1
|
Kumar R, Jing C, Yan L. A critical review on arsenic and antimony adsorption and transformation on mineral facets. J Environ Sci (China) 2025; 153:56-75. [PMID: 39855804 DOI: 10.1016/j.jes.2024.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2025]
Abstract
Arsenic (As) and antimony (Sb), with analogy structure, belong to VA group in the periodic table and pose a great public concern due to their potential carcinogenicity. The speciation distribution, migration and transformation, enrichment and retention, as well as bioavailability and toxicity of As and Sb are influenced by several environmental processes on mineral surfaces, including adsorption/desorption, coordination/precipitation, and oxidation/reduction. These interfacial reactions are influenced by the crystal facet of minerals with different atomic and electronic structures. This review starts with facets and examines As and Sb adsorption and transformation on mineral facets such hematite, titanium dioxide, and manganese dioxide. The main focus lies on three pressing issues that limit the understanding of the environmental fate of As and Sb: the facet-dependent intricacies of adsorption and transformation, the mechanisms underlying facet-dependent phenomena, and the impact of co-existing chemicals. We first discussed As and Sb adsorption behaviors, structures, and bonding chemistry on diverse mineral facets. Subsequently, the reactivity of various mineral facets was examined, with particular emphasis placed on their significance in the context of environmental catalysis for the oxidation of As(III) and Sb(III). Finally, the impact of co-existing cation, anion, or organic substances on the processes of adsorption and transport of As and Sb was reviewed. This comprehensive review enhances our understanding of the facet-dependent phenomena governing adsorption, transformation, and fate of contaminants. It underscores the critical role of mineral facets in dictating environmental reactions and paves the way for future research in this intriguing field.
Collapse
Affiliation(s)
- Rohit Kumar
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Xia S, Wang T, Ren Z, Yang X, Guo Q, Zhou C. Adsorption Structure-Activity Correlation in the Photocatalytic Chemistry of Methanol and Water on TiO 2(110). Acc Chem Res 2024. [PMID: 39538113 DOI: 10.1021/acs.accounts.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ConspectusPhotocatalysis, a process involving light absorption (band gap excitation), charge separation, interfacial charge transfer, and surface redox reactions, has attracted intensive attention because of the potential applications in solar to fuel conversion. Despite the great efforts devoted to the design of materials and optimization of charge separation and overall efficiency, the molecular mechanism of photocatalytic reactions, for example, water oxidation, is still unclear, mainly because of the complexity of powder catalysts and the aqueous environment which prevent the direct experimental detection of adsorption sites, surface species, and charge/energy transfer dynamics. Without direct evidence, the charge transfer and elementary reaction steps remain elusive, and misleading conclusions are sometimes drawn. For instance, the positively charged 5-fold coordinated Ti sites (Ti5cs) on TiO2 surfaces are argued to propel holes and therefore cannot be active sites for oxidative reactions, regardless of the demonstration by scanning tunneling microscopy (STM). Direct site-specific measurements are thus highly demanded. Surface science studies, which rely on well-defined single crystals and ultrahigh vacuum based techniques, can identify the active sites and active species at the catalyst surfaces and measure the interfacial electronic structure and energy of desorbing species for charge transfer analysis, providing direct evidence for investigating the photocatalytic reaction mechanism at the molecular level.In this Account, the elementary photocatalytic chemistry of methanol and water on TiO2, which are investigated by surface science techniques such as atom-resolved STM, ensemble-averaged mass spectrometer based temperature-programmed desorption/time-of-flight spectroscopy, and photoelectron spectroscopy in combination with theoretical calculations, will be described. Both methanol and water can be photocatalytically oxidized at Ti5cs, producing adsorbed formaldehyde and gaseous •OH radicals, respectively, under ultraviolet (UV) light irradiation. The photocatalytic activity shows salient adsorption structure including adsorption site (terminal/bridging), adsorption state (molecular/dissociative) and adsorption configuration (monomer/cluster) dependence, which comes from the ability to generate terminal anions which are capable of capturing photogenerated holes and exhibit superior photocatalytic activity over their parent molecules. These studies reveal the origin of the correlation between photocatalytic activity and adsorption structure of CH3OH and H2O on TiO2 surfaces and suggest that the simple criteria widely used to analyze the feasibility of charge transfer, i.e., the relative position of the band edges and the molecular orbitals of adsorbates, should be replaced by the change of Gibbs free energy of the charge trapping reaction from the thermodynamic point of view. These results contribute to the fundamental understanding of photocatalysis. Based on our research, future state-resolved and time-resolved studies can provide deeper insight into the charge and energy transfer and transient intermediate species, which will benefit the depiction of the overall photocatalytic reactions, for example, the photocatalyzed oxygen evolution reaction from water.
Collapse
Affiliation(s)
- Shucai Xia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Tianjun Wang
- Institute of Advanced Facilities, 268 Zhenyuan Street, Shenzhen, Guangdong 518107, P. R. China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, P. R. China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, Guangdong 518055, P. R. China
| | - Chuanyao Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, 100049 Beijing, P. R. China
| |
Collapse
|
3
|
Zhou M, Chen D, Liu Y, Wang H. Stretching vibration driven adiabatic transfer kinetics for photoexcited hole transfer from semiconductor to adsorbate. Nat Commun 2024; 15:8744. [PMID: 39384738 PMCID: PMC11479618 DOI: 10.1038/s41467-024-52991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
Interfacial hole transfer from a photoexcited semiconductor to surface adsorbates is pivotal for initiating solar-to-chemical energy conversion, yet the atomic-level transfer kinetics remains elusive. Using the methoxy/TiO2(110) system as an archetype, here we elucidate the hole transfer mechanism from hole-trapping lattice oxygen to the methoxy adsorbate at gas/solid and liquid/solid interfaces through molecular dynamics simulations and static minimum energy path calculations. Instead of direct nonadiabatic hopping, we uncover an adiabatic migration pathway adapted to local substrate relaxation, driven by a bond-stretching mechanism supported by stronger Ti-O stretching vibrations. Notably, this mechanism persists at the aqueous methoxy/TiO2(110) interface, albeit hindered by interfacial water and coadsorbates. Surprisingly, the hole transfer barriers across various photoexcited adsorbate/TiO2 interfaces correlate more closely with the vertical excitation energies of the adsorbates rather than their redox potentials, indicating an early-type transition-state nature. These insights deepen our understanding of elementary hole transfer kinetics in surface photochemistry.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China
| | - Dingming Chen
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
You P, Chen D, Liu X, Zhang C, Selloni A, Meng S. Correlated electron-nuclear dynamics of photoinduced water dissociation on rutile TiO 2. NATURE MATERIALS 2024; 23:1100-1106. [PMID: 38777872 DOI: 10.1038/s41563-024-01900-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Elucidating the mechanism of photoinduced water splitting on TiO2 is important for advancing the understanding of photocatalysis and the ability to control photocatalytic surface reactions. However, incomplete experimental information and complex coupled electron-nuclear motion make the microscopic understanding challenging. Here we analyse the atomic-scale pathways of photogenerated charge carrier transport and photoinduced water dissociation at the prototypical water-rutile TiO2(110) interface using first-principles dynamics simulations. Two distinct mechanisms are observed. Field-initiated electron migration leads to adsorbed water dissociation via proton transfer to a surface bridging oxygen. In the other pathway, adsorbed water dissociation occurs via proton donation to a second-layer water molecule coupled to photoexcited-hole transfer promoted by in-plane surface lattice distortions. Two stages of non-adiabatic in-plane lattice motion-expansion and recovery-are observed, which are closely associated with population changes in Ti3d orbitals. Controlling such highly correlated electron-nuclear dynamics may provide opportunities for boosting the performance of photocatalytic materials.
Collapse
Affiliation(s)
- Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinbao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| | | | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| |
Collapse
|
5
|
Lai Y, Zeng Y, Li F, Chen X, Wang T, Guo Q. Wavelength-Dependent Activity of Oxygen Species in Propane Conversion on Rutile TiO 2(110). J Phys Chem Lett 2024; 15:6943-6951. [PMID: 38940377 DOI: 10.1021/acs.jpclett.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Photocatalytic oxidative dehydrogenation of propane (C3H8) into propene (C3H6) under mild conditions holds great potential in the chemical industry, but understanding how active species participate in C3H8 conversion remains a significant challenge. Here, the wavelength-dependent activities of bridging oxygen (Ob2-) and the Ti5c-bound oxygen adatom (OTi2-) of model rutile (R) TiO2(110) in C3H8 conversion have been investigated. Under 257 and 343 nm irradiation, hole-trapped OTi- and Ob- can abstract the hydrogen atom of C3H8, forming the CH3CH•CH3 radical and C3H6. However, the rate of C3H8 conversion with hole-trapped Ob- is strongly dependent on the wavelength, primarily producing the C3H7• radical. In the case of hole-trapped OTi-, C3H6 is the main product, which is nearly independent of wavelength. The differences in the wavelength-dependent activity and product selectivity are likely due to dynamic control rather than thermodynamic control. The result provides a deeper understanding of the dynamic processes involved in the conversion of light alkanes in TiO2 photocatalysis.
Collapse
Affiliation(s)
- Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yi Zeng
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, P. R. China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
6
|
Ribić V, Jordan V, Drev S, Kovač J, Dražić G, Rečnik A. Mnemonic Rutile-Rutile Interfaces Triggering Spontaneous Dissociation of Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308027. [PMID: 37935053 DOI: 10.1002/adma.202308027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral-water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2 , grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re-immersed. This is thought to be the first demonstration of quantum-confined mineral-water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment.
Collapse
Affiliation(s)
- Vesna Ribić
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Vanja Jordan
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Sandra Drev
- Center for Electron Microscopy and Microanalysis, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Janez Kovač
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia
| | - Aleksander Rečnik
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
7
|
Zhou H, Zhang H, Yuan S. Comparison of H 2O Adsorption and Dissociation Behaviors on Rutile (110) and Anatase (101) Surfaces Based on ReaxFF Molecular Dynamics Simulation. Molecules 2023; 28:6823. [PMID: 37836665 PMCID: PMC10574456 DOI: 10.3390/molecules28196823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between structure and reactivity plays a dominant role in water dissociation on the various TiO2 crystallines. To observe the adsorption and dissociation behavior of H2O, the reaction force field (ReaxFF) is used to investigate the dynamic behavior of H2O on rutile (110) and anatase (101) surfaces in an aqueous environment. Simulation results show that there is a direct proton transfer between the adsorbed H2O (H2Oad) and the bridging oxygen (Obr) on the rutile (110) surface. Compared with that on the rutile (110) surface, an indirect proton transfer occurs on the anatase (101) surface along the H-bond network from the second layer of water. This different mechanism of water dissociation is determined by the distance between the 5-fold coordinated Ti (Ti5c) and Obr of the rutile and anatase TiO2 surfaces, resulting in the direct or indirect proton transfer. Additionally, the hydrogen bond (H-bond) network plays a crucial role in the adsorption and dissociation of H2O on the TiO2 surface. To describe interfacial water structures between TiO2 and bulk water, the double-layer model is proposed. The first layer is the dissociated H2O on the rutile (110) and anatase (101) surfaces. The second layer forms an ordered water structure adsorbed to the surface Obr or terminal OH group through strong hydrogen bonding (H-bonding). Affected by the H-bond network, the H2O dissociation on the rutile (110) surface is inhibited but that on the anatase (101) surface is promoted.
Collapse
Affiliation(s)
| | | | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| |
Collapse
|
8
|
Morales-García Á, Viñes F, Sousa C, Illas F. Toward a Rigorous Theoretical Description of Photocatalysis Using Realistic Models. J Phys Chem Lett 2023; 14:3712-3720. [PMID: 37042213 PMCID: PMC10123813 DOI: 10.1021/acs.jpclett.3c00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
This Perspective aims at providing a road map to computational heterogeneous photocatalysis highlighting the knowledge needed to boost the design of efficient photocatalysts. A plausible computational framework is suggested focusing on static and dynamic properties of the relevant excited states as well of the involved chemistry for the reactions of interest. This road map calls for explicitly exploring the nature of the charge carriers, the excited-state potential energy surface, and its time evolution. Excited-state descriptors are introduced to locate and characterize the electrons and holes generated upon excitation. Nonadiabatic molecular dynamics simulations are proposed as a convenient tool to describe the time evolution of the photogenerated species and their propagation through the crystalline structure of photoactive material, ultimately providing information about the charge carrier lifetime. Finally, it is claimed that a detailed understanding of the mechanisms of heterogeneously photocatalyzed reactions demands the analysis of the excited-state potential energy surface.
Collapse
|
9
|
Wagstaffe M, Dominguez-Castro A, Wenthaus L, Palutke S, Kutnyakhov D, Heber M, Pressacco F, Dziarzhytski S, Gleißner H, Gupta VK, Redlin H, Dominguez A, Frauenheim T, Rubio A, Stierle A, Noei H. Photoinduced Dynamics at the Water/TiO_{2}(101) Interface. PHYSICAL REVIEW LETTERS 2023; 130:108001. [PMID: 36962043 DOI: 10.1103/physrevlett.130.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
We present a femtosecond time-resolved optical pump-soft x-ray probe photoemission study in which we follow the dynamics of charge transfer at the interface of water and anatase TiO_{2}(101). By combining our observation of transient oxygen O 1s core level peak shifts at submonolayer water coverages with Ehrenfest molecular dynamics simulations we find that ultrafast interfacial hole transfer from TiO_{2} to molecularly adsorbed water is completed within the 285 fs time resolution of the experiment. This is facilitated by the formation of a new hydrogen bond between an O_{2c} site at the surface and a physisorbed water molecule. The calculations fully corroborate our experimental observations and further suggest that this process is preceded by the efficient trapping of the hole at the surface of TiO_{2} by hydroxyl species (-OH), that form following the dissociative adsorption of water. At a water coverage exceeding a monolayer, interfacial charge transfer is suppressed. Our findings are directly applicable to a wide range of photocatalytic systems in which water plays a critical role.
Collapse
Affiliation(s)
- Michael Wagstaffe
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Adrian Dominguez-Castro
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Lukas Wenthaus
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Steffen Palutke
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Dmytro Kutnyakhov
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Michael Heber
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Federico Pressacco
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | | | - Helena Gleißner
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- Fachbereich Physik Universität Hamburg, Jungiusstr. 9-11, D-20355, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Verena Kristin Gupta
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Harald Redlin
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85 D-22607, Hamburg, Germany
| | - Adriel Dominguez
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
- Computational Science and Applied Research Institute (CSAR), 518110, Shenzhen, China
- Beijing Computational Science Research Center (CSRC), 100193, Beijing, China
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU- 20018 San Sebastián, Spain
| | - Thomas Frauenheim
- Bremen Center for Computational Material Science (BCCMS), University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
- Computational Science and Applied Research Institute (CSAR), 518110, Shenzhen, China
- Beijing Computational Science Research Center (CSRC), 100193, Beijing, China
| | - Angel Rubio
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU- 20018 San Sebastián, Spain
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics, Flatiron Institute, New York 10010, New York, USA
| | - Andreas Stierle
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- Fachbereich Physik Universität Hamburg, Jungiusstr. 9-11, D-20355, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Heshmat Noei
- Centre for X-ray and Nanoscience (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
10
|
Delarmelina M, Dlamini MW, Pattisson S, Davies PR, Hutchings GJ, Catlow CRA. The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Phys Chem Chem Phys 2023; 25:4161-4176. [PMID: 36655703 DOI: 10.1039/d2cp03140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigate the effect of chlorides on the photocatalytic degradation of phenol by titania polymorphs (anatase and rutile). We demonstrate how solubilised chlorides can affect the hydroxyl radical formation on both polymorphs with an overall effect on their photodegradative activity. Initially, the photocatalytic activity of anatase and rutile for phenol degradation is investigated in both standard water and brines. With anatase, a significant reduction of the phenol conversion rate is observed (from a pseudo-first-order rate constant k = 5.3 × 10-3 min-1 to k = 3.5 × 10-3 min-1). In contrast, the presence of solubilised chlorides results in enhancement of rutile activity under the same reaction conditions (from 2.3 × 10-3 min-1 to 4.8 × 10-3 min-1). Periodic DFT methods are extensively employed and we show that after the generation of charge separation in the modelled titania systems, adsorbed chlorides are the preferential site for partial hole localisation, although small energy differences are computed between partially localised hole densities over adsorbed chloride or hydroxyl. Moreover, chlorides can reduce or inhibit the ability of r-TiO2 (110) and a-TiO2 (101) systems to localise polarons in the slab structure. These results indicate that both mechanisms - hole scavenging and the inhibition of hole localisation - can be the origin of the effect of chlorides on photocatalytic activity of both titania polymorphs. These results provide fundamental insight into the photocatalytic properties of titania polymorphs and elucidate the effect of adsorbed anions over radical formation and oxidative decomposition of organic pollutants.
Collapse
Affiliation(s)
- Maicon Delarmelina
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. .,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK
| | - Mbongiseni W Dlamini
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Samuel Pattisson
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Philip R Davies
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Graham J Hutchings
- UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - C Richard A Catlow
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. .,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0FA, UK.,Department of Chemistry, University College London, 20 Gordon St., London WC1 HOAJ, UK
| |
Collapse
|
11
|
Wang Q, Yang G. Unraveling the photocatalytic mechanisms for U(VI) reduction by TiO2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Zhang X, Ma H, Zhang M, Ma Y. Interfacial Charge-Transfer Excitons Help the Photoreduction of CO 2 on TiO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Huizhong Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
13
|
Ma X, Shi Y, Liu J, Li X, Cui X, Tan S, Zhao J, Wang B. Hydrogen-Bond Network Promotes Water Splitting on the TiO 2 Surface. J Am Chem Soc 2022; 144:13565-13573. [DOI: 10.1021/jacs.2c03690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaochuan Ma
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongliang Shi
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jianyi Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xintong Li
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuefeng Cui
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jin Zhao
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- ICQD/Hefei National Research Center for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
14
|
Meng Q, Chen J, Ma J, Zhang X, Chen J. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Phys Chem Chem Phys 2022; 24:16415-16436. [PMID: 35766107 DOI: 10.1039/d2cp01560a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we review models for the lattice effects in quantum dynamics calculations on surface scattering, which is important to modeling heterogeneous catalysis for achieving an interpretation of experimental measurements. Unlike dynamics models for reactions in the gas phase, those for heterogeneous reactions have to include the effects of the surface. For manageable computational costs in calculations, the effects of static surface (SS) are firstly modeled as this is simply and easily implemented. Then, the SS model has to be improved to include the effects of the flexible surface, that is the lattice effects. To do this, various surface models have been designed where the coordinates of the surface atoms are introduced in the Hamiltonian operator, especially those of the top surface atom. Based on this model Hamiltonian operator, extensive multi-dimension quantum dynamics calculations can be performed to recover the lattice effects. Here, we first review an overview of the techniques in constructing the Hamiltonian operator, which is a sum of the kinetic energy operator (KEO) and potential energy surface (PES). Since the PES containing the coordinates of the surface atoms in a cell is still expensive, the SS model is often accepted. We consider a mathematical model, called the coupled harmonic oscillator (CHO) model, to introduce the concepts of adiabatic and diabatic representations for separating the molecule and surface. Under the adiabatic model, we further introduce the expansion model where the potential function is Taylor expanded around the optimized geometry of the surface. By an expansion model truncated at the first and second order, various coupling surface models between the molecule and surface are derived. Moreover, by further and deeply understanding the adiabatic representation, an effective Hamiltonian operator is obtained by optimizing the total wave function in factorized form. By this factorized form of wave function and effective Hamiltonian operator, the geometry phase of the surface wave function is theoretically found. This theoretical prediction may be measured by carefully designing experiments. Finally, discussions on the adiabatic representation, the PES construction, and possibility of the classical-dynamics solutions are given. Based on these discussions, a simple outlook on the dynamics of photocatalytics is finally given.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Junbo Chen
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China. .,Xi'an Modern Chemistry Research Institute, China North Industries Group Corp., Ltd., East Zhangba Road 168, 710065 Xi'an, China
| | - Jianxing Ma
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, 350002 Fuzhou, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Optoelectronic Industry Base at High-tech Zone, 350108 Fuzhou, China
| |
Collapse
|
15
|
Sun R, Liu X, Chen X, Che L, Yang X, Guo Q. One-Pot Ethyl Acetate Production from Ethanol Photooxidation on Rutile TiO 2(110): Strong Photon Energy Dependence. J Phys Chem Lett 2022; 13:801-807. [PMID: 35044191 DOI: 10.1021/acs.jpclett.2c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ethyl acetate (EA) production from sequential ethanol (EtOH) photooxidation on a rutile(R)-TiO2(110) surface has been investigated by the temperature-programmed desorption (TPD) method at 355 and 266 nm. Significant EA product is detected under 266 nm irradiation, which is most likely to be formed via cross-coupling of primary dissociation products, aldehyde (CH3CHO) and ethoxy groups. On the contrary, EA formation at 355 nm is negligible. In addition, the initial rate of EA formation from EtOH at 266 nm is nearly 2 orders of magnitude faster than that at 355 nm. Quantitative analysis suggests that EA formation from sequential EtOH photooxidation on R-TiO2(110) is strongly dependent on photon energy or the energy of hot holes. This experimental result raises doubt about the traditional photocatalysis model on TiO2 where charge carriers relax to their respective band edges prior to charge transfer to adsorbates during the photocatalytic process, leading to no dependence on photon energy in TiO2 photocatalysis.
Collapse
Affiliation(s)
- Rulin Sun
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Xinlu Liu
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Li Che
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | - Xueming Yang
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
16
|
Miyazaki M, Sugawara Y, Li YJ. Charge Behavior of Terminal Hydroxyl on Rutile TiO 2(110). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10588-10593. [PMID: 34433262 DOI: 10.1021/acs.langmuir.1c01845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium dioxide (TiO2) is of considerable interest as a photocatalyst and a catalyst support. Surface hydroxyl groups (OH) are the most common adsorbates on the TiO2 surface and are believed to play crucial roles in their applications. Although the characteristics of bridging hydroxyl (OHbr) have been well understood, the adsorption structure and charged states of terminal hydroxyl (OHt) have not yet been experimentally elucidated at an atomic scale. In this study, we have investigated an isolated OHt on the rutile TiO2(110) surface by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We found that OHt is in a negatively charged state. The unique characteristic of OHt is different from that of OHbr and involves the amphoterism and diversity of catalytic reactions of TiO2.
Collapse
Affiliation(s)
- Masato Miyazaki
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Sugawara
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yan Jun Li
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Xu C, Xu F, Chen X, Li Z, Luan Z, Wang X, Guo Q, Yang X. Wavelength-Dependent Water Oxidation on Rutile TiO 2(110). J Phys Chem Lett 2021; 12:1066-1072. [PMID: 33470822 DOI: 10.1021/acs.jpclett.0c03726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the microscopic mechanism of water photocatalysis on TiO2 is of great value in energy chemistry and catalysis. To date, it is still unclear how water photocatalysis occurs after the initial light absorption. Here we report the investigation of the photoinduced water dissociation and desorption on a R-TiO2(110) surface, at different wavelengths (from 250 to 330 nm), using temperature-programmed desorption and time-of-flight techniques. Primary photooxidation products, gas phase OH radicals and surface H atoms, were clearly observed at wavelengths of ≤290 nm. As the laser wavelength decreases from 290 to 250 nm, the relative yield of H2O oxidation increases significantly. Likewise, photoinduced H2O desorption was also observed in the range of 320-250 nm, and the relative yield of H2O desorption also increases with a decrease in wavelength. The strong wavelength-dependent H2O photooxidation and photodesorption suggest that the energy of charge carriers is important in these two processes. More importantly, the result raises doubt about the widely accepted photocatalysis model of TiO2 in which the excess energy of charge carriers is useless for photocatalysis. In addition, the H2O photooxidation is more likely initiated by nonthermalized holes and is accomplished on the ground state potential energy surface via a non-adiabatic decay process.
Collapse
Affiliation(s)
- Chenbiao Xu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Zhongshan Road 457, Dalian 116023, Liaoning, P. R. China
| | - Fei Xu
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, P. R. China
| | - Xiao Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Zhenxing Li
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, P. R. China
| | - Zhiwen Luan
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, P. R. China
| | - Xingan Wang
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, P. R. China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xueming Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Zhongshan Road 457, Dalian 116023, Liaoning, P. R. China
| |
Collapse
|
18
|
Shearer CJ, Hisatomi T, Domen K, Metha GF. Gas phase photocatalytic water splitting of moisture in ambient air: Toward reagent-free hydrogen production. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Lang X, Liang Y, Zhang J, Li L, Cao L, Zhang H. Structure and reactivity of a water-covered anatase TiO 2(001) surface. Phys Chem Chem Phys 2020; 22:1371-1380. [PMID: 31854404 DOI: 10.1039/c9cp05409j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We systematically studied water adsorption and oxidation on the unreconstructed TiO2(001) surface using first-principles calculations. Water first adsorbs on the surface in a dissociative state and then in a molecular state, as water coverage increases. The geometric properties of all adsorption structures suggest that the dissociative water molecules can induce stress release of the (001) surface at low coverage, reducing reactivity of the surface and thus leading to molecular adsorption of water on the surface at high coverage. The adsorption energy (or the surface energy) monotonously increases (or decreases) with the increase of the coverage, which further confirms that water, irrespective of its dissociative or molecular state, can improve the stability of the (001) surface and reduce its activity. We deeply investigated the mechanism of the oxygen evolution reaction (OER) on the water-covered (001) surface. A new water-assisted OER pathway is identified on the (001) surface, which includes the sequential transfer of protons from molecular water and surface hydroxyls, and O-O coupling processes. During the OER pathway, the O-O coupling step exhibits the largest thermodynamic energy and highest energy barrier, clarifying that it is the rate-determining step in the whole pathway. Our findings provide new insights into the strong dependence of water adsorption modes on coverage for the anatase TiO2(001) surface and may explain the high oxidation activity of the TiO2(001) surface in aqueous environments typical of TiO2 photocatalysis.
Collapse
Affiliation(s)
- Xiufeng Lang
- Material Simulation and Computing Laboratory, Department of Physics, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China.
| | - Yanhong Liang
- Material Simulation and Computing Laboratory, Department of Physics, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China.
| | - Jing Zhang
- Institute of Bismuth Science & College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lei Li
- School of Sciences/Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Liqin Cao
- College of Environment and Chemical Engineering, Yanshan University, QinHuangdao, 066004, China
| | - Hongsheng Zhang
- College of Environment and Chemical Engineering, Yanshan University, QinHuangdao, 066004, China
| |
Collapse
|
20
|
Valero R, Morales-García Á, Illas F. Investigating the character of excited states in TiO2 nanoparticles from topological descriptors: implications for photocatalysis. Phys Chem Chem Phys 2020; 22:3017-3029. [DOI: 10.1039/c9cp05526f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excited state topological descriptors based on the attachment/detachment one-electron charge density are used to investigate the centroids of photoactive TiO2 nanoclusters and nanoparticles.
Collapse
Affiliation(s)
- Rosendo Valero
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
21
|
Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO 2 Photocatalysis: Concepts, Mechanisms, and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901997. [PMID: 31423680 DOI: 10.1002/adma.201901997] [Citation(s) in RCA: 500] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Indexed: 05/27/2023]
Abstract
Photocatalysis has been widely applied in various areas, such as solar cells, water splitting, and pollutant degradation. Therefore, the photochemical mechanisms and basic principles of photocatalysis, especially TiO2 photocatalysis, have been extensively investigated by various surface science methods in the last decade, aiming to provide important information for TiO2 photocatalysis under real environmental conditions. Recent progress that provides fundamental insights into TiO2 photocatalysis at a molecular level is highlighted. Insights into the structures of TiO2 and the basic principles of TiO2 photocatalysis are discussed first, which provides the basic concepts of TiO2 photocatalysis. Following this, details of the photochemistry of three important molecules (oxygen, water, methanol) on the model TiO2 surfaces are presented, in an attempt to unravel the relationship between charge/energy transfer and bond breaking/forming in TiO2 photocatalysis. Lastly, challenges and opportunities of the mechanistic studies of TiO2 photocatalysis at the molecular level are discussed briefly, as well as possible photocatalysis models.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| | - Chuanyao Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Zhibo Ma
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, China
| |
Collapse
|
22
|
Petersen T, Klüner T. Water Adsorption on Ideal Anatase-TiO2(101) – An Embedded Cluster Model for Accurate Adsorption Energetics and Excited State Properties. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A combined theoretical approach towards the accurate description of water on anatase-TiO2(101) was pursued in this study. Firstly, periodic slab calculations on the basis of density hybrid functionals (PBE0, HSE06) were performed in order to gain insight into the adsorption sites and geometric structure of the surface. For submonolayer coverage of H2O, the molecular adsorption of water is found to be the most stable one with quite similar energetics in PBE0 and HSE06. Moreover, the transition states towards the less preferred dissociative adsorption forms are predicted to be greater than 0.7 eV. Thus, water will not spontaneously dissociate and based on the Computational Hydrogen Electrode model an overpotential of about 1.71 V is needed to drive the overall oxidation. In addition, to validate our results for molecular adsorption of H2O, an embedded cluster model is carefully evaluated for the a-TiO2(101) surface based on the periodic slab calculations. Subsequent high-level DLPNO-CCSD(T) results are in close agreement with our periodic slab calculations since the interaction is found to mainly consist of electrostatic contributions which are captured by hybrid functionals. Finally, first results on optimized geometries in the excited state based on the photogenerated charge-transfer state are presented.
Collapse
Affiliation(s)
- Thorben Petersen
- Carl von Ossietzky University, Institute of Chemistry , Carl-von-Ossietzky-Str., 9-11 , 26129 Oldenburg , Germany , Tel.: +49 441 798 3963
| | - Thorsten Klüner
- Carl von Ossietzky University, Institute of Chemistry , Carl-von-Ossietzky-Str., 9-11 , 26129 Oldenburg , Germany
| |
Collapse
|
23
|
Guo Q, Ma Z, Zhou C, Ren Z, Yang X. Single Molecule Photocatalysis on TiO2 Surfaces. Chem Rev 2019; 119:11020-11041. [DOI: 10.1021/acs.chemrev.9b00226] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qing Guo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Zhibo Ma
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Chuanyao Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
24
|
Yang L, Li X, Huang Y, Feng S, Wang X, Jiang X, Li X, Zhao J, Luo Y, Zhang G, Jiang J. Physically Close yet Chemically Separate Reduction and Oxidation Sites in Double-Walled Nanotubes for Photocatalytic Hydrogen Generation. J Phys Chem Lett 2019; 10:3739-3743. [PMID: 31244274 DOI: 10.1021/acs.jpclett.9b01722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The localization of photoexcitation leads to the proximity of photocatalytic reduction and oxidation sites, causing unfavorable side reactions. To address this issue, we designed a double-walled nanotube model system consisting of carbon nanotube (CNT) outside and carbon-nitride nanotube (CNNT) inside, with physically close yet chemically separate reduction and oxidation sites for safe photocatalytic hydrogen generation. First-principle calculations show that photoexcited charges in the system rapidly separate, leaving electrons at the reductive sites in CNNT and holes at the oxidative sites in CNT, respectively. Then protons generated by hole-assisted water dissociation at the CNT migrate to the CNNT and are reduced, producing H2. The selective permeability of protons through CNT ensures complete separation of hydrogen molecules and oxygen species, and thereby the reduction and oxidation half-reactions. Further, H2 products can be delivered via the double-walled nanotube for safe collection. The seamless integration of photocatalytic hydrogen generation and delivery in one system provides an alternative solution toward practical solar-driven hydrogen utilization.
Collapse
Affiliation(s)
- Li Yang
- Institutes of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Xin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Yan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Shuo Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Xiang Jiang
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
25
|
Domingo N, Pach E, Cordero-Edwards K, Pérez-Dieste V, Escudero C, Verdaguer A. Water adsorption, dissociation and oxidation on SrTiO3 and ferroelectric surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. Phys Chem Chem Phys 2019; 21:4920-4930. [DOI: 10.1039/c8cp07632d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unveiling surface adsorbates under atmospheric conditions and in surface water redox reactions on TiO2 terminated surfaces and ferroelectric oxides, as studied by AP-XPS.
Collapse
Affiliation(s)
- Neus Domingo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Kumara Cordero-Edwards
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | | | | | - Albert Verdaguer
- Institut de Ciència de Materials de Barcelona ICMAB-CSIC
- E-08193 Bellaterra
- Spain
| |
Collapse
|
26
|
Wang Y, Guo H, Zheng Q, Saidi WA, Zhao J. Tuning Solvated Electrons by Polar-Nonpolar Oxide Heterostructure. J Phys Chem Lett 2018; 9:3049-3056. [PMID: 29767527 DOI: 10.1021/acs.jpclett.8b00938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solvated electron states at the oxide/aqueous interface represent the lowest energy charge-transfer pathways, thereby playing an important role in photocatalysis and electronic device applications. However, their energies are usually higher than the conduction band minimum (CBM), which makes the solvated electrons difficult to utilize in charge-transfer processes. Thus it is essential to stabilize the energy of the solvated electron states. Taking LaAlO3/SrTiO3 (LAO/STO) oxide heterostructure with H2O-adsorbed monolayer as a prototypical system, we show using DFT and ab initio time-dependent nonadiabatic molecular dynamics simulation that the energy and dynamics of solvated electrons can be tuned by the electric field in the polar-nonpolar oxide heterostructure. In particular, for LAO/STO with p-type interface, the CBM is contributed by the solvated electron state when LAO is thicker than four unit cells. Furthermore, the solvated electron band minimum can be partially occupied when LAO is thicker than eight unit cells. We propose that the tunability of solvated electron states can be achieved on polar-nonpolar oxide heterostructure surfaces as well as on ferroelectric oxides, which is important for charge and proton transfer at oxide/aqueous interfaces.
Collapse
Affiliation(s)
- Yanan Wang
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hongli Guo
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education , Wuhan University , Wuhan 430072 , China
| | - Qijing Zheng
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences and Department of Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Department of Physics and Astronomy , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
- Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
27
|
|
28
|
Kulkarni AK, Panmand RP, Sethi YA, Kadam SR, Patil DR, Ghule AV, Kale BB. 3D Hierarchical heterostructures of Bi2W1−xMoxO6 with enhanced oxygen evolution reaction from water under natural sunlight. NEW J CHEM 2018. [DOI: 10.1039/c8nj03304h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Self-assembled 3D hierarchical Bi2W1−xMoxO6 heterostructures with varying x (x = 0, 0.2, 0.4, 0.6, 0.8 or 1.0) with different morphologies were synthesised via a facile one-pot solvothermal method and their photocatalytic activity towards the oxygen evolution reaction (OER) from water under natural sunlight was tested.
Collapse
Affiliation(s)
- Aniruddha K. Kulkarni
- Nanocrystalline Laboratory
- Centre for Material for Electronic Technology (CMET)
- Ministry of Information Technology
- Govt. of India
- Pune 411007
| | - Rajendra P. Panmand
- Nanocrystalline Laboratory
- Centre for Material for Electronic Technology (CMET)
- Ministry of Information Technology
- Govt. of India
- Pune 411007
| | - Yogesh A. Sethi
- Nanocrystalline Laboratory
- Centre for Material for Electronic Technology (CMET)
- Ministry of Information Technology
- Govt. of India
- Pune 411007
| | - Sunil R. Kadam
- Department of Physics
- Savitribai Phule Pune University
- Pune 411007
- India
| | - Deepak R. Patil
- Nanocrystalline Laboratory
- Centre for Material for Electronic Technology (CMET)
- Ministry of Information Technology
- Govt. of India
- Pune 411007
| | - Anil V. Ghule
- Department of Chemistry
- Shivaji University
- Kolhapur 416004
- India
| | - Bharat B. Kale
- Nanocrystalline Laboratory
- Centre for Material for Electronic Technology (CMET)
- Ministry of Information Technology
- Govt. of India
- Pune 411007
| |
Collapse
|