1
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Yao ZY, Gong JS, Jiang JY, Su C, Zhao WH, Xu ZH, Shi JS. Unraveling the intricacies of glycosaminoglycan biosynthesis: Decoding the molecular symphony in understanding complex polysaccharide assembly. Biotechnol Adv 2024; 75:108416. [PMID: 39033835 DOI: 10.1016/j.biotechadv.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Wen-Han Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
3
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Zhao S, Zhang T, Kan Y, Li H, Li JP. Overview of the current procedures in synthesis of heparin saccharides. Carbohydr Polym 2024; 339:122220. [PMID: 38823902 DOI: 10.1016/j.carbpol.2024.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Natural heparin, a glycosaminoglycan consisting of repeating hexuronic acid and glucosamine linked by 1 → 4 glycosidic bonds, is the most widely used anticoagulant. To subvert the dependence on animal sourced heparin, alternative methods to produce heparin saccharides, i.e., either heterogenous sugar chains similar to natural heparin, or structurally defined oligosaccharides, are becoming hot subjects. Although the success by chemical synthesis of the pentasaccharide, fondaparinux, encourages to proceed through a chemical approach generating homogenous product, synthesizing larger oligos is still cumbersome and beyond reach so far. Alternatively, the chemoenzymatic pathway exhibited exquisite stereoselectivity of glycosylation and regioselectivity of modification, with the advantage to skip the tedious protection steps unavoidable in chemical synthesis. However, to a scale of drug production needed today is still not in sight. In comparison, a procedure of de novo biosynthesis in an organism could be an ultimate goal. The main purpose of this review is to summarize the current available/developing strategies and techniques, which is expected to provide a comprehensive picture for production of heparin saccharides to replenish or eventually to replace the animal derived products. In chemical and chemoenzymatic approaches, the methodologies are discussed according to the synthesis procedures: building block preparation, chain elongation, and backbone modification.
Collapse
Affiliation(s)
- Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
5
|
Chittum JE, Thompson A, Desai UR. Glycosaminoglycan microarrays for studying glycosaminoglycan-protein systems. Carbohydr Polym 2024; 335:122106. [PMID: 38616080 PMCID: PMC11032185 DOI: 10.1016/j.carbpol.2024.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.
Collapse
Affiliation(s)
- John E Chittum
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Ally Thompson
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America.
| |
Collapse
|
6
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
7
|
Wang Z, Patel VN, Song X, Xu Y, Kaminski AM, Doan VU, Su G, Liao Y, Mah D, Zhang F, Pagadala V, Wang C, Pedersen LC, Wang L, Hoffman MP, Gearing M, Liu J. Increased 3- O-sulfated heparan sulfate in Alzheimer's disease brain is associated with genetic risk gene HS3ST1. SCIENCE ADVANCES 2023; 9:eadf6232. [PMID: 37235665 PMCID: PMC10219595 DOI: 10.1126/sciadv.adf6232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
HS3ST1 is a genetic risk gene associated with Alzheimer's disease (AD) and overexpressed in patients, but how it contributes to the disease progression is unknown. We report the analysis of brain heparan sulfate (HS) from AD and other tauopathies using a LC-MS/MS method. A specific 3-O-sulfated HS displayed sevenfold increase in the AD group (n = 14, P < 0.0005). Analysis of the HS modified by recombinant sulfotransferases and HS from genetic knockout mice revealed that the specific 3-O-sulfated HS is made by 3-O-sulfotransferase isoform 1 (3-OST-1), which is encoded by the HS3ST1 gene. A synthetic tetradecasaccharide (14-mer) carrying the specific 3-O-sulfated domain displayed stronger inhibition for tau internalization than a 14-mer without the domain, suggesting that the 3-O-sulfated HS is used in tau cellular uptake. Our findings suggest that the overexpression of HS3ST1 gene may enhance the spread of tau pathology, uncovering a previously unidentified therapeutic target for AD.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vaishali N. Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea M. Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivien Uyen Doan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Guowei Su
- Glycan Therapeutics Corp., 617 Hutton Street, Raleigh, NC 27606, USA
| | - Yien Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dylan Mah
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Liu K, Guo L, Chen X, Liu L, Gao C. Microbial synthesis of glycosaminoglycans and their oligosaccharides. Trends Microbiol 2023; 31:369-383. [PMID: 36517300 DOI: 10.1016/j.tim.2022.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Compared with chemical synthesis and tissue extraction methods, microbial synthesis of glycosaminoglycans (GAGs) is attractive because of the advantages of eco-friendly processes, production safety, and sustainable development. However, boosting the efficiency of microbial cell factories, precisely regulating GAG molecular weights, and rationally controlling the sulfation degree of GAGs remain challenging. To address these issues, various strategies, including genetic, enzymatic, metabolic, and fermentation engineering, have been developed. In this review, we summarize the recent progress in the construction of efficient GAG-producing microbial cell factories, regulation of the molecular weight of GAGs, and modification of GAG chains. Moreover, future studies, remaining challenges, and potential solutions in this field are discussed.
Collapse
Affiliation(s)
- Kaifang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Ham H, Xu Y, Haller CA, Dai E, Stancanelli E, Liu J, Chaikof EL. Design of an Ultralow Molecular Weight Heparin That Resists Heparanase Biodegradation. J Med Chem 2023; 66:2194-2203. [PMID: 36706244 DOI: 10.1021/acs.jmedchem.2c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heparanase, an endo-β-d-glucuronidase produced by a variety of cells and tissues, cleaves the glycosidic linkage between glucuronic acid (GlcA) and a 3-O- or 6-O-sulfated glucosamine, typified by the disaccharide -[GlcA-GlcNS3S6S]-, which is found within the antithrombin-binding domain of heparan sulfate or heparin. As such, all current forms of heparin are susceptible to degradation by heparanase with neutralization of anticoagulant properties. Here, we have designed a heparanase-resistant, ultralow molecular weight heparin as the structural analogue of fondaparinux that does not contain an internal GlcA residue but otherwise displays potent anticoagulant activity. This heparin oligosaccharide was synthesized following a chemoenzymatic scheme and displays nanomolar anti-FXa activity yet is resistant to heparanase digestion. Inhibition of thrombus formation was further demonstrated after subcutaneous administration of this compound in a murine model of venous thrombosis. Thrombus inhibition was comparable to that observed for enoxaparin with a similar effect on bleeding time.
Collapse
Affiliation(s)
- Hyunok Ham
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering at Harvard University; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology; Department of Surgery, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Baryal KN, Ramadan S, Su G, Huo C, Zhao Y, Liu J, Hsieh‐Wilson LC, Huang X. Synthesis of a Systematic 64-Membered Heparan Sulfate Tetrasaccharide Library. Angew Chem Int Ed Engl 2023; 62:e202211985. [PMID: 36173931 PMCID: PMC9933061 DOI: 10.1002/anie.202211985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 02/02/2023]
Abstract
Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Kedar N. Baryal
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
| | - Sherif Ramadan
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- Chemistry DepartmentFaculty of ScienceBenha UniversityBenhaQaliobiya13518Egypt
| | - Guowei Su
- Glycan Therapeutics617 Hutton StreetRaleighNC 27606USA
| | - Changxin Huo
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
| | - Yuetao Zhao
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- School of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North CarolinaChapel HillNC 27599USA
| | - Linda C. Hsieh‐Wilson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA 91125USA
| | - Xuefei Huang
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI 48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI 48824USA
| |
Collapse
|
11
|
Sun L, Chopra P, Boons G. Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides having a Domain Structure. Angew Chem Int Ed Engl 2022; 61:e202211112. [PMID: 36148891 PMCID: PMC9828060 DOI: 10.1002/anie.202211112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Heparan sulfate (HS) has a domain structure in which regions that are modified by epimerization and sulfonation (NS domains) are interspersed by unmodified fragments (NA domains). There is data to support that domain organization of HS can regulate binding of proteins, however, such model has been difficult to probe. Here, we report a chemoenzymatic methodology that can provide HS oligosaccharides composed of two or more NS domains separated by NA domains of different length. It is based on the chemical synthesis of a HS oligosaccharide that enzymatically was extended by various GlcA-GlcNAc units and terminated in GlcNAc having an azido moiety at C-6 position. HS oligosaccharides having an azide and alkyne moiety could be assembled by copper catalyzed alkyne-azide cycloaddition to give compounds having various NS domains separated by unsulfonated regions. Competition binding studies showed that the length of an NA domain modulates the binding of the chemokines CCL5 and CXCL8.
Collapse
Affiliation(s)
- Lifeng Sun
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrecht (TheNetherlands
| | - Pradeep Chopra
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA-30602USA
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrecht (TheNetherlands
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA-30602USA
- Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrecht (TheNetherlands
- Chemistry DepartmentUniversity of GeorgiaAthensGA-30602USA
| |
Collapse
|
12
|
Gandy LA, Canning AJ, Lou H, Xia K, He P, Su G, Cairns T, Liu J, Zhang F, Linhardt RJ, Cohen G, Wang C. Molecular determinants of the interaction between HSV-1 glycoprotein D and heparan sulfate. Front Mol Biosci 2022; 9:1043713. [PMID: 36419932 PMCID: PMC9678342 DOI: 10.3389/fmolb.2022.1043713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Literature has well-established the importance of 3-O-sulfation of neuronal cell surface glycan heparan sulfate (HS) to its interaction with herpes simplex virus type 1 glycoprotein D (gD). Previous investigations of gD to its viral receptors HVEM and nectin-1 also highlighted the conformational dynamics of gD's N- and C-termini, necessary for viral membrane fusion. However, little is known on the structural interactions of gD with HS. Here, we present our findings on this interface from both the glycan and the protein perspective. We used C-terminal and N-terminal gD variants to probe the role of their respective regions in gD/HS binding. The N-terminal truncation mutants (with Δ1-22) demonstrate equivalent or stronger binding to heparin than their intact glycoproteins, indicating that the first 22 amino acids are disposable for heparin binding. Characterization of the conformational differences between C-terminal truncated mutants by sedimentation velocity analytical ultracentrifugation distinguished between the "open" and "closed" conformations of the glycoprotein D, highlighting the region's modulation of receptor binding. From the glycan perspective, we investigated gD interacting with heparin, heparan sulfate, and other de-sulfated and chemically defined oligosaccharides using surface plasmon resonance and glycan microarray. The results show a strong preference of gD for 6-O-sulfate, with 2-O-sulfation becoming more important in the presence of 6-O-S. Additionally, 3-O-sulfation shifted the chain length preference of gD from longer chain to mid-chain length, reaffirming the sulfation site's importance to the gD/HS interface. Our results shed new light on the molecular details of one of seven known protein-glycan interactions with 3-O-sulfated heparan sulfate.
Collapse
Affiliation(s)
- Lauren A. Gandy
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ashley J. Canning
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Peng He
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Guowei Su
- Glycan Therapeutics, Raleigh, NC, United States
| | - Tina Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Liu
- Glycan Therapeutics, Raleigh, NC, United States
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Gary Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
13
|
Shi D, Sheng A, Bu C, An Z, Cui X, Sun X, Li H, Zhang F, Linhardt RJ, Zhang T, Jin L, Chi L. A Cluster Sequencing Strategy To Determine the Consensus Affinity Domains in Heparin for Its Binding to Specific Proteins. Anal Chem 2022; 94:13987-13994. [PMID: 36183273 DOI: 10.1021/acs.analchem.2c03267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycans (GAGs) have high negative charge and are biologically and pharmaceutically important because their high charge promotes a strong interaction with many proteins. Due to the inherent heterogeneity of GAGs, multiple oligosaccharides, containing certain common domains, often can interact with clusters of basic amino acid residues on a target protein. The specificity of many GAG-protein interactions remains undiscovered since there is insufficient structural information on the interacting GAGs. Herein, we establish a cluster sequencing strategy to simultaneously deduce all major sequences of the affinity GAG oligosaccharides, leading to a definition of the consensus sequence they share that corresponds to the specific binding domain for the target protein. As a proof of concept, antithrombin III-binding oligosaccharides were examined, resulting in a heptasaccharide domain containing the well-established anticoagulant pentasaccharide sequence. Repeating this approach, a new pentasaccharide domain was discovered corresponding to the heparin motif responsible for binding interferon-γ (IFNγ). Our strategy is fundamentally important for the discovery of saccharide sequences needed in the development of novel GAG-based therapeutics.
Collapse
Affiliation(s)
- Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Anran Sheng
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China.,Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Changkai Bu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Zizhe An
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Xueying Cui
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Xiaojun Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong Province 250022, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tianji Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| |
Collapse
|
14
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Hoffmann M, Snyder NL, Hartmann L. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022; 23:4004-4014. [PMID: 35959886 DOI: 10.1021/acs.biomac.2c00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.
Collapse
Affiliation(s)
- Miriam Hoffmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Pedersen LC, Yi M, Pedersen LG, Kaminski AM. From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metab Dispos 2022; 50:1027-1041. [PMID: 35197313 PMCID: PMC10753775 DOI: 10.1124/dmd.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.
Collapse
Affiliation(s)
- Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - MyeongJin Yi
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| |
Collapse
|
17
|
Liu J, Pedersen LC. Emerging chemical and biochemical tools for studying 3- O-sulfated heparan sulfate. Am J Physiol Cell Physiol 2022; 322:C1166-C1175. [PMID: 35417268 PMCID: PMC9169821 DOI: 10.1152/ajpcell.00110.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
Heparan sulfate is a widely expressed polysaccharide in the extracellular matrix and on the cell surface. 3-O-sulfated heparan sulfate represents only a small percentage of heparan sulfate from biological sources. However, this subpopulation is closely associated with biological functions of heparan sulfate. The 3-O-sulfated heparan sulfate is biosynthesized by heparan sulfate 3-O-sulfotransferase, which exists in seven different isoforms. This review article summarizes the recent progress in the substrate specificity studies of different 3-O-sulfotransferase isoforms involving the use of homogeneous oligosaccharide substrates and crystal structural analysis. The article also reviews a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method to analyze the level of 3-O-sulfated heparan sulfate with high sensitivity and quantitative capability. This newly emerged technology will provide new tools to study the structure and function relationship of heparan sulfate.
Collapse
Affiliation(s)
- Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
18
|
Mourier P. Building Block Analysis of ATIII Affinity Fractions of Heparins: Application to the ATIII Binding Capacity of Non-conventional 3-O-Sulfated Sequences. Front Med (Lausanne) 2022; 9:841738. [PMID: 35514744 PMCID: PMC9063521 DOI: 10.3389/fmed.2022.841738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 01/01/2023] Open
Abstract
In heparin, some 3-O-sulfated sequences do not meet the structural requirements of the ATIII binding pentasaccharide. These “non-conventional” sequences are the object of this study. In a previous paper (Mourier P. Heparinase digestion of 3-O-sulfated sequences: selective heparinase II digestion for separation and identification of binding sequences present in ATIII affinity fractions of bovine intestine heparins), we demonstrated that unsaturated 3-O-sulfated disaccharides detected in exhaustive heparin digests were specifically cleaved by heparinase I. Consequently, building blocks analyses of heparins using heparinases I+II+III digestion could be compared with experiments where only heparinase II is used. In these latter conditions of depolymerization, the 3-O-sulfated sequences digested into unsaturated 3-O-sulfated disaccharides with heparinases I+II+III, were heparinase II-resistant on their non-reducing side, resulting in longer new building blocks. These properties were used to study the structural neighborhood of these 3-O-sulfated moieties, which have still-undefined biological functions. In this part, heparinases I+II+III and heparinase II digestions of porcine mucosa, bovine mucosa and bovine lung heparins were compared in six fractions of increasing affinity for ATIII. Tagging of building blocks by reductive amination with sulfanilic acid was used. The distribution of 3-O-sulfated building blocks in the ATIII affinity fractions was used to examine the ATIII binding of these sequences.
Collapse
|
19
|
Mourier P. Heparinase Digestion of 3-O-Sulfated Sequences: Selective Heparinase II Digestion for Separation and Identification of Binding Sequences Present in ATIII Affinity Fractions of Bovine Intestinal Heparins. Front Med (Lausanne) 2022; 9:841726. [PMID: 35433769 PMCID: PMC9009448 DOI: 10.3389/fmed.2022.841726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Binding to antithrombin-III (ATIII) determines the anticoagulant activity of heparin. The complexes formed between heparin and ATIII result from a specific pentasaccharide sequence containing a 3-O-sulfated glucosamine in medium position. Building block analysis of heparins, following heparinase digestion, is a critical method in quality control that provides a simple structural characterization of a complex product. Hence, in these applications, study of the digestion of 3-O-sulfated moieties merits special attention. With heparinase II, specific inhibition of cleavage of the non-reducing bond of 3-O-sulfated units is observed. This specificity was erroneously generalized to other heparinases when it was observed that in exhaustive digests of heparins with the heparinase mixture, resistant 3-O-sulfated tetrasaccharides were also obtained from the specific ATIII-binding pentasaccharides. In fact, the detection of unsaturated 3-O-sulfated disaccharides in digests of heparin by heparinases I+II+III, resulting from the cleavage of the 3-O sulfated unit by heparinase I in non-conventional sequences, shows that this inhibition has exceptions. Thus, in experiments where heparinase II is selectively applied, these sequences can only be digested into tetra- or hexasaccharides where the 3-O-sulfated glucosamine is shifted on the reducing end. Heparinase I+II+III and heparinase II digests with additional tagging by reductive amination with sulfanilic acid were used to study the structural neighborhood of 3-O-sulfated disaccharides in bovine mucosal heparin fractions with increasing affinity for ATIII. The 3-O-sulfated disaccharides detected in heparinase I+II+III digests turn into numerous specific 3-O-sulfated tetrasaccharides in heparinase II digests. Additionally, ATIII-binding pentasaccharides with an extra 3-O-sulfate at the reducing glucosamine are detected in fractions of highest affinity as heparinase II-resistant hexasaccharides with two consecutive 3-O-sulfated units.
Collapse
|
20
|
Wang Z, Arnold K, Dhurandahare VM, Xu Y, Pagadala V, Labra E, Jeske W, Fareed J, Gearing M, Liu J. Analysis of 3- O-Sulfated Heparan Sulfate Using Isotopically Labeled Oligosaccharide Calibrants. Anal Chem 2022; 94:2950-2957. [PMID: 35107975 PMCID: PMC9006171 DOI: 10.1021/acs.analchem.1c04965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 3-O-sulfated glucosamine in heparan sulfate (HS) is a low-abundance structural component, but it is a key saccharide unit for the biological activities of HS. A method to determine the level of 3-O-sulfated HS is lacking. Here, we describe a LC-MS/MS based method to analyze the structural motifs. We determined the levels of 3-O-sulfated structural motifs from pharmaceutical heparin manufactured from bovine, porcine, and ovine. We discovered that saccharide chains carrying 3-O-sulfation from enoxaparin, an FDA-approved low-molecular weight heparin, displayed a slower clearance rate than non-3-O-sulfated sugar chains in a mouse model. Lastly, we detected the 3-O-sulfated HS from human brain. Furthermore, we found that a specific 3-O-sulfated structural motif, tetra-1, is elevated in the brain HS from Alzheimer's disease patients (n = 5, p = 0.0020). Our method offers a practical solution to measure 3-O-sulfated HS from biological sources with the sensitivity and quantitative capability.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Vijay M Dhurandahare
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Erick Labra
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Walter Jeske
- Cardiovascular Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois 60153, United States
| | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, United States
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
21
|
Li X, Guo T, Feng Q, Bai T, Wu L, Liu Y, Zheng X, Jia J, Pei J, Wu S, Song Y, Zhang Y. Progress of thrombus formation and research on the structure-activity relationship for antithrombotic drugs. Eur J Med Chem 2022; 228:114035. [PMID: 34902735 DOI: 10.1016/j.ejmech.2021.114035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Many populations suffer from thrombotic disorders such as stroke, myocardial infarction, unstable angina and thromboembolic disease. Thrombus is one of the major threatening factors to human health and the prevalence of cardio-cerebrovascular diseases induced by thrombus is growing worldwide, even some persons got rare and severe blood clots after receiving the AstraZeneca COVID vaccine unexpectedly. In terms of mechanism of thrombosis, antithrombotic drugs have been divided into three categories including anticoagulants, platelet inhibitors and fibrinolytics. Nowadays, a large number of new compounds possessing antithrombotic activities are emerging in an effort to remove the inevitable drawbacks of previously approved drugs such as the high risk of bleeding, a slow onset of action and a narrow therapeutic window. In this review, we describe the causes and mechanisms of thrombus formation firstly, and then summarize these reported active compounds as potential antithrombotic candidates based on their respective mechanism, hoping to promote the development of more effective bioactive molecules for treating thrombotic disorders.
Collapse
Affiliation(s)
- Xiaoan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tiantian Guo
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Qian Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Tiantian Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Lei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Yubo Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Xu Zheng
- Shaanxi Institute for Food and Drug, Xi'an, 710000, China
| | - Jianzhong Jia
- Shaanxi Institute for Food and Drug, Xi'an, 710000, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China.
| | - Yiming Song
- School of Chemical Engineering, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, 710069, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
22
|
Wander R, Kaminski AM, Wang Z, Stancanelli E, Xu Y, Pagadala V, Li J, Krahn JM, Pham TQ, Liu J, Pedersen LC. Structural and substrate specificity analysis of 3- O-sulfotransferase isoform 5 to synthesize heparan sulfate. ACS Catal 2021; 11:14956-14966. [PMID: 35223137 PMCID: PMC8865405 DOI: 10.1021/acscatal.1c04520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heparan sulfate 3-O-sulfotransferase (3-OST) transfers a sulfo group to the 3-OH position of a glucosamine saccharide unit to form 3-O-sulfated heparan sulfate. 3-O-sulfation is known to be critically important for bestowing anticoagulant activity and other biological functions of heparan sulfate. Here, we report two ternary crystal structures of 3-OST-5 with PAP (3'-phosphoadenosine 5'-phosphate) and two octasaccharide substrates. We also used 3-OST-5 to synthesize six 3-O-sulfated 8-mers. Results from the structural analysis of the six 3-O-sulfated 8-mers revealed the substrate specificity of 3-OST-5. The enzyme prefers to sulfate a 6-O-sulfo glucosamine saccharide that is surrounded by glucuronic acid over a 6-O-sulfo glucosamine saccharide that is surrounded by 2-O-sulfated iduronic acid. 3-OST-5 modified 8-mers display a broad range of anti-factor Xa activity, depending on the structure of the 8-mer. We also discovered that the substrate specificity of 3-OST-5 is not governed solely by the side chains from amino acid residues in the active site. The conformational flexibility of the 2-O-sulfated iduronic acid in the saccharide substrates also contributes to the substrate specificity. These findings advance our understanding for how to control the biosynthesis of 3-O-sulfated heparan sulfate with desired biological activities.
Collapse
Affiliation(s)
- Rylee Wander
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Andrea M. Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juno M. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Truong Quang Pham
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
23
|
Li J, Su G, Xu Y, Arnold K, Pagadala V, Wang C, Liu J. Synthesis of 3- O-Sulfated Heparan Sulfate Oligosaccharides Using 3- O-Sulfotransferase Isoform 4. ACS Chem Biol 2021; 16:2026-2035. [PMID: 34351732 DOI: 10.1021/acschembio.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate (HS) 3-O-sulfotransferase isoform 4 (3-OST-4) is a specialized carbohydrate sulfotransferase participating in the biosynthesis of heparan sulfate. Here, we report the expression and purification of the recombinant 3-OST-4 enzyme and use it for the synthesis of a library of 3-O-sulfated hexasaccharides and 3-O-sulfated octasaccharides. The unique structural feature of the library is that each oligosaccharide contains a disaccharide domain with a 2-O-sulfated glucuronic acid (GlcA2S) and 3-O-sulfated glucosamine (GlcNS3S). By rearranging the order of the enzymatic modification steps, we demonstrate the synthesis of oligosaccharides with different saccharide sequences. The structural characterization was completed by electrospray ionization mass spectrometry and NMR. These 3-O-sulfated oligosaccharides show weak to very weak anti-Factor Xa activity, a measurement of anticoagulant activity. We discovered that HSoligo 7 (HS oligosaccharide 7), a 3-O-sulfated octasaccharide, binds to high mobility group box 1 protein (HMGB1) and tau protein, both believed to be involved in the process of inflammation. Access to the recombinant 3-OST-4 expands the capability of the chemoenzymatic method to synthesize novel 3-O-sulfated oligosaccharides. The oligosaccharides will become valuable reagents to probe the biological functions of 3-O-sulfated HS and to develop HS-based therapeutic agents.
Collapse
Affiliation(s)
- Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Wander R, Kaminski AM, Xu Y, Pagadala V, Krahn JM, Pham TQ, Liu J, Pedersen LC. Deciphering the substrate recognition mechanisms of the heparan sulfate 3- O-sulfotransferase-3. RSC Chem Biol 2021; 2:1239-1248. [PMID: 34458837 PMCID: PMC8341778 DOI: 10.1039/d1cb00079a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 02/01/2023] Open
Abstract
The sulfation at the 3-OH position of a glucosamine saccharide is a rare modification, but is critically important for the biological activities of heparan sulfate polysaccharides. Heparan sulfate 3-O-sulfotransferase (3-OST), the enzyme responsible for completing this modification, is present in seven different isoforms in humans. Individual isoforms display substrate selectivity to uniquely sulfated saccharide sequences present in heparan sulfate polysaccharides. Here, we report two ternary crystal structures of heparan sulfate 3-OST isoform 3 (3-OST-3) with PAP (3'-phosphoadenosine 5'-phosphate) and two octasaccharide substrates: non 6-O-sulfated octasaccharide (8-mer 1) and 6-O-sulfated octasaccharide (8-mer 3). The 8-mer 1 is a known favorable substrate for 3-OST-3, whereas the 8-mer 3 is an unfavorable one. Unlike the 8-mer 1, we discovered that the 8-mer 3 displays two binding orientations to the enzyme: productive binding and non-productive binding. Results from the enzyme activity studies demonstrate that 8-mer 3 can contribute to either substrate or product inhibition, possibly attributed to a non-productive binding mode. Our results suggest that heparan sulfate substrates interact with the 3-OST-3 enzyme in more than one orientation, which may regulate the activity of the enzyme. Our findings also suggest that different binding orientations between polysaccharides and their protein binding partners could influence biological outcomes.
Collapse
Affiliation(s)
- Rylee Wander
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Andrea M. Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | | | - Juno M. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth CarolinaUSA
| | | | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
25
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
26
|
The 3- O-sulfation of heparan sulfate modulates protein binding and lyase degradation. Proc Natl Acad Sci U S A 2021; 118:2012935118. [PMID: 33441484 DOI: 10.1073/pnas.2012935118] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Humans express seven heparan sulfate (HS) 3-O-sulfotransferases that differ in substrate specificity and tissue expression. Although genetic studies have indicated that 3-O-sulfated HS modulates many biological processes, ligand requirements for proteins engaging with HS modified by 3-O-sulfate (3-OS) have been difficult to determine. In particular, the context in which the 3-OS group needs to be presented for binding is largely unknown. We describe herein a modular synthetic approach that can provide structurally diverse HS oligosaccharides with and without 3-OS. The methodology was employed to prepare 27 hexasaccharides that were printed as a glycan microarray to examine ligand requirements of a wide range of HS-binding proteins. The binding selectivity of antithrombin-III (AT-III) compared well with anti-Factor Xa activity supporting robustness of the array technology. Many of the other examined HS-binding proteins required an IdoA2S-GlcNS3S6S sequon for binding but exhibited variable dependence for the 2-OS and 6-OS moieties, and a GlcA or IdoA2S residue neighboring the central GlcNS3S. The HS oligosaccharides were also examined as inhibitors of cell entry by herpes simplex virus type 1, which, surprisingly, showed a lack of dependence of 3-OS, indicating that, instead of glycoprotein D (gD), they competitively bind to gB and gC. The compounds were also used to examine substrate specificities of heparin lyases, which are enzymes used for depolymerization of HS/heparin for sequence determination and production of therapeutic heparins. It was found that cleavage by lyase II is influenced by 3-OS, while digestion by lyase I is only affected by 2-OS. Lyase III exhibited sensitivity to both 3-OS and 2-OS.
Collapse
|
27
|
Jain P, Shanthamurthy CD, Leviatan Ben-Arye S, Yehuda S, Nandikol SS, Thulasiram HV, Padler-Karavani V, Kikkeri R. Synthetic heparan sulfate ligands for vascular endothelial growth factor to modulate angiogenesis. Chem Commun (Camb) 2021; 57:3516-3519. [PMID: 33704312 DOI: 10.1039/d1cc00964h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the discovery of a potential heparan sulfate (HS) ligand to target several growth factors using 13 unique HS tetrasaccharide ligands. By employing an HS microarray and SPR, we deciphered the crucial structure-binding relationship of these glycans with the growth factors BMP2, VEGF165, HB-EGF, and FGF2. Notably, GlcNHAc(6-O-SO3-)-IdoA(2-O-SO3-) (HT-2,6S-NAc) tetrasaccharide showed strong binding with the VEGF165 growth factor. In vitro vascular endothelial cell proliferation, migration and angiogenesis was inhibited in the presence of VEGF165 and HT-2,6S-NAc or HT-6S-NAc, revealing the potential therapeutic role of these synthetic HS ligands.
Collapse
Affiliation(s)
- Prashant Jain
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune-411008, India.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Z, Arnold K, Dhurandhare VM, Xu Y, Liu J. Investigation of the biological functions of heparan sulfate using a chemoenzymatic synthetic approach. RSC Chem Biol 2021; 2:702-712. [PMID: 34179782 PMCID: PMC8190904 DOI: 10.1039/d0cb00199f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide playing essential physiological and pathophysiological roles in the animal kingdom. Heparin, a highly sulfated form of HS, is a widely used anticoagulant drug. Isolated from biological sources, both heparin and HS are polysaccharide mixtures with different sugar chain lengths and sulfation patterns. Structural heterogeneity of HS complicates the investigation of HS-related biological activities. The availability of structurally defined HS oligosaccharides is critical in understanding the contribution of saccharide structures to the functions. The chemoenzymatic synthetic approach is emerging as a cost-effective method to synthesize HS oligosaccharides. Structurally defined oligosaccharides are now widely available for biologists. This review summarizes our efforts in using this new synthetic method to develop new anticoagulant therapeutics and discover the role of HS to protect liver damage under pathological conditions. The synthetic method also allows us to prepare reference saccharide standards to improve structural analysis of HS.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Katelyn Arnold
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Vijay Manohar Dhurandhare
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Yongmei Xu
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Jian Liu
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
29
|
Baytas SN, Varghese SS, Jin W, Yu Y, He P, Douaisi M, Zhang F, Brodfuehrer P, Xia K, Dordick JS, Linhardt RJ. Preparation of Low Molecular Weight Heparin from a Remodeled Bovine Intestinal Heparin. J Med Chem 2021; 64:2242-2253. [PMID: 33586962 DOI: 10.1021/acs.jmedchem.0c02019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bovine intestinal heparins are structurally distinct from porcine intestinal heparins and exhibit lower specific anticoagulant activity (units/mg). The reduced content of N-sulfo, 3-O-sulfo glucosamine, the central and critical residue in heparin's antithrombin III binding site, is responsible for bovine intestinal heparin's reduced activity. Previous studies demonstrate that treatment of bovine intestinal heparin with 3-O-sulfotransferase in the presence of 3'-phosphoadenosine-5'-phosphosulfate afforded remodeled bovine heparin with an enhanced activity reaching the United States Pharmacopeia's requirements. Starting from this remodeled bovine intestinal heparin, we report the preparation of a bovine intestinal low molecular weight heparin having the same structural properties and anti-factor IIa and anti-factor Xa activities of Enoxaparin. Moreover, this bovine intestinal heparin-derived "Enoxaparin" showed comparable platelet factor-4 binding affinity, suggesting that it should exhibit similarly low levels of heparin induced thrombocytopeneia, HIT.
Collapse
Affiliation(s)
- Sultan N Baytas
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, 06330, Turkey
| | - Sony S Varghese
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Weihua Jin
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yanlei Yu
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Peng He
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Marc Douaisi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Paul Brodfuehrer
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
30
|
Arnold K, Liao YE, Liu J. Potential Use of Anti-Inflammatory Synthetic Heparan Sulfate to Attenuate Liver Damage. Biomedicines 2020; 8:E503. [PMID: 33207634 PMCID: PMC7697061 DOI: 10.3390/biomedicines8110503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate is a highly sulfated polysaccharide abundant on the surface of hepatocytes and surrounding extracellular matrix. Emerging evidence demonstrates that heparan sulfate plays an important role in neutralizing the activities of proinflammatory damage associate molecular patterns (DAMPs) that are released from hepatocytes under pathological conditions. Unlike proteins and nucleic acids, isolation of homogenous heparan sulfate polysaccharides from biological sources is not possible, adding difficulty to study the functional role of heparan sulfate. Recent advancement in the development of a chemoenzymatic approach allows production of a large number of structurally defined oligosaccharides. These oligosaccharides are used to probe the physiological functions of heparan sulfate in liver damage under different pathological conditions. The findings provide a potential new therapeutic agent to treat liver diseases that are associated with excessive inflammation.
Collapse
Affiliation(s)
| | | | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (K.A.); (Y.-E.L.)
| |
Collapse
|
31
|
Sun L, Chopra P, Boons GJ. Modular Synthesis of Heparan Sulfate Oligosaccharides Having N-Acetyl and N-Sulfate Moieties. J Org Chem 2020; 85:16082-16098. [DOI: 10.1021/acs.joc.0c01881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lifeng Sun
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
32
|
Ultraviolet photodissociation of fondaparinux generates signature antithrombin-like 3-O-sulfated -GlcNS3S6S- monosaccharide fragment (Y3/C3). Anal Bioanal Chem 2020; 412:7925-7935. [DOI: 10.1007/s00216-020-02925-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
|
33
|
Baytas SN, Linhardt RJ. Advances in the preparation and synthesis of heparin and related products. Drug Discov Today 2020; 25:2095-2109. [PMID: 32947045 DOI: 10.1016/j.drudis.2020.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023]
Abstract
Heparin is a naturally occurring glycosaminoglycan from livestock, principally porcine intestine, and is clinically used as an anticoagulant drug. A limitation to heparin production is that it depends on a single animal species and potential problems have been associated with animal-derived heparin. The contamination crisis in 2008 led to a search for new animal sources and the investigation of non-animal sources of heparin. Over the past 5 years, new animal sources, chemical, and chemoenzymatic methods have been introduced to prepare heparin-based drugs. In this review, we describe advances in the preparation and synthesis of heparin and related products.
Collapse
Affiliation(s)
- Sultan N Baytas
- Department of Chemistry & Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Robert J Linhardt
- Department of Chemistry & Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
34
|
Yan L, Brodfueher P, Fu L, Zhang F, Chen S, Dordick JS, Linhardt RJ. Chemical O-sulfation of N-sulfoheparosan: a route to rare N-sulfo-3-O-sulfoglucosamine and 2-O-sulfoglucuronic acid. Glycoconj J 2020; 37:589-597. [PMID: 32778986 DOI: 10.1007/s10719-020-09939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Heparosan, the capsular polysaccharide of E. coli K5 is currently used as the starting material in the chemoenzymatic synthesis of heparan sulfate and the structurally related anticoagulant drug heparin. Base hydrolysis of N-acetyl groups and their subsequent N-sulfonation, are used to prepare N-sulfoheparosan an intermediate of biosynthesis. In the present study, when excess sulfonation reagent was used during N-sulfonation, some O-sulfation also took place in the N-sulfoheparosan product. After a nearly full digestion, a hexasaccharide fraction exhibited resistance to heparin lyase II. Excessive digestion by heparin lyase II and structural identification by NMR and mass spectroscopy indicated that the resistant hexasaccharide fraction has two structures, ΔUA-GlcNS-GlcA2S-GlcNS-GlcA-GlcNS and ΔUA-GlcNS-GlcA- GlcNS3S-GlcA-GlcNS in similar amounts. The 2-sulfated structure exhibited partial resistance to heparin lyase II; however the structure of ΔUA-GlcNS-GlcA-GlcNS3S was completely resistant to heparin lyase II.
Collapse
Affiliation(s)
- Lufeng Yan
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Paul Brodfueher
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Li Fu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
35
|
Elli S, Stancanelli E, Wang Z, Petitou M, Liu J, Guerrini M. Degeneracy of the Antithrombin Binding Sequence in Heparin: 2-O-Sulfated Iduronic Acid Can Replace the Critical Glucuronic Acid. Chemistry 2020; 26:11814-11818. [PMID: 32515841 DOI: 10.1002/chem.202001346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/07/2022]
Abstract
Heparin binds to and activates antithrombin (AT) through a specific pentasaccharide sequence, in which a trisaccharide subsite, containing glucuronic acid (GlcA), has been considered as the initiator in the recognition of the polysaccharide by the protein. Recently it was suggested that sulfated iduronic acid (IdoA2S) could replace this "canonical" GlcA. Indeed, a heparin octasaccharidic sequence obtained by chemoenzymatic synthesis, in which GlcA is replaced with IdoA2S, has been found to similarly bind to and activate antithrombin. By using saturation-transfer-difference (STD) NMR, NOEs, transferred NOEs (tr-NOEs) NMR and molecular dynamics, we show that, upon binding to AT, this IdoA2S unit develops comparable interactions with AT as GlcA. Interestingly, two IdoA2S units, both present in a 1 C4 -2 S0 equilibrium in the unbound saccharide, shift to full 2 S0 and full 1 C4 upon binding to antithrombin, providing the best illustration of the critical role of iduronic acid conformational flexibility in biological systems.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Eduardo Stancanelli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Maurice Petitou
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| |
Collapse
|
36
|
Horton M, Su G, Yi L, Wang Z, Xu Y, Pagadala V, Zhang F, Zaharoff DA, Pearce K, Linhardt RJ, Liu J. Construction of heparan sulfate microarray for investigating the binding of specific saccharide sequences to proteins. Glycobiology 2020; 31:188-199. [PMID: 32681173 DOI: 10.1093/glycob/cwaa068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate (HS) is a heterogeneous, extracellular glycan that interacts with proteins and other molecules affecting many biological processes. The specific binding motifs of HS interactions are of interest, but have not been extensively characterized. Glycan microarrays are valuable tools that can be used to probe the interactions between glycans and their ligands while relying on relatively small amounts of samples. Recently, chemoenzymatic synthesis of HS has been employed to produce specific HS structures that can otherwise be difficult to produce. In this study, a microarray of diverse chemoenzymatically synthesized HS structures was developed and HS interactions were characterized. Fluorescently labeled antithrombin III (AT) and fibroblast growth factor-2 (FGF2) were screened against 95 different HS structures under three different printing concentrations to confirm the utility of this microarray. Specific sulfation patterns were found to be important for binding to these proteins and results are consistent with previous specificity studies. Furthermore, the binding affinities (KD,surf) of AT and FGF2 to multiple HS structures were determined using a microarray technique and is consistent with previous reports. Lastly, the 95-compound HS microarray was used to determine the distinct binding profiles for interleukin 12 and platelet factor 4. This technique is ideal for rapid expansion and will be pivotal to the high-throughput characterization of biologically important structure/function relationships.
Collapse
Affiliation(s)
- Maurice Horton
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Lin Yi
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, USA
| | - Ken Pearce
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
37
|
La CC, Takeuchi LE, Abbina S, Vappala S, Abbasi U, Kizhakkedathu JN. Targeting Biological Polyanions in Blood: Strategies toward the Design of Therapeutics. Biomacromolecules 2020; 21:2595-2621. [DOI: 10.1021/acs.biomac.0c00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Anand S, Mardhekar S, Raigawali R, Mohanta N, Jain P, D. Shanthamurthy C, Gnanaprakasam B, Kikkeri R. Continuous-Flow Accelerated Sulfation of Heparan Sulfate Intermediates. Org Lett 2020; 22:3402-3406. [DOI: 10.1021/acs.orglett.0c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Nirmala Mohanta
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | | | - Boopathy Gnanaprakasam
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| |
Collapse
|
39
|
Chiu LT, Sabbavarapu NM, Lin WC, Fan CY, Wu CC, Cheng TJR, Wong CH, Hung SC. Trisaccharide Sulfate and Its Sulfonamide as an Effective Substrate and Inhibitor of Human Endo- O-sulfatase-1. J Am Chem Soc 2020; 142:5282-5292. [PMID: 32083852 DOI: 10.1021/jacs.0c00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human endo-O-sulfatases (Sulf-1 and Sulf-2) are extracellular heparan sulfate proteoglycan (HSPG)-specific 6-O-endosulfatases, which regulate a multitude of cell-signaling events through heparan sulfate (HS)-protein interactions and are associated with the onset of osteoarthritis. These endo-O-sulfatases are transported onto the cell surface to liberate the 6-sulfate groups from the internal d-glucosamine residues in the highly sulfated subdomains of HSPGs. In this study, a variety of HS oligosaccharides with different chain lengths and N- and O-sulfation patterns via chemical synthesis were systematically studied about the substrate specificity of human Sulf-1 employing the fluorogenic substrate 4-methylumbelliferyl sulfate (4-MUS) in a competition assay. The trisaccharide sulfate IdoA2S-GlcNS6S-IdoA2S was found to be the minimal-size substrate for Sulf-1, and substitution of the sulfate group at the 6-O position of the d-glucosamine unit with the sulfonamide motif effectively inhibited the Sulf-1 activity with IC50 = 0.53 μM, Ki = 0.36 μM, and KD = 12 nM.
Collapse
Affiliation(s)
- Li-Ting Chiu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, 155, Section 2, Linong Street, Taipei 115, Taiwan
| | | | - Wei-Chen Lin
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chiao-Yuan Fan
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chih-Chung Wu
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road BCC 338, La Jolla, California 92037, United States
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan.,Department of Applied Science, National Taitung University, 369, Section 2, University Road, Taitung 95092, Taiwan
| |
Collapse
|
40
|
Abstract
Glycosaminoglycans (GAGs) are a family of structurally complex heteropolysaccharides composed of alternating hexosamine and uronic acid or galatose residue that include hyaluronan, chondroitin sulfate and dermatan sulfate, heparin and heparan sulfate, and keratan sulfate. GAGs display a range of critical biological functions, including regulating cell-cell interactions and cell proliferation, inhibiting enzymes, and activating growth factor receptors during various metabolic processes. Indeed, heparin is a widely used GAG-based anticoagulant drug. Unfortunately, naturally derived GAGs are highly heterogeneous, limiting studies of their structure-activity relationships and even resulting in safety concerns. For example, the heparin contamination crisis in 2007 reportedly killed more than a hundred people in the United States. Unfortunately, the chemical synthesis of GAGs, or their oligosaccharides, based on repetitive steps of protection, activation, coupling, and deprotection, is incredibly challenging. Recent advances in chemoenzymatic synthesis integrate the flexibility of chemical derivatization with enzyme-catalyzed reactions, mimicking the biosynthetic pathway of GAGs, and represent a promising strategy to solve many of these synthetic challenges. In this critical Account, we examine the recent progress made, in our laboratory and by others, in the chemoenzymatic synthesis of GAGs, focusing on heparan sulfate and heparin, a class of GAGs with profound physiological and pharmacological importance. A major challenge for the penetration of the heparin market by homogeneous heparin products is their cost-effective large-scale synthesis. In the past decade, we and our collaborators have systematically explored the key factors that impact this process, including better enzyme expression, improved biocatalysts using protein engineering and immobilization, low cost production of enzyme cofactors, optimization of the order of enzymatic transformations, as well as development of efficient technologies, such as using ultraviolet absorbing or fluorous tags, to detect and purify synthetic intermediates. These improvements have successfully resulted in multigram-scale synthesis of low-molecular-weight heparins (LMWHs), with some showing excellent anticoagulant activity and even resulting in more effective protamine reversal than commercial, animal-sourced LMWH drugs. Sophisticated structural analysis is another challenge for marketing heparins, since impurities and contaminants can be present that are difficult to distinguish from heparin drug products. The availability of the diverse library of structurally defined heparin oligosaccharides has facilitated the systematic analytical studies undertaken by our group, resulting in important information for characterizing diverse heparin products, safeguarding their quality. Recently, a series of chemically modified nucleotide sugars have been investigated in our laboratory and have been accepted by synthases to obtain novel GAGs and GAG oligosaccharides. These include fluoride and azido regioselectively functionalized sugars and stable isotope-enriched GAGs and GAG oligosaccharides, critical for better understanding the biological roles of these important biopolymers. We speculate that the repertoire of unnatural acceptors and nucleotide sugar donors will soon be expanded to afford many new GAG analogues with new biological and pharmacological properties including improved specificity and metabolic stability.
Collapse
Affiliation(s)
- Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
41
|
Ding Y, Vara Prasad CVNS, Wang B. Glycosylation on Unprotected or Partially Protected Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yili Ding
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| | | | - Bingyun Wang
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| |
Collapse
|
42
|
Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140301. [DOI: 10.1016/j.bbapap.2019.140301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|
43
|
Nguyen TH, Xu Y, Brandt S, Mandelkow M, Raschke R, Strobel U, Delcea M, Zhou W, Liu J, Greinacher A. Characterization of the interaction between platelet factor 4 and homogeneous synthetic low molecular weight heparins. J Thromb Haemost 2020; 18:390-398. [PMID: 31573759 PMCID: PMC7236814 DOI: 10.1111/jth.14657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/25/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Heparins are usually produced from animal tissues. It is now possible to synthesize heparins. This provides the abilities to overcome shortages of heparin, to optimize biological effects, and to reduce adverse drug effects. Heparins interact with platelet factor 4 (PF4), which can induce an immune response causing thrombocytopenia. This side effect is called heparin-induced thrombocytopenia (HIT). We characterized the interaction of PF4 and HIT antibodies with oligosaccharides of 6-, 8-, 10-, and 12-mer size and a hypersulfated 12-mer (S12-mer). METHODS We utilized multiple methodologies including isothermal calorimetry, circular dichroism spectroscopy, single molecule force spectroscopy (SMFS), enzyme immunosorbent assay (EIA), and platelet aggregation test to characterize the interaction of synthetic heparin analogs with PF4 and anti-PF4/heparin antibodies. RESULTS The synthetic heparin-like compounds display stronger binding characteristics to PF4 than animal-derived heparins of corresponding lengths. Upon complexation with PF4, 6-mer and S12-mer heparins showed much lower enthalpy, induced less conformational changes in PF4, and interacted with weaker forces than 8-, 10-, and 12-mer heparins. Anti-PF4/heparin antibodies bind more weakly to complexes formed between PF4 and heparins ≤ 8-mer than with complexes formed between PF4 and heparins ≥ 10-mer. Addition of one sulfate group to the 12-mer resulted in a S12-mer, which showed substantial changes in its binding characteristics to PF4. CONCLUSIONS We provide a template for characterizing interactions of newly developed heparin-based anticoagulant drugs with proteins, especially PF4 and the resulting potential antigenicity.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
- Institute for Bioprocessing and Analytical Measurement Techniques, Heiligenstadt, Germany
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Eshelman, Chapel Hill, NC, USA
| | - Sven Brandt
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
| | - Martin Mandelkow
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
| | - Ricarda Raschke
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Strobel
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
- Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Eshelman, Chapel Hill, NC, USA
| | - Wen Zhou
- Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Jian Liu
- Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
44
|
Zhao J, Zhu Y, Song X, Xiao Y, Su G, Liu X, Wang Z, Xu Y, Liu J, Eliezer D, Ramlall TF, Lippens G, Gibson J, Zhang F, Linhardt RJ, Wang L, Wang C. 3‐
O
‐Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY USA
| | - Yanan Zhu
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Tampa USA
| | - Xuehong Song
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Tampa USA
| | - Yuanyuan Xiao
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North Carolina Chapel Hill USA
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North Carolina Chapel Hill USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North Carolina Chapel Hill USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North Carolina Chapel Hill USA
| | - David Eliezer
- Department of BiochemistryProgram in Structural BiologyWeill Cornell Medical College New York NY USA
| | - Trudy F. Ramlall
- Department of BiochemistryProgram in Structural BiologyWeill Cornell Medical College New York NY USA
| | - Guy Lippens
- Toulouse Biotechnology InstituteCNRS, INRAINSAUniversity of Toulouse 31077 Toulouse France
| | - James Gibson
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY USA
- Department of Chemistry and Chemical BiologyRensselaer Polytechnic Institute Troy NY USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY USA
- Department of Chemistry and Chemical BiologyRensselaer Polytechnic Institute Troy NY USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Tampa USA
- Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South Florida Tampa USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy NY USA
- Department of Biological SciencesRensselaer Polytechnic Institute Troy NY USA
- Department of Chemistry and Chemical BiologyRensselaer Polytechnic Institute Troy NY USA
| |
Collapse
|
45
|
Zhao J, Zhu Y, Song X, Xiao Y, Su G, Liu X, Wang Z, Xu Y, Liu J, Eliezer D, Ramlall TF, Lippens G, Gibson J, Zhang F, Linhardt RJ, Wang L, Wang C. 3-O-Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angew Chem Int Ed Engl 2020; 59:1818-1827. [PMID: 31692167 PMCID: PMC6982596 DOI: 10.1002/anie.201913029] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Indexed: 12/31/2022]
Abstract
Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1-/- (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau-HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Yanan Zhu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Yuanyuan Xiao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States
| | - David Eliezer
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York, United States
| | - Trudy F. Ramlall
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York, United States
| | - Guy Lippens
- Toulouse Biotechnology Institute, CNRS, INRA, INSA, University of Toulouse, 31077 Toulouse, France
| | - James Gibson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, United States
- Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States
| |
Collapse
|
46
|
Li J, Cai C, Wang L, Yang C, Jiang H, Li M, Xu D, Li G, Li C, Yu G. Chemoenzymatic Synthesis of Heparan Sulfate Mimetic Glycopolymers and Their Interactions with the Receptor for Advanced Glycation End-Product. ACS Macro Lett 2019; 8:1570-1574. [PMID: 35619400 DOI: 10.1021/acsmacrolett.9b00780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heparan sulfate (HS) is a sulfated polysaccharide presenting on the animal cell surface and in the extracellular matrix that plays a critical role in a range of different biological processes. The receptor for advanced glycation end-products (RAGE), as a major receptor linked to numerous diseases, can interact with HS to activate signaling of RAGE ligands in the disease process. We herein report a concise chemoenzymatic approach for the synthesis of HS-mimetic glycopolymers as RAGE antagonists. Glycopolymer with GlcA units was chemically synthesized and subsequently modified by enzymatic elongation and chemical sulfation. Six HS-mimetic glycopolymers with pendant sulfated di-, tri-, or tetrasaccharides were successfully prepared for evaluation of their interaction with RAGE. Upon evaluation, the HS-mimetic glycopolymer decorated with overall sulfated trisaccharides was determined to have the highest binding affinity with RAGE. These findings would promote the further exploration of HS-RAGE interactions and the development of RAGE antagonists.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lihao Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, SUNY, Buffalo, New York 14214, United States
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, SUNY, Buffalo, New York 14214, United States
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
47
|
Alibay I, Bryce RA. Ring Puckering Landscapes of Glycosaminoglycan-Related Monosaccharides from Molecular Dynamics Simulations. J Chem Inf Model 2019; 59:4729-4741. [PMID: 31609614 DOI: 10.1021/acs.jcim.9b00529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The conformational flexibility of the glycosaminoglycans (GAGs) is known to be key in their binding and biological function, for example in regulating coagulation and cell growth. In this work, we employ enhanced sampling molecular dynamics simulations to probe the ring conformations of GAG-related monosaccharides, including a range of acetylated and sulfated GAG residues. We first perform unbiased MD simulations of glucose anomers and the epimers glucuronate and iduronate. These calculations indicate that in some cases, an excess of 15 μs is required for adequate sampling of ring pucker due to the high energy barriers between states. However, by applying our recently developed msesMD simulation method (multidimensional swarm-enhanced sampling molecular dynamics), we were able to quantitatively and rapidly reproduce these ring pucker landscapes. From msesMD simulations, the puckering free energy profiles were then compared for 15 further monosaccharides related to GAGs; this includes to our knowledge the first simulation study of sulfation effects on β-GalNAc ring puckering. For the force field employed, we find that in general the calculated pucker free energy profiles for sulfated sugars were similar to the corresponding unsulfated profiles. This accords with recent experimental studies suggesting that variation in ring pucker of sulfated GAG residues is primarily dictated by interactions with surrounding residues rather than by intrinsic conformational preference. As an exception to this, however, we predict that 4-O-sulfation of β-GalNAc leads to reduced ring rigidity, with a significant lowering in energy of the 1C4 ring conformation; this observation may have implications for understanding the structural basis of the biological function of β-GalNAc-containing glycosaminoglycans such as dermatan sulfate.
Collapse
Affiliation(s)
- Irfan Alibay
- Division of Pharmacy and Optometry, School of Health Sciences , University of Manchester , Oxford Road , Manchester M13 9PT , U.K.,Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences , University of Manchester , Oxford Road , Manchester M13 9PT , U.K
| |
Collapse
|
48
|
Devlin A, Mycroft-West C, Procter P, Cooper L, Guimond S, Lima M, Yates E, Skidmore M. Tools for the Quality Control of Pharmaceutical Heparin. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E636. [PMID: 31557911 PMCID: PMC6843833 DOI: 10.3390/medicina55100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022]
Abstract
Heparin is a vital pharmaceutical anticoagulant drug and remains one of the few naturally sourced pharmaceutical agents used clinically. Heparin possesses a structural order with up to four levels of complexity. These levels are subject to change based on the animal or even tissue sources that they are extracted from, while higher levels are believed to be entirely dynamic and a product of their surrounding environments, including bound proteins and associated cations. In 2008, heparin sources were subject to a major contamination with a deadly compound-an over-sulphated chondroitin sulphate polysaccharide-that resulted in excess of 100 deaths within North America alone. In consideration of this, an arsenal of methods to screen for heparin contamination have been applied, based primarily on the detection of over-sulphated chondroitin sulphate. The targeted nature of these screening methods, for this specific contaminant, may leave contamination by other entities poorly protected against, but novel approaches, including library-based chemometric analysis in concert with a variety of spectroscopic methods, could be of great importance in combating future, potential threats.
Collapse
Affiliation(s)
- Anthony Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Courtney Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Lynsay Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Scott Guimond
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Marcelo Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Edwin Yates
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Mark Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
49
|
Dey S, Lo HJ, Wong CH. An Efficient Modular One-Pot Synthesis of Heparin-Based Anticoagulant Idraparinux. J Am Chem Soc 2019; 141:10309-10314. [PMID: 31244187 DOI: 10.1021/jacs.9b03266] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Idraparinux is a fully O-sulfated α-methyl glycoside of heparin pentasaccharide motif known to interact with the antithrombin III domain and act as anticoagulant. The current most effective synthesis of Idraparinux is complicated and nonstereoselective, requiring numerous stepwise procedures with low yields. We report here an efficient modular one-pot synthesis of Idraparinux involving the use of a glycosyl phosphate with 6- O- tert-butyl diphenyl silyl group and a d-glucuronic acid-containing disaccharide thioglycoside with 6- O-acetyl group as donor building blocks for the α-directing one-pot glycosylations with an l-iduronic acid-containing disaccharide acceptor building block. The uronic acid was incorporated in a disaccharide module used in the one-pot synthesis to avoid the complicated late-stage installation of these acidic sugars. The one-pot synthesis of Idraparinux demonstrated here is an effective strategy and should be applicable to the modular assembly of other heparan sulfates with regiodefined sulfation pattern for functional study.
Collapse
Affiliation(s)
- Supriya Dey
- Department of Chemistry , Scripps Research , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Hong-Jay Lo
- Department of Chemistry , Scripps Research , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , Scripps Research , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.,The Genomics Research Center , Academia Sinica , 128 Academia Road, Section 2 , Taipei 115 , Taiwan
| |
Collapse
|
50
|
Denys A, Allain F. The Emerging Roles of Heparan Sulfate 3- O-Sulfotransferases in Cancer. Front Oncol 2019; 9:507. [PMID: 31249810 PMCID: PMC6582251 DOI: 10.3389/fonc.2019.00507] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Alteration in the expression of heparan sulfate (HS)-modifying enzymes has been frequently observed in cancer. Consequently, dysregulation of the HS biosynthetic machinery results in dramatic changes in the HS structure, thereby impacting a range of pivotal cellular processes involved in tumorigenesis and cancer progression including proliferation, migration, apoptosis, and immune escape. HS 3-O-sulfotransferases (HS3STs) catalyse the maturation step of glucosaminyl 3-O-sulfation within HS chains. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a rare modification and only a few biological processes have been described to be influenced by 3-O-sulfated HS. An aberrant expression of HS3STs has been reported in a variety of cancers. Thus, it was suggested that changes in the expression of these enzymes as a result of tumorigenesis or tumor growth may critically influence cancer cell behavior. In accordance with this assumption, a number of studies have documented the epigenetic repression of HS3ST2 and HS3ST3A in many cancers. However, the situation is not so clear, and there is accumulating evidence that HS3ST2, HS3ST3A, HS3ST3B, and HS3ST4 may also act as tumor-promoting enzymes in a number of cancer cells depending on their phenotypes and molecular signatures. In this mini-review, we focus on the recent insights regarding the abnormal expression of HS3STs in cancer and discuss the functional consequences on tumor cell behavior. In term of clinical outcome, further investigations are needed to explore the potential value of HS3STs and/or their 3-O-sulfated products as targets for therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Agnès Denys
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|