1
|
He P, Zhu SF. Spin Crossover and Its Application in Organometallic Catalysis: Concepts and Recent Progress. Chemistry 2024:e202403437. [PMID: 39404030 DOI: 10.1002/chem.202403437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Spin crossover is one of the most important properties of open-shell metal complexes. In organometallic catalytic reactions, catalysts can alter reaction kinetics by spin crossover, i. e., accelerating or hindering the reaction progression, as well as altering reaction pathways, modulating the reaction selectivity or promoting new reactions. This personal account outlines the introduction and development of important concepts such as "two-state reactivity" involving spin crossover, and proposes a new concept, "spin-responsive catalysis" to summarize the catalytic processes in which spin effects are present. Finally, the electronic mechanism of spin crossover accelerating the reaction and the role of spin crossover in changing the reaction path and regulating the reaction selectivity are introduced by taking two recent typical iron-catalyzed reactions recently reported by our group as examples.
Collapse
Affiliation(s)
- Peng He
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Baker RT, Mangin LP. What's Next for First Row Fluorometallacycles? Angew Chem Int Ed Engl 2024; 63:e202410307. [PMID: 39039024 DOI: 10.1002/anie.202410307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Hydrocarbon-derived metallacycles have been identified as key intermediates in a host of catalyzed transformations of unsaturated organic substrates. In contrast, our knowledge of analogous reactivity of fluorometallacycles is underdeveloped and largely confined to first row metals. Our summary of recent advances aims to inform young investigators of the exciting challenges offered by this pursuit.
Collapse
Affiliation(s)
- R Tom Baker
- Department of Chemistry and Biomolecular Sciences and CCRI, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
3
|
Kumar N, Gupta P. DFT Struggles to Predict the Energy Landscape for Iron Pyridine Diimine-Catalyzed [2 + 2] Cycloaddition of Alkenes: Insights into the Problem and Alternative Solutions. J Phys Chem A 2024; 128:4114-4127. [PMID: 38659086 DOI: 10.1021/acs.jpca.3c08325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, noninnocent pyridine diimine (PDI) complexes featuring first-row transition metals have emerged as prominent catalysts, demonstrating efficacy in a diverse range of vital organometallic transformations. However, the inherent complexity of the fundamental reactivity paradigm in these systems arises from the presence of a noninnocent ligand and the multispin feasibility of 3d metals. While density functional theory (DFT) has been widely used to unravel mechanistic insights, its limitations as a single-reference method can potentially misrepresent spin-state energetics, compromising our understanding of these intricate systems. In this study, we employ extensive high-level ab initio state averaged-complete active space self-consistent field/N-electron valence state perturbation theory (SA-CASSCF/NEVPT2) calculations in combination with DFT to investigate an iron-PDI-catalyzed [2 + 2] cycloaddition reaction of alkenes. The transformation proceeds through two major steps: oxidative cyclization and reductive elimination. Contrary to the predictions of DFT calculations, which suggest two-state reactivity in the reaction and identify reductive elimination as the turnover-limiting step, SA-CASSCF/NEVPT2-corrected results unequivocally establish a single-state reactivity scenario with oxidative cyclization as the turnover-limiting step. SA-CASSCF/NEVPT2-based insights into electronic ground states and electron distribution elucidate the intriguing interactions between the PDI ligand and the iron center, revealing the highly multiconfigurational nature of these species and providing a precise depiction of metal-ligand cooperativity throughout the transformation. A comparative assessment of several widely recognized DFT functionals against SA-CASSCF/NEVPT2-corrected data indicates that single-point energy calculations using the modern density functional MN15 on TPSSh geometries offer the most reliable density functional methodology, in scenarios where SA-CASSCF/NEVPT2 computational cost is a consideration.
Collapse
Affiliation(s)
- Nikunj Kumar
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Center for Sustainable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
4
|
He P, Guan MH, Hu MY, Zhou YJ, Huang MY, Zhu SF. Iron-Catalyzed Allylic C(sp 3)-H Silylation: Spin-Crossover-Efficiency-Determined Chemoselectivity. Angew Chem Int Ed Engl 2024; 63:e202402044. [PMID: 38469657 DOI: 10.1002/anie.202402044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.
Collapse
Affiliation(s)
- Peng He
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mu-Han Guan
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuan-Jun Zhou
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
5
|
Ren J, Sun Z, Zhao S, Huang J, Wang Y, Zhang C, Huang J, Zhang C, Zhang R, Zhang Z, Ji X, Shao Z. Enantioselective synthesis of chiral α,α-dialkyl indoles and related azoles by cobalt-catalyzed hydroalkylation and regioselectivity switch. Nat Commun 2024; 15:3783. [PMID: 38710722 DOI: 10.1038/s41467-024-48175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
General, catalytic and enantioselective construction of chiral α,α-dialkyl indoles represents an important yet challenging objective to be developed. Herein we describe a cobalt catalyzed enantioselective anti-Markovnikov alkene hydroalkylation via the remote stereocontrol for the synthesis of α,α-dialkyl indoles and other N-heterocycles. This asymmetric C(sp3)-C(sp3) coupling features high flexibility in introducing a diverse set of alkyl groups at the α-position of chiral N-heterocycles. The utility of this methodology has been demonstrated by late-stage functionalization of drug molecules, asymmetric synthesis of bioactive molecules, natural products and functional materials, and identification of a class of molecules exhibiting anti-apoptosis activities in UVB-irradiated HaCaT cells. Ligands play a vital role in controlling the reaction regioselectivity. Changing the ligand from bi-dentate L6 to tridentate L12 enables CoH-catalyzed Markovnikov hydroalkylation. Mechanistic studies disclose that the anti-Markovnikov hydroalkylation involves a migratory insertion process while the Markovnikov hydroalkylation involves a MHAT process.
Collapse
Affiliation(s)
- Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- Southwest United Graduate School, 650092, Kunming, China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinyuan Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Yukun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Cheng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinhai Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chenhao Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ruipu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 430079, Wuhan, China.
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- School of Pharmacy, Yunnan University, 650500, Kunming, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- Southwest United Graduate School, 650092, Kunming, China.
| |
Collapse
|
6
|
Cramer HH, Duchemin C, Kovel CB, Kim J, Pecoraro MV, Chirik PJ. Ligand Field Sensitive Spin Acceleration in the Iron-Catalyzed [2 + 2] Cycloaddition of Unactivated Alkenes and Dienes. J Am Chem Soc 2024; 146:9947-9956. [PMID: 38537152 DOI: 10.1021/jacs.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Redox-active pyridine(diimine) (PDI) iron catalysts promote the reversible [2 + 2] cycloaddition of alkenes and dienes to cyclobutane derivatives that have applications ranging from fuels to chemically recyclable polymers. Metallacycles were identified as key intermediates, and spin crossover from the singlet to the triplet surface was calculated to facilitate the reductive coupling step responsible for the formation of the four-membered ring. In this work, a series of sterically and electronically differentiated PDI ligands was studied for the [2 + 2] cycloaddition of ethylene and butadiene to vinylcyclobutane. Kinetic studies revealed that the fastest and slowest turnover were observed with equally electron-deficient supporting ligands that either feature phenyl-substituted imine carbon atoms (MeBPDI) or a pyrazine core (MePZDI). While the oxidative cyclization was comparatively slow for both catalysts, the rate of reductive coupling─determined by stoichiometric 13C2H4 labeling studies─correlated with the turnover frequencies. Two-state density functional theory studies and the distinct electronic structures of related (iPrBPDI) and (iPrPZDI) iron methyl complexes revealed significantly different ligand field strengths due to either diminished ligand σ-donation (MeBPDI) or promoted metal π-backbonding (MePZDI). Spin acceleration, leading to fast reductive coupling and catalytic turnover, was promoted in the case of the weaker ligand field and depends on both the nature and position of the electron-withdrawing group. This study provides strong evidence for the role of two-state reactivity in C(sp3)-C(sp3) bond formation and insights on how ligand design either promotes or inhibits spin acceleration in earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Hanna H Cramer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Coralie Duchemin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Carli B Kovel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
He P, Hu MY, Li JH, Qiao TZ, Lu YL, Zhu SF. Spin effect on redox acceleration and regioselectivity in Fe-catalyzed alkyne hydrosilylation. Natl Sci Rev 2024; 11:nwad324. [PMID: 38314400 PMCID: PMC10837105 DOI: 10.1093/nsr/nwad324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 02/06/2024] Open
Abstract
Iron catalysts are ideal transition metal catalysts because of the Earths abundant, cheap, biocompatible features of iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program. In this paper, a combination of experiments and theoretical calculations revealed that the iron-catalyzed hydrosilylation of alkynes is typical spin-crossover catalysis. Deep insight into the electronic structures of a set of well-defined open-shell active formal Fe(0) catalysts revealed that the spin-delocalization between the iron center and the 1,10-phenanthroline ligand effectively regulates the iron center's spin and oxidation state to meet the opposite electrostatic requirements of oxidative addition and reductive elimination, respectively, and the spin crossover is essential for this electron transfer process. The triplet transition state was essential for achieving high regioselectivity through tuning the nonbonding interactions. These findings provide an important reference for understanding the effect of catalyst spin state on reaction. It is inspiring for the development of iron catalysts and other Earth-abundant metal catalysts, especially from the point of view of ligand development.
Collapse
Affiliation(s)
- Peng He
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Hong Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Tian-Zhang Qiao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Lin Lu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Wang W, Yan X, Ye F, Zheng S, Huang G, Yuan W. Nickel/Photoredox Dual-Catalyzed Regiodivergent Aminoalkylation of Unactivated Alkyl Halides. J Am Chem Soc 2023; 145:23385-23394. [PMID: 37824756 DOI: 10.1021/jacs.3c09705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A mild and regiodivergent aminoalkylation of unactivated alkyl halides is disclosed via a dual photoredox/nickel catalysis. Bipyridyl-type ligands without an ortho-substituent control the site-selective coupling at the original position, while ortho-disubstituted ligands tune the site-selectivity at a remote, unprefunctionalized position. Mechanistic studies combined with DFT calculations give insight into the mechanism and the origins of the ligand-controlled regioselectivity. Notably, this redox-neutral, regiodivergent alkyl-alkyl coupling features mild conditions, broad substrate scope for both alkyl coupling partners, and excellent site-selectivity and offers a straightforward way for α-alkylation of tertiary amines to synthesize structurally diverse alkylamines and value-added amino acid derivatives.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Xueyuan Yan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fu Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, People's Republic of China
| |
Collapse
|
9
|
Duchemin C, Kim J, Chirik PJ. CS-Symmetric Pyridine(diimine) Iron Methyl Complexes for Catalytic [2+2] Cycloaddition and Hydrovinylation: Metallacycle Geometry Determines Selectivity. JACS AU 2023; 3:2007-2024. [PMID: 37502155 PMCID: PMC10369671 DOI: 10.1021/jacsau.3c00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
A series of CS-symmetric (aryl,alkyl)-substituted pyridine(dimine) iron methyl (CyARPDI)FeCH3 complexes have been prepared, characterized, and evaluated as precatalysts for the [2+2]-cycloaddition of butadiene and ethylene. Mixtures of vinylcyclobutane and (Z)-hexa-1,4-diene were observed in each case. By comparison, C2v-symmetric, arylated (PDI) iron catalysts are exclusively selective for reversible [2+2]-cycloaddition to yield vinylcyclobutane. The alteration in the chemoselectivity of the catalytic reaction was investigated through a combination of precatalyst stability studies, identification of catalytic resting state(s), and 2H and 13C isotopic labeling experiments. While replacement of an aryl-imine substituent with an N-alkyl group decreases the stability of the formally iron(0) dinitrogen and butadiene complexes, two diamagnetic metallacycles were identified as catalyst resting states. Deuterium labeling and NOESY/EXSY NMR experiments support 1,4-hexadiene arising from catalytic hydrovinylation involving reversible oxidative cyclization leading to accessible cis-metallacycle. Cyclobutane formation proceeds by irreversible C(sp3)-C(sp3) bond-forming reductive elimination from a trans-metallacycle. These studies provide key mechanistic understanding into the high selectivity of bis(arylated) pyridine(diimine) iron catalysts for [2+2]-cycloaddition, unique, thus far, to this class of iron catalysts.
Collapse
|
10
|
Ding X, Mu Y, Zhu Y, Guo X, Liu K, Sun L, Liu Z. Mechanistic insight into the carboxylic derivatives formation from CO2 and ethylene over iron(0)-based catalyst. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Sun X, Hansen T, Poater J, Hamlin TA, Bickelhaupt FM. Rational design of iron catalysts for C-X bond activation. J Comput Chem 2023; 44:495-505. [PMID: 35137432 PMCID: PMC10078697 DOI: 10.1002/jcc.26818] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
Abstract
We have quantum chemically studied the iron-mediated CX bond activation (X = H, Cl, CH3 ) by d8 -FeL4 complexes using relativistic density functional theory at ZORA-OPBE/TZ2P. We find that by either modulating the electronic effects of a generic iron-catalyst by a set of ligands, that is, CO, BF, PH3 , BN(CH3 )2 , or by manipulating structural effects through the introduction of bidentate ligands, that is, PH2 (CH2 )n PH2 with n = 6-1, one can significantly decrease the reaction barrier for the CX bond activation. The combination of both tuning handles causes a decrease of the CH activation barrier from 10.4 to 4.6 kcal mol-1 . Our activation strain and Kohn-Sham molecular orbital analyses reveal that the electronic tuning works via optimizing the catalyst-substrate interaction by introducing a strong second backdonation interaction (i.e., "ligand-assisted" interaction), while the mechanism for structural tuning is mainly caused by the reduction of the required activation strain because of the pre-distortion of the catalyst. In all, we present design principles for iron-based catalysts that mimic the favorable behavior of their well-known palladium analogs in the bond-activation step of cross-coupling reactions.
Collapse
Affiliation(s)
- Xiaobo Sun
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Hansen
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Barcelona, Spain.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Trevor A Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Friedrich Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Wang H, Zhou Q, Gao A, Shang Z, Li R, Xu X. Computational Study of Iron-Catalyzed Intramolecular [2 + 2] Cycloaddition and Cycloisomerization of Enyne Acetates: Mechanism and Selectivity. J Org Chem 2023; 88:944-951. [PMID: 36602522 DOI: 10.1021/acs.joc.2c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanism of iron-catalyzed intramolecular [2 + 2] cycloaddition and cycloisomerization of enyne acetates has been investigated with DFT computations. Both mechanisms start the catalytic cycle from the stepwise 1,2-acyloxy migration to afford the iron carbene. The [2 + 2] cycloaddition mechanism involves subsequent key steps of [2 + 2] cycloaddition, 1,2-acyloxy migration, and reductive elimination to generate the azabicyclo [3.2.0] heptane product, with the reductive elimination being the rate-determining step. The cycloisomerization mechanism involves subsequent key steps of [2 + 2] cycloaddition, stepwise 1,4-acyloxy migration to produce the allenylpyrrolidine product, with the 1,4-acyloxy migration being the rate-determining step. Reaction potential energy surfaces for two model substrates that have or do not have alkene-terminal substituents have been investigated and the origins of the selectivities have been disclosed. Moreover, energy profiles with three possible spin states (SFe = 0, 1, 2) have been considered. The reaction is suggested to occur mainly on the singlet potential energy surface with a few spin crossovers between singlet and triplet states involved, which indicates that this reaction should have two-state reactivity (TSR).
Collapse
Affiliation(s)
- Haoran Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ailin Gao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhenfeng Shang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ruifang Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Kong D, Wu H, Ge J, Shen Z, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroarylation/Cyclization of 1,6-Enynes with N-Pyridylindoles. J Org Chem 2022; 87:6438-6443. [PMID: 35405065 DOI: 10.1021/acs.joc.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroarylation/cyclization of 1,6-enynes with N-pyridylindoles. The computations reveal that the reaction begins with the oxidative cyclization of 1,6-enyne to afford the five-membered cobaltacycle, from which the metal-assisted σ-bond metathesis/C-C reductive elimination led to the final hydroarylation/cyclization product. The initial oxidative cyclization constitutes the rate-determining step of the overall reaction. The steric repulsion and π···π interaction were found to play a crucial role in dictating the experimentally observed enantioselectivity.
Collapse
Affiliation(s)
- Deping Kong
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Jiaao Ge
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Zhen Shen
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
14
|
Li W, Wu H, Ding X, Wu X. The cycloaddition reaction of ethylene and methane mediated by Ir+ to generate a half-sandwich structure IrHCp+. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Lewis TWR, Mastin EM, Theis ZC, Gutierrez MG, Bellert DJ. Measurement of time dependent product branching ratios indicates two-state reactivity in metal mediated chemical reactions. Phys Chem Chem Phys 2022; 24:2300-2308. [PMID: 35015007 DOI: 10.1039/d1cp05473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For several decades, the influence of Two State Reactivity (TSR) has been implicated in a host of reactions, but has lacked a stand-alone, definitive experimental kinetic signature identifying its occurrence. Here, we demonstrate that the measurement of a temporally dependent product branching ratio is indicative of spin inversion and is a kinetic signature of TSR. This is caused by products exiting different hypersurfaces with different rates and relative exothermicities. The composite measurement of product intensities with the same mass but with different multiplicities yield biexponential temporal dependences with the sampled product ratio changing in time. These measurements are made using the single photon initiated dissociative rearrangement reaction (SPIDRR) technique which identifies TSR but further determines the kinetic parameters for reaction along the original ground electronic surface in competition with spin inversion and its consequent TSR.
Collapse
Affiliation(s)
- Tucker W R Lewis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Evan M Mastin
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Zachry C Theis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Michael G Gutierrez
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Darrin J Bellert
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| |
Collapse
|
16
|
Dhara S, Ghosh S, Das AR. An iron-catalyzed domino reaction of donor-acceptor cyclopropanes: a diastereoselective approach towards diversely functionalized pyrrolo-quinazolines. Org Biomol Chem 2022; 20:1415-1424. [PMID: 35014658 DOI: 10.1039/d1ob02215f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An expeditious synthetic route to access functionalized pyrrolo[2,1-b]quinazoline scaffolds has been achieved via domino ring opening cyclization (DROC) reactions of donor-acceptor (D-A) cyclopropanes and 2-amino(methyl)aniline derivatives. This novel iron catalyzed transformation is amenable to a wide range of substrates. Three new C-N bonds and two rings were sequentially constructed in this divergent one-pot process. The advantages of simple operation, high yields and general applicability make this procedure highly attractive and practical too.
Collapse
Affiliation(s)
- Samiran Dhara
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| | - Subhadeep Ghosh
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| | - Asish R Das
- Department of Chemistry, University of Calcutta 92, A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
17
|
Petit J, Magna L, Mézailles N. Alkene oligomerization via metallacycles: Recent advances and mechanistic insights. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Jiao M, Wang Z, Zhang B, Chen BZ. [2+2] Cycloaddition or β-hydrogen elimination?—a DFT study of the reactions of propylene catalyzed by (PDI)Fe-metallacycle. NEW J CHEM 2022. [DOI: 10.1039/d1nj05646h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of the chemoselectivity of [2+2] cycloaddition reactions catalyzed by different (PDI)Fe-metallacycles is due to the different groups (N2 or CH3) coordinated with the Fe metal.
Collapse
Affiliation(s)
- Mingyang Jiao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, P. R. China
- Shandong Energy Institute, Qingdao 266101, Shandong, P. R. China
| | - Zichen Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
| | - Beibei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
| | - Bo-Zhen Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Beromi MM, Younker JM, Zhong H, Pabst TP, Chirik PJ. Catalyst Design Principles Enabling Intermolecular Alkene-Diene [2+2] Cycloaddition and Depolymerization Reactions. J Am Chem Soc 2021; 143:17793-17805. [PMID: 34652908 DOI: 10.1021/jacs.1c08912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aryl-substituted pyridine(diimine) iron complexes promote the catalytic [2 + 2] cycloadditions of alkenes and dienes to form vinylcyclobutanes as well as the oligomerization of butadiene to generate divinyl(oligocyclobutane), a microstructure of poly(butadiene) that is chemically recyclable. A systematic study on a series of iron butadiene complexes as well as their ruthenium congeners has provided insights into the essential features of the catalyst that promotes these cycloaddition reactions. Structural and computational studies on iron butadiene complexes identified that the structural rigidity of the tridentate pincer enables rare s-trans diene coordination. This geometry, in turn, promotes dissociation of one of the alkene arms of the diene, opening a coordination site for the incoming substrate to engage in oxidative cyclization. Studies on ruthenium congeners established that this step occurs without redox involvement of the pyridine(diimine) chelate. Cyclobutane formation occurs from a metallacyclic intermediate by reversible C(sp3)-C(sp3) reductive coupling. A series of labeling experiments with pyridine(diimine) iron and ruthenium complexes support the favorability of accessing the +3 oxidation state to trigger C(sp3)-C(sp3) reductive elimination, involving spin crossover from S = 0 to S = 1. The high density of states of iron and the redox-active pyridine(diimine) ligand facilitate this reactivity under thermal conditions. For the ruthenium congener, the pyridine(diimine) remains redox innocent and irradiation with blue light was required to promote the analogous reactivity. These structure-activity relationships highlight important design principles for the development of next generation catalysts for these cycloaddition reactions as well as the promotion of chemical recycling of cycloaddition polymers.
Collapse
Affiliation(s)
- Megan Mohadjer Beromi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jarod M Younker
- ExxonMobil Chemical Company, Baytown, Texas 77520, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Mechanism and selectivity of nickel-catalyzed [3 + 2] cycloaddition of cyclopropenones and α,β-unsaturated ketones: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Hakey BM, Leary DC, Rodriguez JG, Martinez JC, Vaughan NB, Darmon JM, Akhmedov NG, Petersen JL, Dolinar BS, Milsmann C. Effects of 2,6‐Dichlorophenyl Substituents on the Coordination Chemistry of Pyridine Dipyrrolide Iron Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Dylan C. Leary
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jose G. Rodriguez
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jordan C. Martinez
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Nicholas B. Vaughan
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | | | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Brian S. Dolinar
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry West Virginia University Morgantown, West Virginia USA
| |
Collapse
|
22
|
Fürstner A. Iron Catalyzed C–C-Bond Formation: From Canonical Cross Coupling to a Quest for New Reactivity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
23
|
Kennedy CR, Joannou MV, Steves JE, Hoyt JM, Kovel CB, Chirik PJ. Iron-Catalyzed Vinylsilane Dimerization and Cross-Cycloadditions with 1,3-Dienes: Probing the Origins of Chemo- and Regioselectivity. ACS Catal 2021; 11:1368-1379. [PMID: 34336370 PMCID: PMC8317497 DOI: 10.1021/acscatal.0c04608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The selective, intermolecular, homodimerization and cross-cycloaddition of vinylsilanes with unbiased 1,3-dienes, catalyzed by a pyridine-2,6-diimine (PDI) iron complex is described. In the absence of a diene coupling partner, vinylsilane hydroalkenylation products were obtained chemoselectively with unusual head-to-head regioselectivity (up to >98% purity, 98:2 E/Z). In the presence of a 4- or 2-substituted diene coupling partner, under otherwise identical reaction conditions, formation of value-added [2+2]- and [4+2]-cycloadducts, respectively, was observed. The chemoselectivity profile was distinct from that observed for analogous α-olefin dimerization and cross-reactions with 1,3-dienes. Mechanistic studies conducted with well-defined, single-component precatalysts (MePDI)Fe(L2) (where MePDI = 2,6-(2,6-Me2-C6H3N═CMe)2C5H3N; L2 = butadiene or 2(N2)) provided insights into the kinetic and thermodynamic factors contributing to the substrate-controlled regioselectivity for both the homodimerization and cross cycloadditions. Diamagnetic iron diene and paramagnetic iron olefin complexes were identified as catalyst resting states, were characterized by in situ NMR and Mössbauer spectroscopic studies, and were corroborated with DFT calculations. Stoichiometric reactions and computational models provided evidence for a common mechanistic regime where competing steric and orbital-symmetry requirements dictate the regioselectivity of oxidative cyclization. Although distinct chemoselectivity profiles were observed in cross-cycloadditions with the vinylsilane congeners of α-olefins, these products arose from metallacycles with the same connectivity. The silyl substituents ultimately governed the relative rates of β-H elimination and C-C reductive elimination to dictate final product formation.
Collapse
Affiliation(s)
| | | | | | - Jordan M. Hoyt
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Carli B. Kovel
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
24
|
Jin L, Wang Q, Chen X, Liu N, Fang X, Yang YF, She YB. Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C-H Bond Hydroxylation and Amidation of Equilenin Acetate. J Org Chem 2020; 85:14879-14889. [PMID: 33225704 DOI: 10.1021/acs.joc.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate developed by Breslow and his co-worker have been investigated with density functional theory (DFT) calculations. The hydroxylation of C(sp2)-H bond of equilenin acetate leading to the 6-hydroxylated product is more favorable than the hydroxylation of C(sp3)-H bond of equilenin acetate, leading to the 11β-hydroxylation product. The computational results suggest that the C(sp2)-H bond hydroxylation of equilenin acetate undergoes an oxygen-atom-transfer mechanism, which is more favorable than the C(sp3)-H bond hydroxylation undergoing the hydrogen-atom-abstraction/oxygen-rebound (HAA/OR) mechanism by 1.6 kcal/mol. That is why, the 6-hydroxylated product is the major product and the 11β-hydroxylated product is the minor product. In contrast, the 11β-amidated product is the only observed product in manganese porphyrin-catalyzed amidation reaction. The benzylic amidation undergoes a hydrogen-atom-abstraction/nitrogen-rebound (HAA/NR) mechanism, in which hydrogen atom abstraction is followed by nitrogen rebound, leading to the 11β-amidated product. The benzylic C(sp3)-H bond amidation at the C-11 position is more favorable than aromatic amidation at the C-6 position by 4.9 kcal/mol. Therefore, the DFT computational results are consistent with the experiments that manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate have different regioselectivities.
Collapse
Affiliation(s)
- Liyuan Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qunmin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
25
|
Milocco F, de Vries F, Bartels IMA, Havenith RWA, Cirera J, Demeshko S, Meyer F, Otten E. Electronic Control of Spin-Crossover Properties in Four-Coordinate Bis(formazanate) Iron(II) Complexes. J Am Chem Soc 2020; 142:20170-20181. [PMID: 33197175 PMCID: PMC7705964 DOI: 10.1021/jacs.0c10010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The
transition between spin states in d-block metal complexes has
important ramifications for their structure and reactivity, with applications
ranging from information storage materials to understanding catalytic
activity of metalloenzymes. Tuning the ligand field (ΔO) by steric and/or electronic effects has provided spin-crossover
compounds for several transition metals in the periodic table, but
this has mostly been limited to coordinatively saturated metal centers
in octahedral ligand environments. Spin-crossover complexes with low
coordination numbers are much rarer. Here we report a series of four-coordinate,
(pseudo)tetrahedral Fe(II) complexes with formazanate ligands and
demonstrate how electronic substituent effects can be used to modulate
the thermally induced transition between S = 0 and S = 2 spin states in solution. All six compounds undergo
spin-crossover in solution with T1/2 above
room temperature (300–368 K). While structural analysis by
X-ray crystallography shows that the majority of these compounds are
low-spin in the solid state (and remain unchanged upon heating), we
find that packing effects can override this preference and give rise
to either rigorously high-spin (6) or gradual spin-crossover
behavior (5) also in the solid state. Density functional
theory calculations are used to delineate the empirical trends in
solution spin-crossover thermodynamics. In all cases, the stabilization
of the low-spin state is due to the π-acceptor properties of
the formazanate ligand, resulting in an “inverted” ligand
field, with an approximate “two-over-three” splitting
of the d-orbitals and a high degree of metal–ligand covalency
due to metal → ligand π-backdonation. The computational
data indicate that the electronic nature of the para-substituent has a different influence depending on whether it is
present at the C–Ar or N–Ar rings, which is ascribed
to the opposing effect on metal–ligand σ- and π-bonding.
Collapse
Affiliation(s)
- Francesca Milocco
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Folkert de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Imke M A Bartels
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Remco W A Havenith
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
26
|
Zhao C, Li Y, Wang C, Chen H. Mechanistic Dichotomy in the Activation of SAM by Radical SAM Enzymes: QM/MM Modeling Deciphers the Determinant. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chengxin Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Zhang Z, Zhang JX, Sheong FK, Lin Z. 1,4-Selective Hydrovinylation of Diene Catalyzed by an Iron Diimine Catalyst: A Computational Case Study on Two-State Reactivity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhihan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jing-Xuan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
28
|
Silylium ion mediated 2+2 cycloaddition leads to 4+2 Diels-Alder reaction products. Commun Chem 2020; 3:126. [PMID: 36703398 PMCID: PMC9814679 DOI: 10.1038/s42004-020-00373-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/05/2020] [Indexed: 01/29/2023] Open
Abstract
The mechanism of silver(I) and copper(I) catalyzed cycloaddition between 1,2-diazines and siloxy alkynes remains controversial. Here we explore the mechanism of this reaction with density functional theory. Our calculations show that the reaction takes place through a metal (Ag+, Cu+) catalyzed [2+2] cycloaddition pathway and the migration of a silylium ion [triisopropylsilyl ion (TIPS+)] further controls the reconstruction of four-member ring to give the final product. The lower barrier of this silylium ion mediated [2+2] cycloaddition mechanism (SMC) indicates that well-controlled [2+2] cycloaddition can obtain some poorly-accessible IEDDA (inverse-electron demand Diels-Alder reaction) products. Strong interaction of d10 metals (Ag+, Cu+) and alkenes activates the high acidity silylium ion (TIPS+) in situ. This п-acid (Ag+, Cu+) and hard acid (TIPS+) exchange scheme will be instructive in silylium ion chemistry. Our calculations not only provide a scheme to design IEDDA catalysts but also imply a concise way to synthesise 1,2-dinitrogen substituted cyclooctatetraenes (1,2-NCOTs).
Collapse
|
29
|
Lutz SA, Hickey AK, Gao Y, Chen CH, Smith JM. Two-State Reactivity in Iron-Catalyzed Alkene Isomerization Confers σ-Base Resistance. J Am Chem Soc 2020; 142:15527-15535. [PMID: 32786744 DOI: 10.1021/jacs.0c07300] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A low-coordinate, high spin (S = 3/2) organometallic iron(I) complex is a catalyst for the isomerization of alkenes. A combination of experimental and computational mechanistic studies supports a mechanism in which alkene isomerization occurs by the allyl mechanism. Importantly, while substrate binding occurs on the S = 3/2 surface, oxidative addition to an η1-allyl intermediate only occurs on the S = 1/2 surface. Since this spin state change is only possible when the alkene substrate is bound, the catalyst has high immunity to typical σ-base poisons due to the antibonding interactions of the high spin state.
Collapse
Affiliation(s)
- Sean A Lutz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
30
|
Affiliation(s)
- Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9090401 Israel
| |
Collapse
|
31
|
H-bond catalytic mechanism of aromatic electrophilic substitution between phenol and formaldehyde. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Joannou MV, Hoyt JM, Chirik PJ. Investigations into the Mechanism of Inter- and Intramolecular Iron-Catalyzed [2 + 2] Cycloaddition of Alkenes. J Am Chem Soc 2020; 142:5314-5330. [DOI: 10.1021/jacs.0c00250] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew V. Joannou
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Jordan M. Hoyt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| |
Collapse
|
33
|
Kennedy CR, Zhong H, Joannou MV, Chirik PJ. Pyridine(diimine) Iron Diene Complexes Relevant to Catalytic [2+2]-Cycloaddition Reactions. Adv Synth Catal 2020; 362:404-416. [PMID: 32431586 PMCID: PMC7236768 DOI: 10.1002/adsc.201901289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization, and catalytic activity of pyridine(diimine) iron piperylene and isoprene complexes are described. These diene complexes are competent precatalysts for (i) the selective cross-[2+2]-cycloaddition of butadiene or (E)-piperylene with ethylene and α-olefins and (ii) the 1,4-hydrovinylation of isoprene with ethylene. In the former case, kinetic analysis implicates the diamagnetic η4-piperylene complex as the resting state prior to rate-determining oxidative cyclization. Variable temperature 1H NMR and EXSY experiments established that diene exchange from the diamagnetic, 18e- complexes occurs rapidly in solution at ambient temperature through a dissociative mechanism. The solid-state structure of (Me(Et)PDI)Fe(η4-piperylene) (Me(Et)PDI = 2,6-(2,6-Me2-C6H3N═CEt)2C5H3N), was determined by single-crystal X-ray diffraction and confirmed the s-trans coordination of the monosubstituted 1,3-diene. Possible relationships between ligand-controlled diene coordination geometry, metallacycle denticity, and chemoselectivity of iron-mediated cycloaddition reactions are discussed.
Collapse
Affiliation(s)
- C. Rose Kennedy
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Hongyu Zhong
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Matthew V. Joannou
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| | - Paul J. Chirik
- Princeton University, Department of Chemistry, Princeton, NJ 08544, United States
| |
Collapse
|
34
|
Chu M, Planas O, Company A, Ribas X, Hamilton A, Whiteoak CJ. Unravelling the mechanism of cobalt-catalysed remote C-H nitration of 8-aminoquinolinamides and expansion of substrate scope towards 1-naphthylpicolinamide. Chem Sci 2020; 11:534-542. [PMID: 32190273 PMCID: PMC7067239 DOI: 10.1039/c9sc05076k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022] Open
Abstract
Previously, an unexpected Co-catalysed remote C-H nitration of 8-aminoquinolinamide compounds was developed. This report provided a novel reactivity for Co which was assumed to proceed through the mechanistic pathway already known for analogous Cu-catalysed remote couplings of the same substrates. In order to shed light into this intriguing, and previously unobserved reactivity for Co, a thorough computational study has now been performed, which has allowed for a full understanding of the operative mechanism. This study demonstrates that the Co-catalysed remote coupling does not occur through the previously proposed Single Electron Transfer (SET) mechanism, but actually operates through a high-spin induced remote radical coupling mechanism, through a key intermediate with significant proportion of spin density at the 5- and 7-positions of the aminoquinoline ring. Additionally, new experimental data provides expansion of the synthetic utility of the original nitration procedure towards 1-naphthylpicolinamide which unexpectedly appears to operate via a subtly different mechanism despite having a similar chelate environment.
Collapse
Affiliation(s)
- Melody Chu
- Department of Biosciences and Chemistry , Sheffield Hallam University , Sheffield , S1 1WB , UK . ;
| | - Oriol Planas
- Departament de Química , Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT) , Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , Campus de Montilivi , 17071 Girona , Catalonia , Spain
| | - Anna Company
- Departament de Química , Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT) , Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , Campus de Montilivi , 17071 Girona , Catalonia , Spain
| | - Xavi Ribas
- Departament de Química , Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT) , Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , Campus de Montilivi , 17071 Girona , Catalonia , Spain
| | - Alex Hamilton
- Department of Biosciences and Chemistry , Sheffield Hallam University , Sheffield , S1 1WB , UK . ;
| | - Christopher J Whiteoak
- Department of Biosciences and Chemistry , Sheffield Hallam University , Sheffield , S1 1WB , UK . ;
| |
Collapse
|
35
|
Peterson PO, Rummelt SM, Wile BM, Stieber SCE, Zhong H, Chirik PJ. Direct Observation of Transmetalation from a Neutral Boronate Ester to a Pyridine(diimine) Iron Alkoxide. Organometallics 2020; 39:201-205. [PMID: 32728308 DOI: 10.1021/acs.organomet.9b00733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transmetallation of the neutral boronate esters, (2-benzofuranyl)BPin and (2-benzofuranyl)BNeo (Pin = pinacolato, Neo = neopentylglycolato) to a representative pyridine(diimine) iron alkoxide complex, (iPrPDI)FeOEt (iPrPDI = 2,6-(2,6-iPr2-C6H3N=CMe)2C5H3N; R = Me, Et, SiMe3), to yield the corresponding iron benzofuranyl derivative was studied. Synthesis of the requisite iron alkoxide complexes was accomplished either by salt metathesis between (iPrPDI)FeCl and NaOR (R = Me, Et, SiMe3) or by protonation of the iron alkyl, (iPrPDI)FeCH2SiMe3, by the free alcohol R'OH (R' = Me, Et). A combination of magnetic measurements, X-ray diffraction, NMR and Mössbauer spectroscopies and DFT calculations identified each (iPrPDI)FeOR compound as an essentially planar, high-spin, S = 3/2 compound engaged in antiferromagnetic coupling with a radical anion on the chelate (S Total = 3/2; S Fe = 2, S PDI = 1/2). The resulting iron benzofuranyl product, (iPrPDI)Fe(2-benzofuranyl) was characterized by X-ray diffraction and in combination with magnetic measurements, spectroscopic and computational data, was identified as an overall S = 1/2 compound, demonstrating that a net spin-state change accompanies transmetallation (S Fe = 1, S PDI = 1/2). These findings may be relevant to further development of iron-catalyzed Suzuki-Miyaura cross-coupling with neutral boronate esters and alkoxide bases.
Collapse
Affiliation(s)
- Paul O Peterson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephan M Rummelt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bradley M Wile
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - S Chantal E Stieber
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Ma P, Wang S, Chen H. Reactivity of Transition-Metal Complexes in Excited States: C–O Bond Coupling Reductive Elimination of a Ni(II) Complex Is Elicited by the Metal-to-Ligand Charge Transfer State. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03827] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pengchen Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
37
|
Fan G, Shang Z, Li R, Shafiei-Haghighi S, Peng Q, Findlater M, Xu X. Mechanism of the Iron(0)-Catalyzed Hydrosilylation of Aldehydes: A Combined DFT and Experimental Investigation. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guilan Fan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenfeng Shang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruifang Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sara Shafiei-Haghighi
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Qian Peng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Michael Findlater
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Xiufang Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Sultan S, Bhat MUS, Rizvi MA, Shah BA. Visible Light-Mediated [2 + 2] Cycloaddition Reactions of 1,4-Quinones and Terminal Alkynes. J Org Chem 2019; 84:8948-8958. [PMID: 31251064 DOI: 10.1021/acs.joc.9b00855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A single-step synthesis of 4-hydroxy-functionalized bi-aryl and aryl/alkyl ketones via oxidative coupling of terminal alkynes with benzoquinones is reported. Furthermore, with naphthoquinones, owing to the cross-resonance of carbonyl with the aromatic ring, alkene-alkyne cycloaddition is more favored to give four-membered carbocyclic adducts, thereby precluding the requirement of preactivated alkynes.
Collapse
Affiliation(s)
- Shaista Sultan
- AcSIR and Natural Product Microbes , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Muneer-Ul-Shafi Bhat
- AcSIR and Natural Product Microbes , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| | - Masood Ahmad Rizvi
- Department of Chemistry , University of Kashmir , Srinagar 190006 , India
| | - Bhahwal Ali Shah
- AcSIR and Natural Product Microbes , CSIR-Indian Institute of Integrative Medicine , Jammu 180001 , India
| |
Collapse
|
39
|
Jiang H, Lai W, Chen H. Generation of Carbon Radical from Iron-Hydride/Alkene: Exchange-Enhanced Reactivity Selects the Reactive Spin State. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01691] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hao Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Wenzhen Lai
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
40
|
Zeb N, Rashid MH, Mubarak MQE, Ghafoor S, de Visser SP. Flavonol biosynthesis by nonheme iron dioxygenases: A computational study into the structure and mechanism. J Inorg Biochem 2019; 198:110728. [PMID: 31203088 DOI: 10.1016/j.jinorgbio.2019.110728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Plants produce flavonol compounds for vital functions regarding plant growth, fruit and flower colouring as well as fruit ripening processes. Several of these biosynthesis steps are stereo- and regioselective and are being carried out by nonheme iron enzymes. Using density functional theory calculations on a large active site model complex of flavanone-3β-hydroxylase (FHT), we established the mechanism for conversion of naringenin to its dihydroflavonol, which is a key step in the mechanism of flavonol biosynthesis. The reaction starts with dioxygen binding to the iron(II) centre and a reaction with α-ketoglutarate co-substrate gives succinate, an iron(IV)-oxo species and CO2 with large exothermicity and small reaction barriers. The rate-determining reaction step in the mechanism; however, is hydrogen atom abstraction of an aliphatic CH bond by the iron(IV)-oxo species. We identify a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium. In a final step the OH and substrate radicals combine to form the alcohol product with a barrier of several kcal mol-1. We show that the latter is the result of geometric constraints in the active site pocket. Furthermore, the calculations show that a weak tertiary CH bond is shielded from the iron(IV)-oxo species in the substrate binding position and therefore the enzyme is able to activate a stronger CH bond. As such, the flavanone-3β-hydroxylase enzyme reacts regioselectively with one specific CH bond of naringenin by avoiding activation of weaker bonds through tight substrate and oxidant positioning.
Collapse
Affiliation(s)
- Neelam Zeb
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad H Rashid
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sidra Ghafoor
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Department of Chemistry, Government College University Faisalabad, Jhang Road, 3800 Faisalabad, Pakistan
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
41
|
Sun X, J. Rocha MV, Hamlin TA, Poater J, Bickelhaupt FM. Understanding the differences between iron and palladium in cross-coupling reactions. Phys Chem Chem Phys 2019; 21:9651-9664. [PMID: 30847454 PMCID: PMC8610147 DOI: 10.1039/c8cp07671e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/22/2019] [Indexed: 11/21/2022]
Abstract
We aim at developing design principles, based on quantum chemical analyses, for a novel type of iron-based catalysts that mimic the behavior of their well-known palladium analogs in the bond activation step of cross coupling reactions. To this end, we have systematically explored C-X bond activation via oxidative addition of CH3X substrates (X = H, Cl, CH3) to model catalysts mFe(CO)4q (q = 0, -2; m = singlet, triplet) and, for comparison, Pd(PH3)2 and Pd(CO)2, using relativistic density functional theory at the ZORA-OPBE/TZ2P level. We find that the neutral singlet iron catalyst 1Fe(CO)4 activates all three C-X bonds via barriers that are lower than those for Pd(PH3)2 and Pd(CO)2. This is a direct consequence of the capability of the iron complex to engage not only in π-backdonation, but also in comparably strong σ-donation. Interestingly, whereas the palladium complexes favor C-Cl activation, 1Fe(CO)4 shows a strong preference for activating the C-H bond, with a barrier as low as 10.4 kcal mol-1. Our results suggest a high potential for iron to feature in palladium-type cross-coupling reactions.
Collapse
Affiliation(s)
- Xiaobo Sun
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
| | - Marcus V. J. Rocha
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
- Institute of Chemistry – Departament of Physical Chemistry, Fluminense Federal UniversityOuteiro De São João Baptista24020-141 NiteroiRio de JaneiroBrazil
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
| | - Jordi Poater
- ICREAPg. Lluís Companys 2308010 BarcelonaSpain
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona08028BarcelonaCataloniaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University AmsterdamDe Boelelaan 10831081 HV AmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM), Radboud University NijmegenHeyendaalseweg 1356525 AJ NijmegenThe Netherlands
| |
Collapse
|
42
|
Yang L, Zhang Q, Gao J, Wang Y. Why Can Normal Palladium Catalysts Efficiently Mediate Aerobic C–H Hydroxylation of Arylpyridines by Intercepting Aldehyde Autoxidation? A Nascent Palladium(III)–Peracid Intermediate Makes a Difference. Inorg Chem 2019; 58:4376-4384. [DOI: 10.1021/acs.inorgchem.8b03515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lili Yang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Qiaohong Zhang
- Institute of Drug Discovery Technology, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Chemical Biology and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Wang
- Institute of Drug Discovery Technology, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
43
|
Abstract
In the bulk phase, hydroxyl radical from the one-electron transfer and high-valent iron-oxo species from the O-atom transfer compete to be the reactive intermediates in the Fenton and related reactions. In the confined space at a nanoscale, however, the behavior of the Fenton reaction is elusive. Herein, we report an unprecedented singlet oxygen mediated Fenton’s reaction occurred inside carbon nanotube with inner diameter of ∼7 nm, showing exotic catalytic activities, unforeseen adsorption-dependent selectivity, and pH stability for the oxidation of organic compounds. Our results suggest the use of Fenton’s reaction in more scenarios than ever explored. For several decades, the iron-based Fenton-like catalysis has been believed to be mediated by hydroxyl radicals or high-valent iron-oxo species, while only sporadic evidence supported the generation of singlet oxygen (1O2) in the Haber–Weiss cycle. Herein, we report an unprecedented singlet oxygen mediated Fenton-like process catalyzed by ∼2-nm Fe2O3 nanoparticles distributed inside multiwalled carbon nanotubes with inner diameter of ∼7 nm. Unlike the traditional Fenton-like processes, this delicately designed system was shown to selectively oxidize the organic dyes that could be adsorbed with oxidation rates linearly proportional to the adsorption affinity. It also exhibited remarkably higher degradation activity (22.5 times faster) toward a model pollutant methylene blue than its nonconfined analog. Strikingly, the unforeseen stability at pH value up to 9.0 greatly expands the use of Fenton-like catalysts in alkaline conditions. This work represents a fundamental breakthrough toward the design and understanding of the Fenton-like system under nanoconfinement, might cause implications in other fields, especially in biological systems.
Collapse
|
44
|
Joannou MV, Darmon JM, Bezdek MJ, Chirik PJ. Exploring C(sp3)–C(sp3) reductive elimination from an isolable iron metallacycle. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Ma P, Chen H. Ligand-Dependent Multi-State Reactivity in Cobalt(III)-Catalyzed C–H Activations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pengchen Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
46
|
Zheng J, Liu Z, Jin X, Dang Y. Unveiling the mechanism and regioselectivity of iron-dipyrrinato-catalyzed intramolecular C(sp3)–H amination of alkyl azides. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02479k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of iron-catalyzed C(sp3)–H amination was established, in which regioselectivity arose from both radical stability and ring strain.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin 300072
- China
| | - Zheyuan Liu
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin 300072
- China
| | - Xiaojiao Jin
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin 300072
- China
| | - Yanfeng Dang
- Department of Chemistry
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin 300072
- China
| |
Collapse
|
47
|
Yu Y, Luo G, Yang J, Luo Y. Cobalt-catalysed unactivated C(sp 3)–H amination: two-state reactivity and multi-reference electronic character. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00239a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A remarkable two-state reactivity scenario and an unusual multi-reference character have been computationally found in Co-catalysed C(sp3)–H amination. In addition, the investigation on the additive, aminating reagent, metal center, and auxiliary ligand provides implications for development of new catalytic C–H functionalization systems.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
48
|
Kramm F, Teske J, Ullwer F, Frey W, Plietker B. Anellierte Cyclobutane durch Fe‐katalysierte Cycloisomerisierung von Eninacetaten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Frederik Kramm
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Johannes Teske
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Franziska Ullwer
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Wolfgang Frey
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Bernd Plietker
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| |
Collapse
|
49
|
Kramm F, Teske J, Ullwer F, Frey W, Plietker B. Annelated Cyclobutanes by Fe‐Catalyzed Cycloisomerization of Enyne Acetates. Angew Chem Int Ed Engl 2018; 57:13335-13338. [DOI: 10.1002/anie.201806693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Frederik Kramm
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Johannes Teske
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Franziska Ullwer
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Bernd Plietker
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
50
|
Shin JH, Seong EY, Mun HJ, Jang YJ, Kang EJ. Electronically Mismatched Cycloaddition Reactions via First-Row Transition Metal, Iron(III)–Polypyridyl Complex. Org Lett 2018; 20:5872-5876. [DOI: 10.1021/acs.orglett.8b02541] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jung Ha Shin
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Young Seong
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Hyeon Jin Mun
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Yu Jeong Jang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|