring of the macrocyclic component were at close centroid distances and parallel or tilted orientation. The structures with parallel aromatic rings showed correlation of the distances between the centroids to Hammett substituent constants of the aryl groups.
Collapse
|
9
|
Cao Z, Wu D, Li M, Yang F, Li Z, An W, Jiang S, Zheng X, Niu C, Qu D. An acid-base responsive linear-cyclic polymer rotaxane molecular shuttle with fluorescence signal output. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Coutrot F, Waelès P, Gauthier M. Study of [2] and [3]Rotaxanes Obtained by Post‐Synthetic Aminolysis of a Kinetically Stable Though Activated Carbonate‐Containing Pseudorotaxane. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frédéric Coutrot
- Institut des Biomolecules Max Mousseron Département de Chimie Montpellier FRANCE
| | - Philip Waelès
- IBMM: Institut des Biomolecules Max Mousseron chimie FRANCE
| | | |
Collapse
|
11
|
Bai R, Zhang H, Yang X, Zhao J, Wang Y, Zhang Z, Yan X. Supramolecular polymer networks crosslinked by crown ether-based host-guest recognition: dynamic materials with tailored mechanical properties in bulk. Polym Chem 2022. [DOI: 10.1039/d1py01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer networks (SPNs) based on host-guest recognition have attracted much research attention to develop smart supramolecular materials. However, these researches mainly focus on SPNs in solution or in gel...
Collapse
|
12
|
Fu S, Rempson CM, Puche V, Zhao B, Zhang F. Construction of disulfide containing redox-responsive polymeric nanomedicine. Methods 2021; 199:67-79. [PMID: 34971759 DOI: 10.1016/j.ymeth.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/21/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Disulfide bonds (S-S) are widely found in chemistry, biology, and materials science. Polymer nanomaterials containing disulfide bonds with a variety of excellent properties have great potential as drug and gene delivery carriers. The disulfide bond can exist stably in extracellular environment, but upon entering cancer cells, it will undergo a sulfhydryl-disulfide bond exchange reaction with glutathione (GSH) in the cytoplasm, causing the disulfide bond cleavage. Therefore, polymeric nanomaterials containing disulfide bonds are promising in cancer treatment due to the elevated GSH concentration inside cancer cells. This review highlights various synthetic approaches to prepare disulfide containing redox-responsive polymeric nanomedicine, including synthesis of disulfide bonds containing polymers, construction of polymeric nanoparticle with shell or core crosslinked disulfide bonds, preparation of polymer-drug conjugates via disulfide linkers, and disulfide linked responsive payloads.
Collapse
Affiliation(s)
- Shiwei Fu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Caitlin M Rempson
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Vanessa Puche
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Bowen Zhao
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
13
|
Sato H, Aoki D, Marubayashi H, Uchida S, Sogawa H, Nojima S, Liang X, Nakajima K, Hayakawa T, Takata T. Topology-transformable block copolymers based on a rotaxane structure: change in bulk properties with same composition. Nat Commun 2021; 12:6175. [PMID: 34702810 PMCID: PMC8548399 DOI: 10.1038/s41467-021-26249-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022] Open
Abstract
The topology of polymers affects their characteristic features, i.e., their microscopic structure and macroscopic properties. However, the topology of a polymer is usually fixed during the construction of the polymer chain and cannot be transformed after its determination during the synthesis. In this study, topology-transformable block copolymers that are connected via rotaxane linkages are introduced. We will present systems in which the topology transformation of block copolymers changes their 1) microphase-separated structures and 2) macroscopic mechanical properties. The combination of a rotaxane structure at the junction point and block copolymers that spontaneously form microphase-separated structures in the bulk provides access to systems that cannot be attained using conventional covalent bonds.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hironori Marubayashi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Satoshi Uchida
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hiromitsu Sogawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Shuichi Nojima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8552, Japan.
- JST-CREST, Ookayama, Meguro, Tokyo, 152-8552, Japan.
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan.
| |
Collapse
|
14
|
Drain BA, Beyer VP, Cattoz B, Becer CR. Solvent Dependency in the Synthesis of Multiblock and Cyclic Poly(2-oxazoline)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- B. A. Drain
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - V. P. Beyer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - B. Cattoz
- Infineum UK Ltd, Milton Hill, Didcot OX13 6BD, U.K
| | - C. R. Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
15
|
Aoki D, Aibara G, Takata T. Reversible cyclic-linear topological transformation using a long-range rotaxane switch. Polym Chem 2021. [DOI: 10.1039/d1py01197a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A reversible linear-cyclic topological transformation of polymers facilitated by a long-range rotaxane switch.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Gota Aibara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
- JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
16
|
Cai K, Cui B, Song B, Wang H, Qiu Y, Jones LO, Liu W, Shi Y, Vemuri S, Shen D, Jiao T, Zhang L, Wu H, Chen H, Jiao Y, Wang Y, Stern CL, Li H, Schatz GC, Li X, Stoddart JF. Radical Cyclic [3]Daisy Chains. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Naz F, Ciprian M, Mousavi B, Chaemchuen S, Zhu M, Yan S, Verpoort F. Solvent-free synthesis of cyclic polycaprolactone catalysed by MOF-derived ZnO/NCs catalysts. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
|
19
|
Liu Y, Wu W, Hong S, Fang J, Zhang F, Liu G, Seo J, Zhang W. Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Wen‐Hao Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Sumin Hong
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Geng‐Xin Liu
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Jongcheol Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
20
|
|
21
|
Miao Z, Pal D, Niu W, Kubo T, Sumerlin BS, Veige AS. Cyclic Poly(4-methyl-1-pentene): Efficient Catalytic Synthesis of a Transparent Cyclic Polymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01366] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhihui Miao
- Center for Catalysis, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Digvijayee Pal
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Weijia Niu
- Center for Catalysis, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Adam S. Veige
- Center for Catalysis, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
22
|
Groppi J, Casimiro L, Canton M, Corra S, Jafari‐Nasab M, Tabacchi G, Cavallo L, Baroncini M, Silvi S, Fois E, Credi A. Precision Molecular Threading/Dethreading. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Martina Canton
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Stefano Corra
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Mina Jafari‐Nasab
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia and INSTM Università dell'Insubria via Valleggio 11 22100 Como Italy
| | - Luigi Cavallo
- KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia and INSTM Università dell'Insubria via Valleggio 11 22100 Como Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
23
|
Liu Y, Wu WH, Hong S, Fang J, Zhang F, Liu GX, Seo J, Zhang WB. Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation. Angew Chem Int Ed Engl 2020; 59:19153-19161. [PMID: 32602613 DOI: 10.1002/anie.202006727] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Entangled proteins have attracted significant research interest. Herein, we report the first rationally designed lasso proteins, or protein [1]rotaxanes, by using a p53dim-entwined dimer for intramolecular entanglement and a SpyTag-SpyCatcher reaction for side-chain ring closure. The lasso structures were confirmed by proteolytic digestion, mutation, NMR spectrometry, and controlled ligation. Their dynamic properties were probed by experiments such as end-capping, proteolytic digestion, and heating/cooling. As a versatile topological intermediate, a lasso protein could be converted to a rotaxane, a heterocatenane, and a "slide-ring" network. Being entirely genetically encoded, this robust and modular lasso-protein motif is a valuable addition to the topological protein repertoire and a promising candidate for protein-based biomaterials.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Sumin Hong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Geng-Xin Liu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
24
|
Groppi J, Casimiro L, Canton M, Corra S, Jafari‐Nasab M, Tabacchi G, Cavallo L, Baroncini M, Silvi S, Fois E, Credi A. Precision Molecular Threading/Dethreading. Angew Chem Int Ed Engl 2020; 59:14825-14834. [PMID: 32396687 PMCID: PMC7496742 DOI: 10.1002/anie.202003064] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/12/2022]
Abstract
The general principles guiding the design of molecular machines based on interlocked structures are well known. Nonetheless, the identification of suitable molecular components for a precise tuning of the energetic parameters that determine the mechanical link is still challenging. Indeed, what are the reasons of the "all-or-nothing" effect, which turns a molecular "speed-bump" into a stopper in pseudorotaxane-based architectures? Here we investigate the threading and dethreading processes for a representative class of molecular components, based on symmetric dibenzylammonium axles and dibenzo[24]crown-8 ether, with a joint experimental-computational strategy. From the analysis of quantitative data and an atomistic insight, we derive simple rules correlating the kinetic behaviour with the substitution pattern, and provide rational guidelines for the design of modules to be integrated in molecular switches and motors with sophisticated dynamic features.
Collapse
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Martina Canton
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di Bolognaviale del Risorgimento 440136BolognaItaly
| | - Stefano Corra
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di Bolognaviale Fanin 4440127BolognaItaly
| | - Mina Jafari‐Nasab
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Gloria Tabacchi
- Dipartimento di Scienza ed Alta Tecnologia and INSTMUniversità dell'Insubriavia Valleggio 1122100ComoItaly
| | - Luigi Cavallo
- KAUST Catalysis CenterKing Abdullah University of Science and TechnologyThuwal23955-6900Saudi Arabia
| | - Massimo Baroncini
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di Bolognaviale Fanin 4440127BolognaItaly
| | - Serena Silvi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Ettore Fois
- Dipartimento di Scienza ed Alta Tecnologia and INSTMUniversità dell'Insubriavia Valleggio 1122100ComoItaly
| | - Alberto Credi
- CLAN-Center for Light Activated NanostructuresIstituto ISOF-CNRvia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di Bolognaviale del Risorgimento 440136BolognaItaly
| |
Collapse
|
25
|
Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2463-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Takashima R, Aoki D, Otsuka H. Rational Entry to Cyclic Polymers via Thermally Induced Radical Ring-Expansion Polymerization of Macrocycles with One Bis(hindered amino)disulfide Linkage. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rikito Takashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- JST-PRESTO, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
27
|
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Li S, Lin L, Wang W, Yan X, Chen B, Jiang S, Liu S, Ma X, Tian H, Yu X. Aza-crown ether locked on polyethyleneimine: solving the contradiction between transfection efficiency and safety during in vivo gene delivery. Chem Commun (Camb) 2020; 56:5552-5555. [PMID: 32297607 DOI: 10.1039/c9cc10041e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We proposed a method using an aza-crown ether derivative to lock a hyperbranched polyethyleneimine, which endows the PEI25k with tumor targeting ability, anti-serum ability and extended circulation in the blood meanwhile retaining the high gene complexation and high transfection efficiency. The method we proposed here simultaneously endows cationic materials with high transfection efficiency and high safety, which greatly pushed the cationic materials to be applied in in vivo gene delivery.
Collapse
Affiliation(s)
- Shengran Li
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hirao T, Fukuta K, Haino T. Supramolecular Approach to Polymer-Shape Transformation via Calixarene–Fullerene Complexation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kazushi Fukuta
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
30
|
Heard A, Goldup SM. Simplicity in the Design, Operation, and Applications of Mechanically Interlocked Molecular Machines. ACS CENTRAL SCIENCE 2020; 6:117-128. [PMID: 32123730 PMCID: PMC7047278 DOI: 10.1021/acscentsci.9b01185] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/17/2023]
Abstract
Mechanically interlocked molecules are perhaps best known as components of molecular machines, a view further reinforced by the Nobel Prize in 2016 to Stoddart and Sauvage. Despite amazing progress since these pioneers of the field reported the first examples of molecular shuttles, genuine applications of interlocked molecular machines remain elusive, and many barriers remain to be overcome before such molecular devices make the transition from impressive prototypes on the laboratory bench to useful products. Here, we discuss simplicity as a design principle that could be applied in the development of the next generation of molecular machines with a view to moving toward real-world applications of these intriguing systems in the longer term.
Collapse
|
31
|
Takata T. Switchable Polymer Materials Controlled by Rotaxane Macromolecular Switches. ACS CENTRAL SCIENCE 2020; 6:129-143. [PMID: 32123731 PMCID: PMC7047276 DOI: 10.1021/acscentsci.0c00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 05/31/2023]
Abstract
The synthesis and dynamic nature of macromolecular systems controlled by rotaxane macromolecular switches are introduced to discuss the significance of rotaxane linking of polymer chains and its topological switching. Macromolecular switches have been synthesized from macromolecular [2]rotaxanes (M2Rs) using sec-ammonium salt/crown ether couples. The successful synthesis of M2Rs possessing a single polymer axle and one crown ether wheel, constituting a key component of the macromolecular switch, has allowed us to develop various unique applications such as the development of topology-transformable polymers. Polymer topological transformations (e.g., linear-star and linear-cyclic) are achieved using rotaxane-linked polymers and rotaxane macromolecular switches. The pronounced dynamic nature of these polymer systems is sufficiently interesting to design sophisticated stimuli-responsive molecules, polymers, and materials.
Collapse
Affiliation(s)
- Toshikazu Takata
- School of Materials and Chemical
Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama 226-8503, Japan
| |
Collapse
|
32
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
33
|
Abstract
The design and synthesis of artificial molecular switches (AMSs) displaying architectures of increased complexity would constitute significant progress in meeting the challenging task of realizing artificial molecular machines (AMMs). Here, we report the synthesis and characterization of a molecular shuttle composed of a cyclobis(paraquat-4,4'-biphenylene) cyclophane ring and a dumbbell incorporating a cyclobis(paraquat-m-phenylene) cyclophane "head" and a bifurcated, tawse-like "tail" composed of two oligoether chains, each containing a 1,5-dioxynaphthalene ring. In its reduced state the ring-in-ring recognition motif, between the meta and para bisradical dicationic cyclophanes (rings), defines the [2]rotaxane, whereas in the oxidized state, the cyclobis(paraquat-4,4'-biphenylene) cyclophane encircles the two 1,5-dioxynaphthalene rings in the bifurcated "tail". The redox-controlled molecular shuttling, which can be likened to the action of a zipper in the macroscopic world, exhibits slow kinetics dampened by the opening and closing of the bifurcated "tail" of the molecular shuttle. Cyclic voltammetry reveals that this slow shuttling is associated with electrochemical hysteresis.
Collapse
Affiliation(s)
- Melissa Dumartin
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , 610 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - J Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Institute of Molecular Design and Synthesis , Tianjin University , 92 Weijin Road, Nankai District , Tianjin 300072 , P. R. China.,School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
34
|
Yan W, Ramakrishna SN, Romio M, Benetti EM. Bioinert and Lubricious Surfaces by Macromolecular Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13521-13535. [PMID: 31532689 DOI: 10.1021/acs.langmuir.9b02316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The modification of a variety of biomaterials and medical devices often encompasses the generation of biopassive and lubricious layers on their exposed surfaces. This is valid when the synthetic supports are required to integrate within physiological media without altering their interfacial composition and when the minimization of shear stress prevents or reduces damage to the surrounding environment. In many of these cases, hydrophilic polymer brushes assembled from surface-interacting polymer adsorbates or directly grown by surface-initiated polymerizations (SIP) are chosen. Although growing efforts by polymer chemists have been focusing on varying the composition of polymer brushes in order to attain increasingly bioinert and lubricious surfaces, the precise modulation of polymer architecture has simultaneously enabled us to substantially broaden the tuning potential for the above-mentioned properties. This feature article concentrates on reviewing this latter strategy, comparatively analyzing how polymer brush parameters such as molecular weight and grafting density, the application of block copolymers, the introduction of branching and cross-links, or the variation of polymer topology beyond the simple, linear chains determine highly technologically relevant properties, such as biopassivity and lubrication.
Collapse
Affiliation(s)
- Wenqing Yan
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Matteo Romio
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
35
|
Liu Y, Jia Y, Wu Q, Moore JS. Architecture-Controlled Ring-Opening Polymerization for Dynamic Covalent Poly(disulfide)s. J Am Chem Soc 2019; 141:17075-17080. [PMID: 31603692 DOI: 10.1021/jacs.9b08957] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A strategy is reported for controlling the architecture of poly(disulfide)s by ring-opening polymerization. Aryl thiol initiators shift the ring-chain equilibrium to yield cyclic polymers, while alkyl thiols favor linear ones. Control over polymerization enables synthesis of large polymers (630 kDa) and catalytic depolymerization to recycle monomers. This work provides a new avenue to create dynamic covalent polymers with controlled geometry and length, allowing better characterization of structure-property relationships to expand their materials potentials.
Collapse
Affiliation(s)
- Yun Liu
- Joint Center for Energy Storage Research , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Yuan Jia
- Joint Center for Energy Storage Research , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Qiong Wu
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jeffrey S Moore
- Joint Center for Energy Storage Research , Argonne National Laboratory , 9700 South Cass Avenue , Lemont , Illinois 60439 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
36
|
Xu X, Guyse JFR, Jerca VV, Hoogenboom R. Metal Ion Selective Self‐Assembly of a Ligand Functionalized Polymer into [1+1] Macrocyclic and Supramolecular Polymer Structures via Metal–Ligand Coordination. Macromol Rapid Commun 2019; 41:e1900305. [DOI: 10.1002/marc.201900305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaowen Xu
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281‐S4 B‐9000 Ghent Belgium
| | - Joachim F. R. Guyse
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281‐S4 B‐9000 Ghent Belgium
| | - Valentin Victor Jerca
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281‐S4 B‐9000 Ghent Belgium
- Centre of Organic Chemistry “Costin D. Nenitzescu” Romanian Academy Spl. Independentei 202B 060023 Bucharest Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281‐S4 B‐9000 Ghent Belgium
| |
Collapse
|
37
|
David AHG, García-Cerezo P, Campaña AG, Santoyo-González F, Blanco V. [2]Rotaxane End-Capping Synthesis by Click Michael-Type Addition to the Vinyl Sulfonyl Group. Chemistry 2019; 25:6170-6179. [PMID: 30762912 DOI: 10.1002/chem.201900156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 01/23/2023]
Abstract
We report the application of the click Michael-type addition reaction to vinyl sulfone or vinyl sulfonate groups in the synthesis of rotaxanes through the threading-and-capping method. This methodology has proven to be efficient and versatile as it allowed the preparation of rotaxanes using template approaches based on different noncovalent interactions (i.e., donor-acceptor π-π interactions or hydrogen bonding) in yields of generally 60-80 % and up to 91 % aided by the mild conditions required (room temperature or 0 °C and a mild base such as Et3 N or 4-(N,N-dimethylamino)pyridine (DMAP)). Furthermore, the use of vinyl sulfonate moieties, which are suitable motifs for coupling-and-decoupling (CAD) chemistry, implies another advantage because it allows the controlled chemical disassembly of the rotaxanes into their components through nucleophilic substitution of the sulfonates resulting from the capping step with a thiol under mild conditions (Cs2 CO3 and room temperature).
Collapse
Affiliation(s)
- Arthur H G David
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Pablo García-Cerezo
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Francisco Santoyo-González
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| |
Collapse
|
38
|
Abstract
Bistable [ c2]daisy chain rotaxanes represent a particularly intriguing class of interlocked molecules that can produce internal sliding movements with a net contraction or extension at the single-molecule level. These nanometric motions show some analogies with the sliding motions of actin and myosin filaments in sarcomeres, and this is why [ c2]daisy chain rotaxanes have been also named as “molecular muscles,” as their first synthesis in 2000. In this minireview, the authors discuss the recent history of these molecules, their modular chemical structures, and the various synthetic pathways described in the literature to access them. The authors also detail how their internal motions can be controlled and characterized by a number of chemical and physical tools. The authors finally show that their integration within polymers and materials can give access to synchronized motions and amplifications up to the macroscopic scale. Overall, the numerous examples that have been described in the literature to date demonstrate that this family of molecules has already strongly influenced the entire field of research on artificial molecular machines, and has the potential to be implemented as actuators working at all scales, from nanometric-switchable devices to mechanically active soft matter materials.
Collapse
Affiliation(s)
- Antoine Antoine
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg BP 84047
| | - Emilie Moulin
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg BP 84047
| | - Gad Fuks
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg BP 84047
| | - Nicolas Giuseppone
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg BP 84047
| |
Collapse
|
39
|
Takata T. Stimuli-Responsive Molecular and Macromolecular Systems Controlled by Rotaxane Molecular Switches. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Toshikazu Takata
- Department of Chemical Science and Engineering and Research Institute of Polymer Science and Technology (RIPST), Tokyo Institute of Technology, and JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
40
|
Sun H, Kabb CP, Sims MB, Sumerlin BS. Architecture-transformable polymers: Reshaping the future of stimuli-responsive polymers. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.09.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Chang Y, Jiao Y, Symons HE, Xu JF, Faul CFJ, Zhang X. Molecular engineering of polymeric supra-amphiphiles. Chem Soc Rev 2019; 48:989-1003. [PMID: 30681685 DOI: 10.1039/c8cs00806j] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric supra-amphiphiles are amphiphiles that are fabricated by linking polymeric segments, or small molecules and polymeric segments, by noncovalent interactions or dynamic covalent bonds. Compared with conventional amphiphilic polymers, polymeric supra-amphiphiles are advantageous in that they possess dynamic features and their preparation may be to some extent more facile. Moreover, polymeric supra-amphiphiles are endowed with richer structure and higher stability compared with small-molecule supra-amphiphiles. Owing to these properties, polymeric supra-amphiphiles have so far shown great promise as surfactants, nanocarriers and in therapies. In this tutorial review, recent work on polymeric supra-amphiphiles, from molecular architectures to functional assemblies, is presented and summarized. Different polymeric supra-amphiphile topologies and related applications are highlighted. By combining polymer chemistry with supramolecular chemistry and colloid science, we anticipate that the study of polymeric supra-amphiphiles will promote the continued development of the molecular engineering of functional supramolecular systems, and lead to practical applications, especially in drug delivery.
Collapse
Affiliation(s)
- Yincheng Chang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yang Jiao
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Henry E Symons
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Charl F J Faul
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Zheng W, Wang W, Jiang ST, Yang G, Li Z, Wang XQ, Yin GQ, Zhang Y, Tan H, Li X, Ding H, Chen G, Yang HB. Supramolecular Transformation of Metallacycle-linked Star Polymers Driven by Simple Phosphine Ligand-Exchange Reaction. J Am Chem Soc 2018; 141:583-591. [DOI: 10.1021/jacs.8b11642] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhen Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ying Zhang
- Department of Chemistry, Beijing Normal University, Beijing 100050, P. R. China
| | - Hongwei Tan
- Department of Chemistry, Beijing Normal University, Beijing 100050, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Hongming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
43
|
Cao K, Peng L, Zhu J, Feng A, Liu D, Worku A, Liu S, Lin J, Yuan J, Wang X. Chain-Conformation-Directed Polymerization Cyclization for Effective Synthesis of Macrocycles in Bulk. Chemistry 2018; 24:15380-15386. [PMID: 30085369 DOI: 10.1002/chem.201803471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/01/2018] [Indexed: 11/07/2022]
Abstract
Biological cyclization is highly efficient, and this can be attributed to the conformation of the backbone of the biopolymer. Taking advantage of metal-coordination geometry, we developed a method for conformation-directed polymerization cyclization through rational design of metal carbonyl monomers that could be used to produce cyclic macromolecules, even in bulk. P FpR [P Fp=(PPh2 (CH2 )3 Cp)Fe(CO)2 with the phosphine group tethered on the cyclopentadiene (Cp) ring; R=CH3 or (CH2 )5 CH3 ] was designed and synthesized for migration insertion polymerization to generate P(P FpR) with the polymer backbone containing Cp-Fe bonds. Growth of the backbone led to a cyclic conformation with close end-to-end distances, which facilitated the cyclization. This conformation-directed cyclization was attributed to the piano-stool metal-coordination geometry of the repeating units and the low rotational barrier of the Cp-Fe bonds in the backbone. The produced macrocycles, which contain a metal carbonyl coordination structure in their backbones, are rigid, unlike many organic macrocycles. The macrocycles thus have a large excluded volume. This new type of metal carbonyl macrocycle will be of interest as a building block for supramolecular chemistry and in the exploration of novel materials.
Collapse
Affiliation(s)
- Kai Cao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Liao Peng
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Junli Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for, Ultrafine Materials of Ministry of Education, School of, Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Anchao Feng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Aklilu Worku
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Senyang Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for, Ultrafine Materials of Ministry of Education, School of, Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
44
|
Akae Y, Sogawa H, Takata T. Synthesis of a Structure‐Definite α‐Cyclodextrin‐Based Macromolecular [3]Rotaxane Using a Size‐Complementary Method. Angew Chem Int Ed Engl 2018; 57:11742-11746. [DOI: 10.1002/anie.201807261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yosuke Akae
- Department of Chemical Science and EngineeringTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8552 Japan
| | - Hiromitsu Sogawa
- Department of Chemical Science and EngineeringTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8552 Japan
| | - Toshikazu Takata
- Department of Chemical Science and EngineeringTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
45
|
Synthesis of a Structure-Definite α-Cyclodextrin-Based Macromolecular [3]Rotaxane Using a Size-Complementary Method. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Yang L, Tang H, Sun H. Progress in Photo-Responsive Polypeptide Derived Nano-Assemblies. MICROMACHINES 2018; 9:E296. [PMID: 30424229 PMCID: PMC6187351 DOI: 10.3390/mi9060296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/03/2022]
Abstract
Stimuli-responsive polymeric materials have attracted significant attention in a variety of high-value-added and industrial applications during the past decade. Among various stimuli, light is of particular interest as a stimulus because of its unique advantages, such as precisely spatiotemporal control, mild conditions, ease of use, and tunability. In recent years, a lot of effort towards the synthesis of a biocompatible and biodegradable polypeptide has resulted in many examples of photo-responsive nanoparticles. Depending on the specific photochemistry, those polypeptide derived nano-assemblies are capable of crosslinking, disassembling, or morphing into other shapes upon light irradiation. In this mini-review, we aim to assess the current state of photo-responsive polypeptide based nanomaterials. Firstly, those 'smart' nanomaterials will be categorized by their photo-triggered events (i.e., crosslinking, degradation, and isomerization), which are inherently governed by photo-sensitive functionalities, including O-nitrobenzyl, coumarin, azobenzene, cinnamyl, and spiropyran. In addition, the properties and applications of those polypeptide nanomaterials will be highlighted as well. Finally, the current challenges and future directions of this subject will be evaluated.
Collapse
Affiliation(s)
- Lu Yang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Houliang Tang
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA.
| | - Hao Sun
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
47
|
Sato H, Aoki D, Takata T. Which One is Bulkier: The 3,5-Dimethylphenyl or the 2,6-Dimethylphenyl Group? Development of Size-Complementary Molecular and Macromolecular [2]Rotaxanes. Chem Asian J 2018; 13:785-789. [PMID: 29392843 DOI: 10.1002/asia.201800170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/10/2022]
Abstract
We developed novel size-complementary molecular and macromolecular rotaxanes using a 2,6-dimethylphenyl terminal group as the axle-end-cap group in dibenzo-24-crown-8-ether (DB24C8)-based rotaxanes, where the 2,6-dimethylphenyl group was found to be less bulky than the 3,5-dimethylphenyl group. A series of molecular and macromolecular [2]rotaxanes that bear a 2,6-dimethylphenyl group as the axle-end-cap were synthesized using unsubstituted and fluorine-substituted DB24C8. Base-induced decomposition into their constituent components confirmed the occurrence of deslipping, which supports the size-complementarity of these rotaxanes. The deslipping rate was independent of the axle length but dependent on the DB24C8 substituents. A kinetic study indicated the rate-determining step was that in which the wheel is getting over the end-cap group, and deslipping proceeded via a hopping-over mechanism. Finally, the present deslipping behavior was applied to a stimulus-degradable polymer as an example for the versatile utility of this concept in the context of stimulus-responsive materials.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.,JST-CREST, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
48
|
Lipke MC, Wu Y, Roy I, Wang Y, Wasielewski MR, Stoddart JF. Shuttling Rates, Electronic States, and Hysteresis in a Ring-in-Ring Rotaxane. ACS CENTRAL SCIENCE 2018; 4:362-371. [PMID: 29632882 PMCID: PMC5879476 DOI: 10.1021/acscentsci.7b00535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The trisradical recognition motif between a 4,4'-bipyridinium radical cation and a cyclo-bis-4,4'-bipyridinium diradical dication has been employed previously in rotaxanes to control their nanomechanical and electronic properties. Herein, we describe the synthesis and characterization of a redox-active ring-in-ring [2]rotaxane BBR·8PF6 that employs a tetraradical variant of this recognition motif. A square-shaped bis-4,4'-bipyridinium cyclophane is mechanically interlocked around the dumbbell component of this rotaxane, and the dumbbell itself incorporates a smaller bis-4,4'-bipyridinium cyclophane into its covalently bonded structure. This small cyclophane serves as a significant impediment to the shuttling of the larger ring across the dumbbell component of BBR8+ , whereas reduction to the tetraradical tetracationic state BBR4(+•) results in strong association of the two cyclophanes driven by two radical-pairing interactions. In these respects, BBR·8PF6 exhibits qualitatively similar behavior to its predecessors that interconvert between hexacationic and trisradical tricationic states. The rigid preorganization of two bipyridinium groups within the dumbbell of BBR·8PF6 confers, however, two distinct properties upon this rotaxane: (1) the rate of shuttling is reduced significantly relative to those of its predecessors, resulting in marked electrochemical hysteresis observed by cyclic voltammetry for switching between the BBR8+/BBR4(+•) states, and (2) the formally tetraradical form of the rotaxane, BBR4(+•) , exhibits a diamagnetic ground state, which, as a result of the slow shuttling motions within BBR4(+•) , has a long enough lifetime to be characterized by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Mark C. Lipke
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Yilei Wu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Indranil Roy
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
Ogoshi T, Kotera D, Nishida S, Kakuta T, Yamagishi TA, Brouwer AM. Spacer Length-Independent Shuttling of the Pillar[5]arene Ring in Neutral [2]Rotaxanes. Chemistry 2018; 24:6325-6329. [PMID: 29473232 PMCID: PMC5947626 DOI: 10.1002/chem.201800104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 11/10/2022]
Abstract
For a series of neutral [2]rotaxanes consisting of a pillar[5]arene ring and axles possessing two stations separated by flexible spacers of different lengths, the free energies of activation for the ring shuttling between the stations were found to be independent of the spacer length. The constitution of the spacer affects the activation energies: replacement of CH2 groups by repulsive oxygen atoms in the axle increases the barrier. The explanation for the observed length‐independence lies in the presence of a barrier for re‐forming the stable co‐conformation, which makes the ring travel back and forth along the thread in an intermediate state.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Kotera
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shungo Nishida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Hirao T, Kim DS, Chi X, Lynch VM, Ohara K, Park JS, Yamaguchi K, Sessler JL. Control over multiple molecular states with directional changes driven by molecular recognition. Nat Commun 2018; 9:823. [PMID: 29483505 PMCID: PMC5827562 DOI: 10.1038/s41467-018-03220-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023] Open
Abstract
Recently, ligand-metal coordination, stimuli-responsive covalent bonds, and mechanically interlinked molecular constructs have been used to create systems with a large number of accessible structural states. However, accessing a multiplicity of states in sequence from more than one direction and doing so without the need for external energetic inputs remain as unmet challenges, as does the use of relatively weak noncovalent interactions to stabilize the underlying forms. Here we report a system based on a bispyridine-substituted calix[4]pyrrole that allows access to six different discrete states with directional control via the combined use of metal-based self-assembly and molecular recognition. Switching can be induced by the selective addition or removal of appropriately chosen ionic guests. No light or redox changes are required. The tunable nature of the system has been established through a combination of spectroscopic techniques and single crystal X-ray diffraction analyses. The findings illustrate a new approach to creating information-rich functional materials.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-Stop A5300, Austin, Texas, 78712-1224, USA
| | - Dong Sub Kim
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-Stop A5300, Austin, Texas, 78712-1224, USA
| | - Xiaodong Chi
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-Stop A5300, Austin, Texas, 78712-1224, USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-Stop A5300, Austin, Texas, 78712-1224, USA
| | - Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki-city, Kagawa, 769-2193, Japan
| | - Jung Su Park
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, South Korea.
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki-city, Kagawa, 769-2193, Japan.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-Stop A5300, Austin, Texas, 78712-1224, USA.
- Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|