1
|
Zhao R, Wang ZX, Guo M, Li J. DFT mechanistic insights into the formation of the metal-dioxygen complex [Co(12-TMC)O 2] + using H 2O 2 as an [O 2] unit source. Dalton Trans 2024; 53:16896-16904. [PMID: 39350670 DOI: 10.1039/d4dt02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The reaction of [M(L)]n with H2O2 as an [O2] unit source and NEt3 as a base is a widely used biomimetic transition metal-peroxo and -superoxo complex [M(L)O2]n-1 synthesis method, but the mechanism and accurate stoichiometry of the synthesis remain elusive. In this study, we performed DFT calculations to deeply understand the mechanism, using the synthesis of the cobalt-peroxo complex [CoIII(12-TMC)O2]+ (12-TMC = (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane)) from the reaction of [CoII(12-TMC)]2+ and H2O2 in the presence of NEt3 as an example. The study found that cobalt-peroxo complex formation proceeds via three stages: (Stage I) the conversion of [CoII(12-TMC)]2+ and H2O2 to [CoIII(12-TMC)OH]2+ and OOH˙ radical, (Stage II) the coordination of OOH˙ to [CoII(12-TMC)]2+ to give [CoIII(12-TMC)OOH]2+, followed by deprotonation with NEt3, affording [CoIII(12-TMC)O2]+, and (Stage III) the transformation of [CoIII(12-TMC)OH]2+ which is generated in Stage I to [CoIII(12-TMC)O2]+. The overall stoichiometry of the synthesis is 2*[Co(12-TMC)]2+ + 3*H2O2 + 2*NEt3 → 2*[Co(12-TMC)O2]+ + 2*HNEt3+ + 2*H2O. In addition, compared to its analog [CoIII(TBDAP)O2]+ (TBDAP = N,N-di-tert-butyl-2,11-diaza[3.3](2,6)-pyridinophane) which is synthesized by the same method and has the same Co(III) oxidation state exhibits dioxygenase-like reactivity to nitriles, [CoIII(12-TMC)O2]+ could be inactive towards acetonitrile because the reaction severely deteriorates the coordination of the 12-TMC ligand to the Co center, which results in high reaction barriers.
Collapse
Affiliation(s)
- Ruihua Zhao
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, No. 2 Huan Shi Avenue South, Nansha District, Guangzhou, 511462, China.
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, Guangdong Province, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing, 100039, China.
| | - Mian Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jia Li
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, No. 2 Huan Shi Avenue South, Nansha District, Guangzhou, 511462, China.
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, Guangdong Province, China
| |
Collapse
|
2
|
Schneider JE, Zeng S, Anferov SW, Filatov AS, Anderson JS. Isolation and Crystallographic Characterization of an Octavalent Co 2O 2 Diamond Core. J Am Chem Soc 2024; 146:23998-24008. [PMID: 39146525 DOI: 10.1021/jacs.4c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
High-valent cobalt oxides play a pivotal role in alternative energy technology as catalysts for water splitting and as cathodes in lithium-ion batteries. Despite this importance, the properties governing the stability of high-valent cobalt oxides and specifically possible oxygen evolution pathways are not clear. One root of this limited understanding is the scarcity of high-valent Co(IV)-containing model complexes; there are no reports of stable, well-defined complexes with multiple Co(IV) centers. Here, an oxidatively robust fluorinated ligand scaffold enables the isolation and crystallographic characterization of a Co(IV)2-bis-μ-oxo complex. This complex is remarkably stable, in stark contrast with previously reported Co(IV)2 species that are highly reactive, which demonstrates that oxy-Co(IV)2 species are not necessarily unstable with respect to oxygen evolution. This example underscores a new design strategy for highly oxidizing transition-metal fragments and provides detailed data on a previously inaccessible chemical unit of relevance to O-O bond formation and oxygen evolution.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shilin Zeng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Kim S, Lee Y, Tripodi GL, Roithová J, Lee S, Cho J. Controlling Reactivity through Spin Manipulation: Steric Bulkiness of Peroxocobalt(III) Complexes. J Am Chem Soc 2024. [PMID: 39031334 DOI: 10.1021/jacs.4c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intrinsic relationship between spin states and reactivity in peroxocobalt(III) complexes was investigated, specifically focusing on the influence of steric modulation on supporting ligands. Together with the previously reported [CoIII(TBDAP)(O2)]+ (2Tb), which exhibits spin crossover characteristics, two peroxocobalt(III) complexes, [CoIII(MDAP)(O2)]+ (2Me) and [CoIII(ADDAP)(O2)]+ (2Ad), bearing pyridinophane ligands with distinct N-substituents such as methyl and adamantyl groups, were synthesized and characterized. By manipulating the steric bulkiness of the N-substituents, control of spin states in peroxocobalt(III) complexes was demonstrated through various physicochemical analyses. Notably, 2Ad oxidized the nitriles to generate hydroximatocobalt(III) complexes, while 2Me displayed an inability for such oxidation reactions. Furthermore, both 2Ad and 2Tb exhibited similarities in spectroscopic and geometric features, demonstrating spin crossover behavior between S = 0 and S = 1. The steric bulkiness of the adamantyl and tert-butyl group on the axial amines was attributed to inducing a weak ligand field on the cobalt(III) center. Thus, 2Ad and 2Tb are an S = 1 state under the reaction conditions. In contrast, the less bulky methyl group on the amines of 2Me resulted in an S = 0 state. The redox potential of the peroxocobalt(III) complexes was also influenced by the ligand field arising from the steric bulkiness of the N-substituents in the order of 2Me (-0.01 V) < 2Tb (0.29 V) = 2Ad (0.29 V). Theoretical calculations using DFT supported the experimental observations, providing insights into the electronic structure and emphasizing the importance of the spin state of peroxocobalt(III) complexes in nitrile activation.
Collapse
Affiliation(s)
- Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Guilherme L Tripodi
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Sunggi Lee
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
4
|
Li Y, Handunneththige S, He W, Talipov MR, Wang D. A Co(III)-peroxo-arylboronate complex formed by nucleophilic reaction of a Co(III)-peroxo species. J Inorg Biochem 2024; 256:112552. [PMID: 38608554 DOI: 10.1016/j.jinorgbio.2024.112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
In this work, we report the generation and characterization of two new Co(III)-peroxo complexes 2 and 3. 2 is best described as a mononuclear CoIII-(O2) complex that exhibits an 18O-isotope sensitive OO bond stretching vibration at 845(-49) cm-1, indicating a relatively weak peroxo moiety compared to those of other CoIII-(O2) complexes reported previously. Complex 3 is a CoIII-peroxo-arylboronate species having a rare {CoIIIOOBO} five-membered metallocycle, which is structurally characterized using X-ray crystallography. Investigations of the reaction mechanism using density functional theory calculations show that 2 likely undergoes a nucleophilic attack to an arylboronic acid, which is generated by hydrolysis of the BPh4- anion in wet acetonitrile solution, to first form a CoIII-peroxo-arylboronic acid adduct, followed by the loss of one benzene molecule to generate the five-membered metallocycle. The entire reaction is thermodynamically favorable. Taken together, the conversion of 2 to 3 represents the discovery of a novel nucleophilic reactivity that can be carried out by mononuclear Co(III)-peroxo complexes.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, United States
| | - Wenting He
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Marat R Talipov
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, United States.
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
5
|
Jeong D, Kim K, Lee Y, Cho J. Synthetic Advances for Mechanistic Insights: Metal-Oxygen Intermediates with a Macrocyclic Pyridinophane System. Acc Chem Res 2024; 57:120-130. [PMID: 38110355 DOI: 10.1021/acs.accounts.3c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
ConspectusMetalloenzymes, which are proteins containing earth-abundant transition-metal ions as cofactors in the active site, generate various metal-oxygen intermediates via activating a dioxygen molecule (O2) to mediate vital metabolic functions, such as the oxidative metabolism of xenobiotics and the biotransformation of naturally occurring molecules. By replicating the active sites of metalloenzymes, many bioinorganic chemists have studied the geometric and electronic properties and reactivities of model complexes to understand the nature of enzymatic intermediates and develop bioinspired metal catalysts. Among the reported model complexes, nonporphyrinic macrocyclic ligands are the predominant coordination system widely used in stabilizing and isolating diverse metal-oxygen intermediates, which allows us to extensively investigate the physicochemical characteristics of the analogs of reactive intermediates of metalloenzymes. In particular, it has been reported that the ring size of the macrocyclic ligands, defined by the number of atoms in the macrocyclic ring, drastically affects the identity of the metal-oxygen intermediate. Thus, systematic modification of the macrocyclic ligands has been a great subject being examined in various inorganic fields.In this Account, we describe synthetic advances of a macrocyclic ligand system by introducing pyridine donors into a 12-membered tetraazamacrocyclic ligand (12-TMC) that initially has 4 amine donors. Interestingly, the backbone of the pyridinophane ligand with 2 pyridine and 2 amine donors in a 12-membered ring is shown to be much more folded than in other macrocyclic ligands, thereby allowing the axial and equatorial donors to separately control the electronic structure of metal complexes. Then, we looked over independent electronic and steric effects on metal-oxygen species with thorough physicochemical analysis. The NiIII-peroxo complexes exhibit nucleophilic reactivity dependent on the steric hindrance of the second coordination sphere. Furthermore, the C-H bond strength of the second coordination sphere has also been an important factor in determining the stability of MnIV-bis(hydroxo) intermediates. Electronic tuning on CoIII-hydroperoxo intermediates results in a trend between the electron-donating abilities of para-substituents on pyridine in the pyridinophane ligand and electrophilic reactivities, from which mechanistic insights into the metal-hydroperoxo species have been gained. Importantly, the metal-oxygen intermediates supported by the pyridinophane ligand system have revealed quite challenging chemical reactions, including dioxygenase-like nitrile activation by CoIII-peroxo intermediates and the oxidation of aldehyde and aromatic compounds by manganese-oxygen intermediates. Based on the fine substitution of donors, we have addressed that those novel reactions originated from the unique framework of the pyridinophane system incorporating spin-crossover behavior and high redox potentials of the metal-oxygen intermediates. These results will be valuable for the structure-activity relationship of metal-oxygen intermediates, giving a better understanding on the enzymatic coordination system where amino acid ligands vary for specific chemical reactions.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yujeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Son Y, Jeong D, Kim K, Cho J. Mechanistic Insights into Nitrile Activation by Cobalt(III)-Hydroperoxo Intermediates: The Influence of Ligand Basicity. JACS AU 2023; 3:3204-3212. [PMID: 38034966 PMCID: PMC10685436 DOI: 10.1021/jacsau.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
The versatile applications of nitrile have led to the widespread use of nitrile activation in the synthesis of pharmacologically and industrially valuable compounds. We reported the activation of nitriles using mononuclear cobalt(III)-hydroperoxo complexes, [CoIII(Me3-TPADP)(O2H)(RCN)]2+ [R = Me (2) and Ph (2Ph)], to form cobalt(III)-peroxyimidato complexes, [CoIII(Me3-TPADP)(R-C(=NH)O2)]2+ [R = Me (3) and Ph (3Ph)]. The independence of the rate on the nitrile concentration and the positive Hammett value of 3.2(2) indicated that the reactions occur via an intramolecular nucleophilic attack of the hydroperoxide ligand to the coordinated nitrile carbon atom. In contrast, the previously reported cobalt(III)-hydroperoxo complex, [CoIII(TBDAP)(O2H)(CH3CN)]2+ (2TBDAP), exhibited the deficiency of reactivity toward nitrile. The comparison of pKa values and redox potentials of 2 and 2TBDAP showed that Me3-TPADP had a stronger ligand field strength than that of TBDAP. The density functional theory calculations for 2 and 2TBDAP support that the strengthened ligand field in 2 is mainly due to the replacement of two tert-butyl amine donors in TBDAP with methyl groups in Me3-TPADP, resulting in the compression of the Co-Nax bond lengths. These results provide mechanistic evidence of nitrile activation by the cobalt(III)-hydroperoxo complex and indicate that the basicity dependent on the ligand framework contributes to the ability of nitrile activation.
Collapse
Affiliation(s)
- Yeongjin Son
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donghyun Jeong
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungmin Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
Kim K, Oh S, Jeong D, Lee Y, Moon D, Lee S, Cho J. Systematic Electronic Tuning on the Property and Reactivity of Cobalt-(Hydro)peroxo Intermediates. Inorg Chem 2023; 62:7141-7149. [PMID: 37139810 DOI: 10.1021/acs.inorgchem.3c00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A series of cobalt(III)-peroxo complexes, [CoIII(R2-TBDAP)(O2)]+ (1R2; R2 = Cl, H, and OMe), and cobalt(III)-hydroperoxo complexes, [CoIII(R2-TBDAP)(O2H)(CH3CN)]2+ (2R2), bearing electronically tuned tetraazamacrocyclic ligands (R2-TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)-p-R2-pyridinophane) were prepared from their cobalt(II) precursors and characterized by various physicochemical methods. The X-ray diffraction and spectroscopic analyses unambiguously showed that all 1R2 compounds have similar octahedral geometry with a side-on peroxocobalt(III) moiety, but the O-O bond lengths of 1Cl [1.398(3) Å] and 1OMe [1.401(4) Å] were shorter than that of 1H [1.456(3) Å] due to the different spin states. For 2R2, the O-O bond vibration energies of 2Cl and 2OMe were identical at 853 cm-1 (856 cm-1 for 2H), but their Co-O bond vibration frequencies were observed at 572 cm-1 for 2Cl and 550 cm-1 for 2OMe, respectively, by resonance Raman spectroscopy (560 cm-1 for 2H). Interestingly, the redox potentials (E1/2) of 2R2 increased in the order of 2OMe (0.19 V) < 2H (0.24 V) < 2Cl (0.34 V) according to the electron richness of the R2-TBDAP ligands, but the oxygen-atom-transfer reactivities of 2R2 showed a reverse trend (k2: 2Cl < 2H < 2OMe) with a 13-fold rate enhancement at 2OMe over 2Cl in a sulfoxidation reaction with thioanisole. Although the reactivity trend contradicts the general consideration that electron-rich metal-oxygen species with low E1/2 values have sluggish electrophilic reactivity, this could be explained by a weak Co-O bond vibration of 2OMe in the unusual reaction pathway. These results provide considerable insight into the electronic nature-reactivity relationship of metal-oxygen species.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seongmin Oh
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Zhu W, Kumar A, Xiong J, Abernathy MJ, Li XX, Seo MS, Lee YM, Sarangi R, Guo Y, Nam W. Seeing the cis-Dihydroxylating Intermediate: A Mononuclear Nonheme Iron-Peroxo Complex in cis-Dihydroxylation Reactions Modeling Rieske Dioxygenases. J Am Chem Soc 2023; 145:4389-4393. [PMID: 36795537 PMCID: PMC10544271 DOI: 10.1021/jacs.2c13551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The nature of reactive intermediates and the mechanism of the cis-dihydroxylation of arenes and olefins by Rieske dioxygenases and synthetic nonheme iron catalysts have been the topic of intense research over the past several decades. In this study, we report that a spectroscopically well characterized mononuclear nonheme iron(III)-peroxo complex reacts with olefins and naphthalene derivatives, yielding iron(III) cycloadducts that are isolated and characterized structurally and spectroscopically. Kinetics and product analysis reveal that the nonheme iron(III)-peroxo complex is a nucleophile that reacts with olefins and naphthalenes to yield cis-diol products. The present study reports the first example of the cis-dihydroxylation of substrates by a nonheme iron(III)-peroxo complex that yields cis-diol products.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Akhilesh Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Macon J Abernathy
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94025, United States
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94025, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Wang L, Gao F, Zhang X, Peng T, Xu Y, Wang R, Yang D. Concerted Enantioselective [2+2] Cycloaddition Reaction of Imines Mediated by a Magnesium Catalyst. J Am Chem Soc 2023; 145:610-625. [PMID: 36538490 DOI: 10.1021/jacs.2c11284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Enantioselective [2 + 2] cyclization between an imine and a carbon-carbon double bond is a versatile strategy to build chiral azetidines. However, α-branched allenoates have never been successfully applied in [2 + 2] cyclization reactions with imines, as they always undergo Kwon's [4 + 2] annulation in previous catalytic methods. Herein, a simple in situ generated magnesium catalyst was employed to successfully achieve the enantioselective [2 + 2] cyclization reaction of DPP-imines and α-branched allenoates for the first time. Insightful experiments including KIE experiments, controlled experiments, Hammett plot analysis, and 31P NMR studies of initial intermediates indicate that the current [2 + 2] cyclization of imine most likely involves an asynchronous concerted transition state. Further mechanistic investigations by combining kinetic studies, ESI experiments, 31P NMR studies of coordination complexes, and controlled experiments on reaction rates under different catalyst loading amounts provided the coordination details for this [2 + 2] cyclization reaction between DPP-imines and α-branched allenoates. This new approach was applied to the synthesis of various chiral aza-heterocycles, including the enantioselective synthesis of the key intermediate of a lipid-lowering agent Ezetimibe.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Yingfan Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Zhang X, Wang T, Cui S, Li L, Zheng Z, Mi C, Lin B, Ren X, He X. Design of Photosensitive Cobalt Complex Intermediates and Their Application in the Green Syntheses of Molecules Containing the Quinazolin-4(3 H)-imine Scaffold. J Org Chem 2022; 87:8303-8315. [PMID: 35709489 DOI: 10.1021/acs.joc.1c02987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cobalt/photoredox cooperative catalysis is a well-explored technology for visible-light photoredox catalysis. Recently, the photosensitivity of Co(II) complexes in homogeneous catalysis has aroused the interest of scientists. In this study, photosensitive Co(II) complex intermediates were designed to develop new synthetic methods. These intermediates, consisting of Co(II) and two substrate molecules, bind to O2 and absorb visible light over a wide spectral range, triggering in situ oxidative decarboxylation to produce molecules containing the quinazolin-4(3H)-imine scaffold. These reactions employed glyoxylic acid and ketoacids as new building blocks, and good to excellent yields of the corresponding products were obtained under mild reaction conditions using green and inexpensive reagents and solvents. These results are of importance since the design of Co-based photosensitive intermediates will aid in establishing novel methods for harnessing visible light and hence lead to innovation in organic syntheses.
Collapse
Affiliation(s)
- Xianwei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Tianzhao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Shisheng Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Lei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Chunlai Mi
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
12
|
Zhao R, Zhang BB, Liu Z, Cheng GJ, Wang ZX. DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal-Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. JACS AU 2022; 2:745-761. [PMID: 35373207 PMCID: PMC8970012 DOI: 10.1021/jacsau.2c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 05/12/2023]
Abstract
Aldehyde deformylations occurring in organisms are catalyzed by metalloenzymes through metal-dioxygen active cores, attracting great interest to study small-molecule metal-dioxygen complexes for understanding relevant biological processes and developing biomimetic catalysts for aerobic transformations. As the known deformylation mechanisms, including nucleophilic attack, aldehyde α-H-atom abstraction, and aldehyde hydrogen atom abstraction, undergo outer-sphere pathways, we herein report a distinct inner-sphere mechanism based on density functional theory (DFT) mechanistic studies of aldehyde deformylations with a copper (II)-superoxo complex. The inner-sphere mechanism proceeds via a sequence mainly including aldehyde end-on coordination, homolytic aldehyde C-C bond cleavage, and dioxygen O-O bond cleavage, among which the C-C bond cleavage is the rate-determining step with a barrier substantially lower than those of outer-sphere pathways. The aldehyde C-C bond cleavage, enabled through the activation of the dioxygen ligand radical in a second-order nucleophilic substitution (SN2)-like fashion, leads to an alkyl radical and facilitates the subsequent dioxygen O-O bond cleavage. Furthermore, we deduced the rules for the reactions of metal-dioxygen complexes with aldehydes and nitriles via the inner-sphere mechanism. Expectedly, our proposed inner-sphere mechanisms and the reaction rules offer another perspective to understand relevant biological processes involving metal-dioxygen cores and to discover metal-dioxygen catalysts for aerobic transformations.
Collapse
Affiliation(s)
- Ruihua Zhao
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Bei-Bei Zhang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| | - Zheyuan Liu
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Gui-Juan Cheng
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Zhi-Xiang Wang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| |
Collapse
|
13
|
Glueck DS. Intramolecular attack on coordinated nitriles: metallacycle intermediates in catalytic hydration and beyond. Dalton Trans 2021; 50:15953-15960. [PMID: 34643205 DOI: 10.1039/d1dt02795f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration of nitriles is catalyzed by the enzyme nitrile hydratase, with iron or cobalt active sites, and by a variety of synthetic metal complexes. This Perspective focuses on parallels between the reaction mechanism of the enzyme and a class of particularly active catalysts bearing secondary phosphine oxide (SPO) ligands. In both cases, the key catalytic step was proposed to be intramolecular attack on a coordinated nitrile, with either an S-OH or S-O- (enzyme) or a P-OH (synthetic) nucleophile. Attack of water on the heteroatom (S or P) in the resulting metallacycle and proton transfer yields the amide and regenerates the catalyst. Evidence for this mechanism, its relevance to the formation of related metallacycles, and its potential for design of more active catalysts for nitrile hydration is summarized.
Collapse
Affiliation(s)
- David S Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire, 03755, USA.
| |
Collapse
|
14
|
Son Y, Kim K, Kim S, Tripodi GL, Pereverzev A, Roithová J, Cho J. Spectroscopic Evidence for a Cobalt-Bound Peroxyhemiacetal Intermediate. JACS AU 2021; 1:1594-1600. [PMID: 34723262 PMCID: PMC8549039 DOI: 10.1021/jacsau.1c00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 05/26/2023]
Abstract
Aldehyde deformylation reactions by metal dioxygen adducts have been proposed to involve peroxyhemiacetal species as key intermediates. However, direct evidence of such intermediates has not been obtained to date. We report the spectroscopic characterization of a mononuclear cobalt(III)-peroxyhemiacetal complex, [Co(Me3-TPADP)(O2CH(O)CH(CH3)C6H5)]+ (2), in the reaction of a cobalt(III)-peroxo complex (1) with 2-phenylpropionaldehyde (2-PPA). The formation of 2 is also investigated by isotope labeling experiments and kinetic studies. The conclusion that the peroxyhemiacetalcobalt(III) intermediate is responsible for the aldehyde deformylation is supported by the product analyses. Furthermore, isotopic labeling suggests that the reactivity of the cobalt(III)-peroxo complex depends on the second reactant. The aldehyde inserts between the oxygen atoms of 1, whereas the reaction with acyl chlorides proceeds by a nucleophilic attack. The observation of the peroxyhemiacetal intermediate provides significant insight into the initial step of aldehyde deformylation by metalloenzymes.
Collapse
Affiliation(s)
- Yeongjin Son
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyungmin Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Seonghan Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
- Department
of Emerging Materials Science, Daegu Gyeongbuk
Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Guilherme L. Tripodi
- Department
of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aleksandr Pereverzev
- Department
of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department
of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jaeheung Cho
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
15
|
Pan HR, Chen HJ, Wu ZH, Ge P, Ye S, Lee GH, Hsu HF. Structural and Spectroscopic Evidence for a Side-on Fe(III)-Superoxo Complex Featuring Discrete O-O Bond Distances. JACS AU 2021; 1:1389-1398. [PMID: 34604849 PMCID: PMC8479760 DOI: 10.1021/jacsau.1c00184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/26/2023]
Abstract
The O-O bond length is often used as a structural indicator to determine the valence states of bound O2 ligands in biological metal-dioxygen intermediates and related biomimetic complexes. Here, we report very distinct O-O bond lengths found for three crystallographic forms (1.229(4), 1.330(4), 1.387(2) Å at 100 K) of a side-on iron-dioxygen species. Despite their different O-O bond distances, all forms possess the same electronic structure of Fe(III)-O2 •-, as evidenced by their indistinguishable spectroscopic features. Density functional theory and ab initio calculations, which successfully reproduce spectroscopic parameters, predict a flat potential energy surface of an η2-O2 motif binding to the iron center regarding the O-O distance. Therefore, the discrete O-O bond lengths observed likely arise from differential intermolecular interactions in the second coordination sphere. The work suggests that the O-O distance is not a reliable benchmark to unequivocally identify the valence state of O2 ligands for metal-dioxygen species in O2-utilizing metalloproteins and synthetic complexes.
Collapse
Affiliation(s)
- Hung-Ruei Pan
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Jou Chen
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Zong-Han Wu
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Pu Ge
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shengfa Ye
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr D-45470, Germany
| | - Gene-Hsiang Lee
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hua-Fen Hsu
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
16
|
Kim K, Cho D, Noh H, Ohta T, Baik MH, Cho J. Controlled Regulation of the Nitrile Activation of a Peroxocobalt(III) Complex with Redox-Inactive Lewis Acidic Metals. J Am Chem Soc 2021; 143:11382-11392. [PMID: 34313127 DOI: 10.1021/jacs.1c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Redox-inactive metal ions play vital roles in biological O2 activation and oxidation reactions of various substrates. Recently, we showed a distinct reactivity of a peroxocobalt(III) complex bearing a tetradentate macrocyclic ligand, [CoIII(TBDAP)(O2)]+ (1) (TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane), toward nitriles that afforded a series of hydroximatocobalt(III) complexes, [CoIII(TBDAP)(R-C(═NO)O)]+ (R = Me (3), Et, and Ph). In this study, we report the effects of redox-inactive metal ions on nitrile activation of 1. In the presence of redox-inactive metal ions such as Zn2+, La3+, Lu3+, and Y3+, the reaction does not form the hydroximatocobalt(III) complex but instead gives peroxyimidatocobalt(III) complexes, [CoIII(TBDAP)(R-C(═NH)O2)]2+ (R = Me (2) and Ph (2Ph)). These new intermediates were characterized by various physicochemical methods including X-ray diffraction analysis. The rates of the formation of 2 are found to correlate with the Lewis acidity of the additive metal ions. Moreover, complex 2 was readily converted to 3 by the addition of a base. In the presence of Al3+, Sc3+, or H+, 1 is converted to [CoIII(TBDAP)(O2H)(MeCN)]2+ (4), and further reaction with nitriles did not occur. These results reveal that the reactivity of the peroxocobalt(III) complex 1 in nitrile activation can be regulated by the redox-inactive metal ions and their Lewis acidity. DFT calculations show that the redox-inactive metal ions stabilize the peroxo character of end-on Co-η1-O2 intermediate through the charge reorganization from a CoII-superoxo to a CoIII-peroxo intermediate. A complete mechanistic model explaining the role of the Lewis acid is presented.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dasol Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeonju Noh
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSCLP Center, 679-5148 Hyogo, Japan
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
17
|
Nishimura T, Ando Y, Shinokubo H, Miyake Y. Cationic Nickel(II) Pyridinophane Complexes: Synthesis, Structures and Catalytic Activities for C–H Oxidation. CHEM LETT 2021. [DOI: 10.1246/cl.210074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsubasa Nishimura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yuki Ando
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
18
|
Kwon N, Suh JM, Lim MH, Hirao H, Cho J. Mechanistic insight into hydroxamate transfer reaction mimicking the inhibition of zinc-containing enzymes. Chem Sci 2020; 11:9017-9021. [PMID: 34123156 PMCID: PMC8163387 DOI: 10.1039/d0sc02676j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
A hydroxamate transfer reaction between metal complexes has been investigated by a combination of experimental and theoretical studies. A hydroxamate-bound cobalt(ii) complex bearing a tetradentate macrocyclic ligand, [CoII(TBDAP)(CH3C(-NHO)O)]+ (1), is prepared by the reduction of a hydroximatocobalt(iii) complex with a biological reductant. Alternatively, 1 is accessible via a synthetic route for the reaction between the cobalt(ii) complex and acetohydroxamic acid in the presence of a base. 1 was isolated and characterized by various physicochemical methods, including UV-vis, IR, ESI-MS, and X-ray crystallography. The hydroxamate transfer reactivity of 1 was examined with a zinc complex, which was followed by UV-vis and ESI-MS. Kinetic and activation parameter data suggest that the hydroxamate transfer reaction occurs via a bimolecular mechanism, which is also supported by DFT calculations. Moreover, 1 is able to inhibit the activity against a zinc enzyme, i.e., matrix metalloproteinase-9. Our overall investigations of the hydroxamate transfer using the synthetic model system provide considerable insight into the final step involved in the inhibition of zinc-containing enzymes.
Collapse
Affiliation(s)
- Nam Kwon
- Department of Emerging Materials Science, DGIST Daegu 42988 Korea
| | - Jong-Min Suh
- Department of Chemistry, KAIST Daejeon 34141 Korea
| | - Mi Hee Lim
- Department of Chemistry, KAIST Daejeon 34141 Korea
| | - Hajime Hirao
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST Daegu 42988 Korea
| |
Collapse
|
19
|
Cho D, Choi S, Cho J, Baik MH. Peroxocobalt(iii) species activates nitriles via a superoxocobalt(ii) diradical state. Dalton Trans 2020; 49:2819-2826. [PMID: 31960881 DOI: 10.1039/d0dt00042f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dioxygenation of nitriles by [CoIII(TBDAP)(O2)]+ (TBDAP = N,N-di-tert-butyl-2,11-diaza[3.3](2,6)-pyridinophane) is investigated using DFT-calculations. The mechanism proposed previously based on experimental observations, which invoked an outer-sphere cycloaddition, was found to be unreasonable. Instead, calculations suggest that an inner-sphere mechanism involving the cleavage of one of the Co-O bonds assisted by substrate uptake is much more likely. The reactively competent species is a triplet consisting of a Co(ii)-superoxo functionality, which can undergo O-C bond formation and O-O bond cleavage traversing low energy transition states. The role of the structurally rigid TBDAP ligand is to prevent the participation of the pyridyl ligand in the delocalization of the unpaired electron density.
Collapse
Affiliation(s)
- Dasol Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seulhui Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Zhao R, Guo J, Zhang C, Lu Y, Dagnaw WM, Wang ZX. DFT Mechanistic Insight into the Dioxygenase-like Reactivity of a Co III-peroxo Complex: O–O Bond Cleavage via a [1,3]-Sigmatropic Rearrangement-like Mechanism. Inorg Chem 2020; 59:2051-2061. [DOI: 10.1021/acs.inorgchem.9b03470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruihua Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Jiandong Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Chaoshen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Wasihun Menberu Dagnaw
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing 100039, China
| |
Collapse
|
21
|
Nishiura T, Chiba Y, Nakazawa J, Hikichi S. Tuning the O2 Binding Affinity of Cobalt(II) Centers by Changing the Structural and Electronic Properties of the Distal Substituents on Azole-Based Chelating Ligands. Inorg Chem 2018; 57:14218-14229. [DOI: 10.1021/acs.inorgchem.8b02241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Toshiki Nishiura
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yosuke Chiba
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Jun Nakazawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Shiro Hikichi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
22
|
Osinski AJ, Morris DL, Herrick RS, Ziegler CJ. Re(CO) 3-Templated Synthesis of α-Amidinoazadi(benzopyrro)methenes. Inorg Chem 2017; 56:14734-14737. [PMID: 29172475 DOI: 10.1021/acs.inorgchem.7b02140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Amidinoazadi(benzopyrro)methenes were synthesized using the Re(CO)3 unit as a templating agent. The products of these template reactions are six-coordinate rhenium complexes, with a facial arrangement of carbonyls, a noncoordinating anion, and a tridentate α-amidinoazadi(benzopyrro)methene ligand. The tridentate ligand shows the conversion of one diiminoisoindoline sp2 carbon to a sp3 carbon, which has been seen in the "helmet" and bicyclic phthalocyanines. The bidentate diiminoisoindoline fragment tilts out of the plane of coordination. Five examples of α-amidinoazadi(benzopyrro)methenes produced from these reactions using different nitrile solvents, including the nitrile activation of acetonitrile, propionitrile, butyronitrile, cyclohexanecarbonitrile, and benzonitrile.
Collapse
Affiliation(s)
- Allen J Osinski
- Department of Chemistry, University of Akron , Akron, Ohio 44325-3601, United States
| | - Daniel L Morris
- Department of Chemistry, University of Akron , Akron, Ohio 44325-3601, United States
| | - Richard S Herrick
- Department of Chemistry, College of the Holy Cross , 1 College Street, Worcester, Massachusetts 01610, United States
| | - Christopher J Ziegler
- Department of Chemistry, University of Akron , Akron, Ohio 44325-3601, United States
| |
Collapse
|