1
|
Hervø-Hansen S, Polák J, Tomandlová M, Dzubiella J, Heyda J, Lund M. Salt Effects on Caffeine across Concentration Regimes. J Phys Chem B 2023; 127:10253-10265. [PMID: 38058160 DOI: 10.1021/acs.jpcb.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Salts affect the solvation thermodynamics of molecules of all sizes; the Hofmeister series is a prime example in which different ions lead to salting-in or salting-out of aqueous proteins. Early work of Tanford led to the discovery that the solvation of molecular surface motifs is proportional to the solvent accessible surface area (SASA), and later studies have shown that the proportionality constant varies with the salt concentration and type. Using multiscale computer simulations combined with vapor-pressure osmometry on caffeine-salt solutions, we reveal that this SASA description captures a rich set of molecular driving forces in tertiary solutions at changing solute and osmolyte concentrations. Central to the theoretical work is a new potential energy function that depends on the instantaneous surface area, salt type, and concentration. Used in, e.g., Monte Carlo simulations, this allows for a highly efficient exploration of many-body interactions and the resulting thermodynamics at elevated solute and salt concentrations.
Collapse
Affiliation(s)
- Stefan Hervø-Hansen
- Division of Computational Chemistry, Department of Chemistry, Lund University, Lund SE 221 00, Sweden
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic
| | - Markéta Tomandlová
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs Universität Freiburg, Hermann-Herder-Straße 3, Freiburg Im Breisgau D-79104, Germany
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic
| | - Mikael Lund
- Division of Computational Chemistry, Department of Chemistry, Lund University, Lund SE 221 00, Sweden
- Lund Institute of Advance Neutron and X-ray Science (LINXS), Lund SE 223 70, Sweden
| |
Collapse
|
2
|
Zytkiewicz E, Shkel IA, Cheng X, Rupanya A, McClure K, Karim R, Yang S, Yang F, Record MT. Quantifying Amide-Aromatic Interactions at Molecular and Atomic Levels: Experimentally Determined Enthalpic and Entropic Contributions to Interactions of Amide sp 2O, N, C and sp 3C Unified Atoms with Naphthalene sp 2C Atoms in Water. Biochemistry 2023; 62:2841-2853. [PMID: 37695675 DOI: 10.1021/acs.biochem.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In addition to amide hydrogen bonds and the hydrophobic effect, interactions involving π-bonded sp2 atoms of amides, aromatics, and other groups occur in protein self-assembly processes including folding, oligomerization, and condensate formation. These interactions also occur in aqueous solutions of amide and aromatic compounds, where they can be quantified. Previous analysis of thermodynamic coefficients quantifying net-favorable interactions of amide compounds with other amides and aromatics revealed that interactions of amide sp2O with amide sp2N unified atoms (presumably C═O···H-N hydrogen bonds) and amide/aromatic sp2C (lone pair π, n-π*) are particularly favorable. Sp3C-sp3C (hydrophobic), sp3C-sp2C (hydrophobic, CH-π), sp2C-sp2C (hydrophobic, π-π), and sp3C-sp2N interactions are favorable, sp2C-sp2N interactions are neutral, while sp2O-sp2O and sp2N-sp2N self-interactions and sp2O-sp3C interactions are unfavorable. Here, from determinations of favorable effects of 14 amides on naphthalene solubility at 10, 25, and 45 °C, we dissect amide-aromatic interaction free energies into enthalpic and entropic contributions and find these vary systematically with amide composition. Analysis of these results yields enthalpic and entropic contributions to intrinsic strengths of interactions of amide sp2O, sp2N, sp2C, and sp3C unified atoms with aromatic sp2C atoms. For each interaction, enthalpic and entropic contributions have the same sign and are much larger in magnitude than the interaction free energy itself. The amide sp2O-aromatic sp2C interaction is enthalpy-driven and entropically unfavorable, consistent with direct chemical interaction (e.g., lone pair-π), while amide sp3C- and sp2C-aromatic sp2C interactions are entropy-driven and enthalpically unfavorable, consistent with hydrophobic effects. These findings are relevant for interactions involving π-bonded sp2 atoms in protein processes.
Collapse
Affiliation(s)
- Emily Zytkiewicz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Irina A Shkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xian Cheng
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Anuchit Rupanya
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kate McClure
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rezwana Karim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sumin Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Felix Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M Thomas Record
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Zytkiewicz E, Shkel IA, Cheng X, Rupanya A, McClure K, Karim R, Yang S, Yang F, Record MT. Quantifying Amide-Aromatic Interactions at Molecular and Atomic Levels: Experimentally-determined Enthalpic and Entropic Contributions to Interactions of Amide sp 2 O, N, C and sp 3 C Unified Atoms with Naphthalene sp 2 C Atoms in Water. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548600. [PMID: 37503153 PMCID: PMC10370101 DOI: 10.1101/2023.07.12.548600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In addition to amide hydrogen bonds and the hydrophobic effect, interactions involving π-bonded sp 2 atoms of amides, aromatics and other groups occur in protein self-assembly processes including folding, oligomerization and condensate formation. These interactions also occur in aqueous solutions of amide and aromatic compounds, where they can be quantified. Previous analysis of thermodynamic coefficients quantifying net-favorable interactions of amide compounds with other amides and aromatics revealed that interactions of amide sp 2 O with amide sp 2 N unified atoms (presumably C=O···H-N hydrogen bonds) and amide/aromatic sp 2 C (lone pair-π, n-π * ) are particularly favorable. Sp 3 C-sp 3 C (hydrophobic), sp 3 C-sp 2 C (hydrophobic, CH-π), sp 2 C-sp 2 C (hydrophobic, π-π) and sp 3 C-sp 2 N interactions are favorable, sp 2 C-sp 2 N interactions are neutral, while sp 2 O-sp 2 O and sp 2 N-sp 2 N self-interactions and sp 2 O-sp 3 C interactions are unfavorable. Here, from determinations of favorable effects of fourteen amides on naphthalene solubility at 10, 25 and 45 °C, we dissect amide-aromatic interaction free energies into enthalpic and entropic contributions and find these vary systematically with amide composition. Analysis of these results yields enthalpic and entropic contributions to intrinsic strengths of interactions of amide sp 2 O, sp 2 N, sp 2 C and sp 3 C unified atoms with aromatic sp 2 C atoms. For each interaction, enthalpic and entropic contributions have the same sign and are much larger in magnitude than the interaction free energy itself. The amide sp 2 O-aromatic sp 2 C interaction is enthalpy-driven and entropically unfavorable, consistent with direct chemical interaction (e.g. lone pair-π) while amide sp 3 C- and sp 2 C-aromatic sp 2 C interactions are entropy-driven and enthalpically unfavorable, consistent with hydrophobic effects. These findings are relevant for interactions involving π-bonded sp 2 atoms in protein processes. Table of Contents Graphic
Collapse
Affiliation(s)
- Emily Zytkiewicz
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Irina A. Shkel
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Xian Cheng
- Biophysics Program, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Anuchit Rupanya
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Kate McClure
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Rezwana Karim
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Sumin Yang
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - Felix Yang
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
- Biophysics Program, University of Wisconsin – Madison, Madison, Wisconsin 53706
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53706
| |
Collapse
|
4
|
Ajayi S, Asakereh I, Rezasoltani H, Davidson D, Khajehpour M. Does Urea Preferentially Interact with Amide Moieties or Nonpolar Sidechains? A Question Answered Through a Judicious Selection of Model Systems. Chemphyschem 2022; 24:e202200731. [PMID: 36478636 DOI: 10.1002/cphc.202200731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The transfer model suggests that urea unfolds proteins mainly by increasing the solubility of the amide backbone, probably through urea-induced increase in hydrogen bonding. Other studies suggest that urea addition increases the magnitude of solvent-solute van der Waals interactions, which increases the solubility of nonpolar sidechains. More recent analyses hypothesize that urea has a similar effect in increasing the solubility of backbone and sidechain groups. In this work, we compare the effects of urea addition on the solvation of amides and alkyl groups. At first, we study the effects of urea addition upon solvent hydrogen bonding acidity and basicity through the perturbation in the fluorescence spectrum of probes 1-AN and 1-DMAN. Our results demonstrate that the solvent's hydrogen bonding properties are minimally affected by urea addition. Subsequently, we show that urea addition does not perturb the intra-molecular hydrogen bonding in salicylic acid significantly. Finally, we investigate how urea preferentially interacts with amide and alkyl groups moieties in water by comparing the effects of urea addition upon the solubility of acetaminophen and 4-tertbutylphenol. We show that urea affects amide and t-butyl solubility (lowers the transfer free energy of both amide (backbone) and alkyl (sidechain) groups) in a similar fashion. In other words, preferential interaction of urea with both moieties contributes to protein denaturation.
Collapse
Affiliation(s)
- Simisola Ajayi
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Iman Asakereh
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Hanieh Rezasoltani
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - David Davidson
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Mazdak Khajehpour
- Department of Chemistry, the, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
5
|
MAREKHA B, Hunger J. A single methyl group drastically changes urea's hydration dynamics. J Chem Phys 2022; 156:164504. [DOI: 10.1063/5.0085461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The amphiphilicity and denaturation efficiency of urea can be tuned via alkylation. Although the interaction of alkylureas with water and proteins has been studied in detail, the hydration of 1-methylurea has remained elusive, precluding the isolation of the effect of an individual methyl group. Here, we study water dynamics in the hydration shell of 1-methylurea (1-MU) using infrared absorption and ultrafast infrared spectroscopies. We find that 1-MU hardly affects the hydrogen-bond distribution of water as probed by the OD stretching vibration of HOD molecules. Polarization resolved infrared pump-probe experiments reveal that 1-MU slows down the rotational dynamics of up to 3 water molecules in its hydration shell. Comparison to earlier results for other alkylureas suggests that further alkylation does not necessarily slow down the rotational dynamics of additional water molecules. Two-dimensional infrared experiments show that 1-MU markedly slows down the hydrogen-bond fluctuation dynamics of water, yet similar to what has been found for urea and dimethylureas. Remarkably, (alkyl-) ureas that share a similar effect on water's hydrogen-bond fluctuation dynamics share a similar (modest) protein denaturation tendency. As such, not only the hydrophobicity but also hydration of hydrophilic fragments of alkylureas may be relevant to explain their function towards biomolecules.
Collapse
Affiliation(s)
- Bogdan MAREKHA
- Max-Planck-Institute for Medical Research Department of Biomolecular Mechanisms, Germany
| | - Johannes Hunger
- Molecular Spectroscopy, Max Planck Institute for Polymer Research, Germany
| |
Collapse
|
6
|
How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein. J Mol Biol 2022; 434:167562. [PMID: 35351518 PMCID: PMC9400470 DOI: 10.1016/j.jmb.2022.167562] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
E. coli single-stranded-DNA binding protein (EcSSB) displays nearest-neighbor (NN) and non-nearest-neighbor (NNN)) cooperativity in binding ssDNA during genome maintenance. NNN cooperativity requires the intrinsically-disordered linkers (IDL) of the C-terminal tails. Potassium glutamate (KGlu), the primary E. coli salt, promotes NNN-cooperativity, while KCl inhibits it. We find that KGlu promotes compaction of a single polymeric SSB-coated ssDNA beyond what occurs in KCl, indicating a link of compaction to NNN-cooperativity. EcSSB also undergoes liquid-liquid phase separation (LLPS), inhibited by ssDNA binding. We find that LLPS, like NNN-cooperativity, is promoted by increasing [KGlu] in the physiological range, while increasing [KCl] and/or deletion of the IDL eliminate LLPS, indicating similar interactions in both processes. From quantitative determinations of interactions of KGlu and KCl with protein model compounds, we deduce that the opposing effects of KGlu and KCl on SSB LLPS and cooperativity arise from their opposite interactions with amide groups. KGlu interacts unfavorably with the backbone (especially Gly) and side chain amide groups of the IDL, promoting amide-amide interactions in LLPS and NNN-cooperativity. By contrast, KCl interacts favorably with these amide groups and therefore inhibits LLPS and NNN-cooperativity. These results highlight the importance of salt interactions in regulating the propensity of proteins to undergo LLPS.
Collapse
|
7
|
Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement. Proc Natl Acad Sci U S A 2021; 118:2112021118. [PMID: 34404723 DOI: 10.1073/pnas.2112021118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cosolvent effect arises from the interaction of cosolute molecules with a protein and alters the equilibrium between native and unfolded states. Denaturants shift the equilibrium toward the latter, while osmolytes stabilize the former. The molecular mechanism whereby cosolutes perturb protein stability is still the subject of considerable debate. Probing the molecular details of the cosolvent effect is experimentally challenging as the interactions are very weak and transient, rendering them invisible to most conventional biophysical techniques. Here, we probe cosolute-protein interactions by means of NMR solvent paramagnetic relaxation enhancement together with a formalism we recently developed to quantitatively describe, at atomic resolution, the energetics and dynamics of cosolute-protein interactions in terms of a concentration normalized equilibrium average of the interspin distance, [Formula: see text], and an effective correlation time, τc The system studied is the metastable drkN SH3 domain, which exists in dynamic equilibrium between native and unfolded states, thereby permitting us to probe the interactions of cosolutes with both states simultaneously under the same conditions. Two paramagnetic cosolute denaturants were investigated, one neutral and the other negatively charged, differing in the presence of a carboxyamide group versus a carboxylate. Our results demonstrate that attractive cosolute-protein backbone interactions occur largely in the unfolded state and some loop regions in the native state, electrostatic interactions reduce the [Formula: see text] values, and temperature predominantly impacts interactions with the unfolded state. Thus, destabilization of the native state in this instance arises predominantly as a consequence of interactions of the cosolutes with the unfolded state.
Collapse
|
8
|
Tao YF, He YJ, Ye JZ, Yang X, Yang YY, Xie GG, Liu LX, Du GB, Zhang H, Zhou B. Cochineal quinone carbon dot synthesis via a keto–enol tautomerism strategy and their intermolecular photo-induced cross-redox interactions with tetracycline. NEW J CHEM 2021. [DOI: 10.1039/d1nj02701h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific molecular recognition of tetracycline by carminic acid-formed carbon dots taking advantage of the common quinone molecular structural unit.
Collapse
Affiliation(s)
- Yun-Feng Tao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
| | - Yu-Juan He
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
| | - Jin-Zhi Ye
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
| | - Xiao Yang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
| | - Ying-Ying Yang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
| | - Ge-Ge Xie
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
| | - Lan-Xiang Liu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Guan-Ben Du
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
| | - Hong Zhang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, P. R. China
| | - Bei Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Yunnan Province Key Lab of Wood Adhesives and Glued Products, College of Life Science, Southwest Forestry University, Kunming 650224, P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
9
|
Stadmiller SS, Pielak GJ. Protein-complex stability in cells and in vitro under crowded conditions. Curr Opin Struct Biol 2020; 66:183-192. [PMID: 33285342 DOI: 10.1016/j.sbi.2020.10.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022]
Abstract
Biology is beginning to appreciate the effects of the crowded and complex intracellular environment on the equilibrium thermodynamics and kinetics of protein folding. The next logical step involves the interactions between proteins. We review quantitative, wet-experiment based efforts aimed at understanding how and why high concentrations of small molecules, synthetic polymers, biologically relevant cosolutes and the interior of living cells affect the energetics of protein-protein interactions. We then address popular theories used to explain the effects and suggest expeditious paths for a more methodical integration of experiment and simulation.
Collapse
Affiliation(s)
- Samantha S Stadmiller
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA; Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Cheng X, Shkel IA, O'Connor K, Record MT. Experimentally determined strengths of favorable and unfavorable interactions of amide atoms involved in protein self-assembly in water. Proc Natl Acad Sci U S A 2020; 117:27339-27345. [PMID: 33087561 PMCID: PMC7959557 DOI: 10.1073/pnas.2012481117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Folding and other protein self-assembly processes are driven by favorable interactions between O, N, and C unified atoms of the polypeptide backbone and side chains. These processes are perturbed by solutes that interact with these atoms differently than water does. Amide NH···O=C hydrogen bonding and various π-system interactions have been better characterized structurally or by simulations than experimentally in water, and unfavorable interactions are relatively uncharacterized. To address this situation, we previously quantified interactions of alkyl ureas with amide and aromatic compounds, relative to interactions with water. Analysis yielded strengths of interaction of each alkylurea with unit areas of different hybridization states of unified O, N, and C atoms of amide and aromatic compounds. Here, by osmometry, we quantify interactions of 10 pairs of amides selected to complete this dataset. An analysis yields intrinsic strengths of six favorable and four unfavorable atom-atom interactions, expressed per unit area of each atom and relative to interactions with water. The most favorable interactions are sp2O-sp2C (lone pair-π, presumably n-π*), sp2C-sp2C (π-π and/or hydrophobic), sp2O-sp2N (hydrogen bonding) and sp3C-sp2C (CH-π and/or hydrophobic). Interactions of sp3C with itself (hydrophobic) and with sp2N are modestly favorable, while sp2N interactions with sp2N and with amide/aromatic sp2C are modestly unfavorable. Amide sp2O-sp2O interactions and sp2O-sp3C interactions are more unfavorable, indicating the preference of amide sp2O to interact with water. These intrinsic interaction strengths are used to predict interactions of amides with proteins and chemical effects of amides (including urea, N-ethylpyrrolidone [NEP], and polyvinylpyrrolidone [PVP]) on protein stability.
Collapse
Affiliation(s)
- Xian Cheng
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Irina A Shkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Kevin O'Connor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - M Thomas Record
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
11
|
Hadži S, Lah J. Origin of heat capacity increment in DNA folding: The hydration effect. Biochim Biophys Acta Gen Subj 2020; 1865:129774. [PMID: 33164852 DOI: 10.1016/j.bbagen.2020.129774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Understanding DNA folding thermodynamics is crucial for prediction of DNA thermal stability. It is now well established that DNA folding is accompanied by a decrease of the heat capacity ∆cp, F, however its molecular origin is not understood. In analogy to protein folding it has been assumed that this is due to dehydration of DNA constituents, however no evidence exists to support this conclusion. METHODS Here we analyze partial molar heat capacity of nucleic bases and nucleosides in aqueous solutions obtained from calorimetric experiments and calculate the hydration heat capacity contribution ∆cphyd. RESULTS We present hydration heat capacity contributions of DNA constituents and show that they correlate with the solvent accessible surface area. The average contribution for nucleic base dehydration is +0.56 J mol-1 K-1 Å-2 and can be used to estimate the ∆cp, F contribution for DNA folding. CONCLUSIONS We show that dehydration is one of the major sources contributing to the observed ∆cp, F increment in DNA folding. Other possible sources contributing to the overall ∆cp, F should be significant but appear to compensate each other to high degree. The calculated ∆cphyd for duplexes and noncanonical DNA structures agree excellently with the overall experimental ∆cp, F values. By contrast, empirical parametrizations developed for proteins result in poor ∆cphyd predictions and should not be applied to DNA folding. GENERAL SIGNIFICANCE Heat capacity is one of the main thermodynamic quantities that strongly affects thermal stability of macromolecules. At the molecular level the heat capacity in DNA folding stems from removal of water from nucleobases.
Collapse
Affiliation(s)
- S Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - J Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Christensen LFB, Nowak JS, Sønderby TV, Frank SA, Otzen DE. Quantitating denaturation by formic acid: imperfect repeats are essential to the stability of the functional amyloid protein FapC. J Biol Chem 2020; 295:13031-13046. [PMID: 32719003 PMCID: PMC7489911 DOI: 10.1074/jbc.ra120.013396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/11/2020] [Indexed: 12/27/2022] Open
Abstract
Bacterial functional amyloids are evolutionarily optimized to aggregate, so much so that the extreme robustness of functional amyloid makes it very difficult to examine their structure-function relationships in a detailed manner. Previous work has shown that functional amyloids are resistant to conventional chemical denaturants, but they dissolve in formic acid (FA) at high concentrations. However, systematic investigation requires a quantitative analysis of FA's ability to denature proteins. Amyloid formed by Pseudomonas sp. protein FapC provides an excellent model to investigate FA denaturation. It contains three imperfect repeats, and stepwise removal of these repeats slows fibrillation and increases fragmentation during aggregation. However, the link to stability is unclear. We first calibrated FA denaturation using three small, globular, and acid-resistant proteins. This revealed a linear relationship between the concentration of FA and the free energy of unfolding with a slope of mFA+pH (the combined contribution of FA and FA-induced lowering of pH), as well as a robust correlation between protein size and mFA+pH We then measured the solubilization of fibrils formed from different FapC variants with varying numbers of repeats as a function of the concentration of FA. This revealed a decline in the number of residues driving amyloid formation upon deleting at least two repeats. The midpoint of denaturation declined with the removal of repeats. Complete removal of all repeats led to fibrils that were solubilized at FA concentrations 2-3 orders of magnitude lower than the repeat-containing variants, showing that at least one repeat is required for the stability of functional amyloid.
Collapse
Affiliation(s)
| | - Jan Stanislaw Nowak
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Signe Andrea Frank
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
13
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
14
|
Quantum mechanical investigation of the nature of nucleobase-urea stacking interaction, a crucial driving force in RNA unfolding in aqueous urea. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Cheng X, Shkel IA, Molzahn C, Lambert D, Karim R, Record MT. Quantifying Interactions of Nucleobase Atoms with Model Compounds for the Peptide Backbone and Glutamine and Asparagine Side Chains in Water. Biochemistry 2018. [PMID: 29533642 DOI: 10.1021/acs.biochem.8b00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkylureas display hydrocarbon and amide groups, the primary functional groups of proteins. To obtain the thermodynamic information that is needed to analyze interactions of amides and proteins with nucleobases and nucleic acids, we quantify preferential interactions of alkylureas with nucleobases differing in the amount and composition of water-accessible surface area (ASA) by solubility assays. Using an established additive ASA-based analysis, we interpret these thermodynamic results to determine interactions of each alkylurea with five types of nucleobase unified atoms (carbonyl sp2O, amino sp3N, ring sp2N, methyl sp3C, and ring sp2C). All alkylureas interact favorably with nucleobase sp2C and sp3C atoms; these interactions become more favorable with an increasing level of alkylation of urea. Interactions with nucleobase sp2O are most favorable for urea, less favorable for methylurea and ethylurea, and unfavorable for dialkylated ureas. Contributions to overall alkylurea-nucleobase interactions from interactions with each nucleobase atom type are proportional to the ASA of that atom type with proportionality constant (interaction strength) α, as observed previously for urea. Trends in α-values for interactions of alkylureas with nucleobase atom types parallel those for corresponding amide compound atom types, offset because nucleobase α-values are more favorable. Comparisons between ethylated and methylated ureas show interactions of amide compound sp3C with nucleobase sp2C, sp3C, sp2N, and sp3N atoms are favorable while amide sp3C-nucleobase sp2O interactions are unfavorable. Strongly favorable interactions of urea with nucleobase sp2O but weakly favorable interactions with nucleobase sp3N indicate that amide sp2N-nucleobase sp2O and nucleobase sp3N-amide sp2O hydrogen bonding (NH···O═C) interactions are favorable while amide sp2N-nucleobase sp3N interactions are unfavorable. These favorable amide-nucleobase hydrogen bonding interactions are prevalent in specific protein-nucleotide complexes.
Collapse
|
16
|
Goyal S, Chattopadhyay A, Kasavajhala K, Priyakumar UD. Role of Urea–Aromatic Stacking Interactions in Stabilizing the Aromatic Residues of the Protein in Urea-Induced Denatured State. J Am Chem Soc 2017; 139:14931-14946. [DOI: 10.1021/jacs.7b05463] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siddharth Goyal
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Aditya Chattopadhyay
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Koushik Kasavajhala
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - U. Deva Priyakumar
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
17
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|